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Abstract: Protein structure prediction is an important issue in structural bioinformatics. In this
process, model quality assessment (MQA), which estimates the accuracy of the predicted structure, is
also practically important. Currently, the most commonly used dataset to evaluate the performance
of MQA is the critical assessment of the protein structure prediction (CASP) dataset. However, the
CASP dataset does not contain enough targets with high-quality models, and thus cannot sufficiently
evaluate the MQA performance in practical use. Additionally, most application studies employ
homology modeling because of its reliability. However, the CASP dataset includes models generated
by de novo methods, which may lead to the mis-estimation of MQA performance. In this study, we
created new benchmark datasets, named a homology models dataset for model quality assessment
(HMDM), that contain targets with high-quality models derived using homology modeling. We then
benchmarked the performance of the MQA methods using the new datasets and compared their
performance to that of the classical selection based on the sequence identity of the template proteins.
The results showed that model selection by the latest MQA methods using deep learning is better
than selection by template sequence identity and classical statistical potentials. Using HMDM, it is
possible to verify the MQA performance for high-accuracy homology models.

Keywords: model quality assessment; evaluation of model accuracy; protein structure prediction;
machine learning; deep learning; MQA; EMA

1. Introduction

Protein structure prediction, which predicts the three-dimensional structure of a
protein from its amino acid sequence, is important in structural bioinformatics. Various
prediction methods have been developed to date [1,2], two major types of which are
homology modeling and de novo modeling. Homology modeling predicts structures
using the three-dimensional structure of a template protein, of which the amino acid
sequence is similar to the target sequence. In contrast, de novo modeling predicts structures
without using a template. While homology modeling cannot make predictions without the
presence of a template structure, de novo modeling can make predictions regardless of the
presence of a template. Furthermore, homology modeling is generally accurate when a
good template exists [3,4], and the computational cost is much lower than that of de novo
modeling. Therefore, homology modeling is often used in practical applications, such as
drug discovery [5–8].

There are many methods for predicting protein structures. Each method is capable
of generating multiple predicted structures in many cases. Therefore, it is necessary to
select a structure from several structures for use in subsequent applications. Additionally,
the user needs to judge whether the structure model has sufficient quality. However,
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in practical situations, these are not possible, because the ground truth structure has not
been determined, and the accuracy of the predicted structure cannot be calculated.

To solve this problem, there is research called the model quality assessment (MQA).
MQA estimates the accuracy of the predicted structures, enabling the comparison of struc-
tures and the verification of prediction accuracy. Relative accuracy is generally sufficient
to select the most accurate predicted structure from multiple structures. However, it is
also important to estimate the absolute accuracy of a single predicted model structure to
determine whether it can be used in subsequent applications. Various MQA methods have
been developed to date, and the recently developed methods often use deep learning [9–11].
Deep learning-based methods often show better accuracy than conventional methods, such
as potential energy function-based methods. However, such learning methods tend to over-
fit the training datasets. Thus, if the training and test sets used are biased, the performance
evaluation might lead to overestimation.

Some datasets are available for training and evaluating the performance of MQA meth-
ods, such as CAMEO [12], 3DRobot [13], and QUARK [14,15]. The most commonly used
dataset among them is the critical assessment of protein structure prediction (CASP) [16]
dataset. CASP is a benchmark for protein structure prediction and is revised every 2 years.
Notably, CASP includes a structure prediction category and an MQA category. The three-
dimensional structure models predicted in the structure prediction category are used in the
MQA category. The data used in the MQA category are often used as benchmark datasets
for MQA methods.

The CASP dataset is often used as a benchmark dataset in MQA research [9–11]
because it contains several structure models for various target proteins, and researchers
can directly compare their results with previous CASP experiments. However, there are
some problems with this dataset. First, there are not enough targets that contain highly
accurate model structures. In the CASP11-13 datasets [16–18], which are often used as a
test dataset for MQA methods, 87 of the 239 targets had predicted model structures with
global distance test total score (GDT_TS) [19] greater than 0.7, which is regarded as highly
accurate. Only 19 targets had GDT_TS greater than 0.9, which is close to the experimental
accuracy. A key capability of MQA methods in practical situations is the ability to select the
most accurate model from the highly accurate models, such as those with GDT_TS greater
than 0.7. However, the CASP dataset does not contain accurate models for more than half
of the targets. Thus, it is not possible to fully evaluate the ability to select a sufficiently
accurate model among several accurate models. Second, there are multiple structural
models predicted by various protein structure prediction methods. For a single target
in the CASP dataset, there are structural models predicted by approximately 30 different
prediction methods, and each method has different characteristics. One problem with
the inclusion of model structures from various prediction methods is that it is unclear
whether the MQA method assesses the quality of the model structure or merely captures
the characteristics of the prediction method. For example, it is possible that MQA methods
that use Rosetta [20] energy as input features may overestimate the structure predicted
by methods that are optimized for Rosetta energy. Thus, it is not clear whether the MQA
method judges the quality of the prediction structure itself or the features of the prediction
method when models are predicted by multiple methods. Third, the CASP dataset consists
of structural models predicted by both modeling methods. Structure prediction methods are
often used in drug discovery [21–25]. However, homology modeling has mainly been used
because of its reliability. As the accuracy of de novo modeling has improved in recent years,
the structures predicted by de novo modeling may be used for drug discovery in the future.
However, de novo models are rarely used. Furthermore, it is important to evaluate the
MQA performance of structures predicted by homology modeling. Importantly, the CASP
dataset contains many structures predicted by de novo modeling. There are also decoy sets
that consist only of structures predicted by homology modeling [26–28]. Unfortunately,
these datasets have problems, such as a small number of targets, few structure models for
each target, and a limited number of high-quality structure models. Additionally, while the
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CASP datasets include both single-domain and multi-domain proteins, most models are
for single-domain proteins. The number of multi-domain proteins is insufficient.

The CAMEO dataset has also been often used as an evaluation dataset in recent MQA
studies. The CAMEO dataset has more frequent updates and a larger number of targets than
the CASP dataset. In addition, CAMEO’s Model Quality Estimation category contains 1280
predicted structures with global local distance difference test (lDDT) score [29] greater than
0.8 out of 6690 structures in one year (19 February 2021–12 February 2022), which means
that CAMEO has more structures with higher accuracy than CASP. However, CAMEO has
the problem that the number of predicted structures per target is small. The number of
predicted structures per target in CAMEO is about 10, and the performance of selecting the
best structure from among the structures for a single target cannot be fully evaluated.

In this study, we constructed a dataset named homology models dataset for model
quality assessment (HMDM) for benchmarking MQA methods in practical situations. We
used a single homology modeling method for tertiary structure prediction. The protein
targets were selected to include the most accurate models. We then created two datasets—
one containing single-domain proteins and another containing multi-domain proteins.
After constructing the datasets, we compared the performance of the existing MQA methods
using our datasets and determined their performance for highly accurate homology models.

2. Methods

We created a single-domain dataset and a multi-domain dataset to evaluate the MQA
performance for single-domain and multi-domain proteins. We designed these datasets
to contain a large number of high-quality models to evaluate the MQA performance in
practical scenarios. To generate the high-quality models, we used a homology modeling
method to predict the structure and selected target proteins with rich template structures.
Then, to ensure an unbiased distribution of model quality for each target, structures were
modeled using various templates, which were sampled to create the final dataset. Once
the datasets were completed, we compared the MQA performance of the datasets using
various MQA methods and indices of alignment quality, such as identity, between the
target and template sequence.

The workflow for creating the datasets is shown in Figure 1. First, we selected
template-rich entries as targets from the structural classification of proteins (SCOP) [30]
and PISCES [31] databases, respectively. Then, the template was searched against protein
data bank (PDB) [32] and modeled. Next, sampling was performed to ensure that the
distribution of the model quality was not biased. Low-quality models were excluded.
Finally, each target was confirmed to meet the criteria described later, and targets that did
not meet the criteria were re-selected.

2.1. Dataset Construction
2.1.1. Target Selection

We selected 100 targets from the SCOP version 2 (SCOP2) (released on 30 March 2021)
database for the single-domain dataset and from the subset of PISCES server (released on
25 February 2021) for the multi-domain dataset to avoid redundancy among the targets.

SCOP2 classifies protein domains based on their evolutionary and structural rela-
tionships. Because SCOP2 has entries for each protein domain, we used it as the target
selection source for the single-domain dataset. We selected one target from each protein
superfamily to avoid target redundancy. There are four protein types in SCOP: globular,
fibrous, membrane, and intrinsically disordered. We selected only globular proteins as
targets, because fibrous and membrane proteins are not stable in their own protein struc-
ture domain, and intrinsically disordered proteins are inappropriate targets for structure
prediction. Furthermore, SCOP classifies entries into five classes based on their secondary
structure: all alpha, all beta, alpha/beta, alpha+beta, and small proteins. We excluded
small proteins because of few entries. Then, we selected 25 targets equally from the other
four classes, with 100 targets in total. When choosing a superfamily for each class, we chose
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superfamilies with a high number of entries. When selecting targets from the superfamily
entries, we selected an entry with the highest number of hits in homology searching using
three iterations of PSI-BLAST [33] v2.9.0.

1. Target selection 2. Homology modeling 3. Sampling

start

SCOP 
database

Select 100
superfamilies

Select
a target from 

each 
superfamily*

No

PDB

Single-domain
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start
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Search 
templates**

Homology 
modeling

Sampling 
models***

Figure 1. Workflow of dataset creation. First, we selected entries with rich templates from the
SCOP and PISCES databases for both single-domain and multi-domain datasets as targets. Next,
we performed a template search and homology modeling. In this process, templates with coverage
of less than 60% are excluded. The models were sampled for each target so that the distribution of
the quality of the models was not biased. When sampling, models with GDT_TS less than 0.4 were
excluded. Finally, each target was confirmed to meet the criteria. Targets not meeting the criteria
were re-selected.

PISCES is a server that can extract subsets of proteins using sequence identity and
structural quality criteria. We used the subset which was precompiled using the following
parameters: identity less than 20%, resolution less than 2.0, and R-factor less than 0.25. Since
entries in PISCES are listed by amino acid sequence and contain both single-domain and
multi-domain proteins, we extracted only multi-domain proteins based on the CATH [34]
classification. To select template-rich entries as targets, we performed a homology search
on each multi-domain entry in the same way as for the single-domain dataset, and selected
100 targets in the order of the number of hits.

2.1.2. Homology Modeling

We used MODELLER [35], which is a commonly used homology modeling method,
as a structure prediction method. Although there are several homology modeling methods,
we chose a single method to evaluate whether the MQA methods capture the quality of
the model, rather than the characteristics of the predicted structure for each structure
prediction method.

We performed three iterations of PSI-BLAST against PDB (released on 7 April 2021)
and selected template structures from each iteration. We used two methods to select
template structures from the results of each iteration of PSI-BLAST. One method was to
simply select the hits in the order of their e-values to select the template structure that is
most similar to the target sequence. The other method was to cluster the hit sequences using
CD-HIT [36,37] with a 95% threshold and select hits in the order of their e-values so that
the clusters do not overlap, which allowed us to select various template structures. Up to
10 templates were selected from each iteration by each of these two methods, totaling up to
60 templates. Note that the templates were selected in order starting from the first iteration,
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and the hits selected in the previous iteration were not re-selected. Even if the template
structure was the same, if the sequence alignment changed, the template was selected.

We excluded some hits when selecting the templates. First, proteins with the same
PDB ID as the target proteins were excluded. Next, hits with less than 60% coverage were
excluded because high-quality model structures were not generated from such templates.
Finally, hits with more than 95% identity to the target sequence were excluded because
their structures could have been determined for the exact same protein or they may have
the same structure with only a few residue differences.

After selecting the templates, we generated five models with different random seeds
of optimization for each template. At that time, we set automodel.md_level to the default
(refine.very_fast) for model refinement. Thus, up to 300 models were generated for a
single target.

2.1.3. Sampling

After modeling, there was bias in the quality distribution of the model structures.
Therefore, we sampled the models to reduce the bias. Before sampling, models with
GDT_TS less than 0.4 were removed because their prediction quality was low and they
were not suitable for evaluating the MQA performance.

Sampling was performed by limiting the number of models around the best model
that had the best GDT_TS. If there were many models close to the best model, it was easy
to select the model that is close to the best, and it was not possible to accurately evaluate
the MQA performance when selecting the best model. Specifically, models whose GDT_TS
difference from the best model was within 0.03 were defined as the models around the
best. Up to 10 of these models were randomly sampled. Note that the best model was
always included in the dataset separately from the models around the best model. The
other models were randomly sampled so that the maximum number of models was 150,
including the models already selected in the above procedure.

2.1.4. Verification

Finally, a subset of each target was evaluated to determine whether it met the following
criteria. Targets that did not meet the criteria were re-selected because they were not suitable
for the purpose of this study. First, targets with fewer than 50 models after sampling were
replaced for both single-domain and multi-domain datasets. Then, targets whose GDT_TS
of the best model was less than 0.7 were replaced. When replacing a single-domain target,
the entry in the same superfamily that had the next highest number of hits in the PSI-BLAST
template search was selected as a target. When replacing multi-domain targets, we selected
the entry with the next highest number of hits among the multi-domain entries for a target.
We iteratively replaced targets until all targets met the criteria.

2.2. MQA Performance Evaluation for the Constructed Datasets

We compared the MQA performance of several MQA methods and template quality
metrics, such as identity, in the datasets created using the procedure described above.

2.2.1. Evaluation Metrics

We chose metrics that are important in practical situations as the main evaluation
metrics. Some metrics that are important in practical situations included the ability to select
the best model from a set of models and how accurately we could predict the value of
GDT_TS. Therefore, we used the average of GDT_TS loss and the average of mean absolute
error (MAE) per target as the main evaluation metrics. GDT_TS loss is the difference
between the GDT_TS of the best model and the model with the highest MQA score. The
lower the GDT_TS loss, the model that is closest to the best model is selected. If there
were multiple highest MQA scores, we averaged their losses. The MAE is the average
of the errors between the GDT_TS and MQA scores for each model. We also used the
average Pearson and Spearman correlations between the GDT_TS and MQA scores for each
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target. GDT_TS was calculated using the TM-score [38]. To confirm statistical significance,
Wilcoxon signed-rank tests were conducted using a significance level of 0.01.

2.2.2. Evaluation Methods

We compared three method types: indices of the alignment quality between target
and template sequence, statistical potential function-based MQA methods, and machine
learning-based MQA methods. All of these methods were run in our local environment.

We used three indices of the alignment quality between the target and template
sequences: identity, positive, and coverage. Identity generally indicates the percentage of
residues that match within the aligned sequence, but in this study, identity was calculated
by dividing the number of residues that match between the template and target sequences
by the length of the target sequence. Positive indicates the percentage of residues with a
positive alignment score, which is also generally dependent on the length of the alignment.
In this study, we calculated the positive percentage using the length of the target sequence.
We calculated the coverage as the ratio of the template sequence coverage to the length of
the target sequence.

For statistical potential function-based MQA methods, we used discrete optimized
protein energy (DOPE) [39] and statistically optimized atomic potentials (SOAP) [40].
DOPE is a method based on the distance potential between atoms and is used as the
internal score function in MODELLER. SOAP uses the atomic distance and orientation
between a pair of covalent bonds.

As machine learning-based methods, we selected ProQ3D [41], SBROD [42], P3CMQA [43],
and DeepAccNet [44]. ProQ3D is a standard MQA method and is a neural network-based
method that uses sequence profiles and Rosetta energy as inputs. Several versions were
trained with different labels. We used the S-score version. SBROD is a ridge regression-
based method that uses the structural features of the main chain as the input. P3CMQA is a
three-dimensional convolutional neural network (3DCNN)-based method that uses atom-type
features and sequence profiles as inputs. DeepAccNet is a method composed of 3DCNN and
2DCNN that uses distance-based and sequence-based features as inputs. Two versions of
DeepAccNet were used: DeepAccNet, which is the standard version, and DeepAccNet-Bert,
which uses bert-embeddings by ProtTrans [45]. ProQ3D and SBROD were selected because of
their good performance in CASP13 [46]. P3CMQA and DeepAccNet were selected because they
had good results in CASP14 [47].

3. Results

First, we described details on the constructed datasets. Then, we compared the prediction
performance of the MQA methods on the datasets.

3.1. Constructed Datasets

We constructed single-domain and multi-domain datasets containing 100 targets
each. The list of targets for the single-domain and multi-domain datasets are shown in
Tables S1 and S2, respectively. Figure 2 shows the maximum GDT_TS value distribution
for each target. For the both datasets, we generated structural models with GDT_TS greater
than 0.9 for more than half of the targets. Compared to the CASP11-13 [16–18] dataset,
both constructed datasets contain more accurate prediction structures (see Supporting
Information). More detailed information, such as the distribution of GDT_TS of models for
each target, is available in the supporting information.

3.2. Correlation between GDT_TS and the Alignment Quality

In homology modeling, the alignment quality between the target and template se-
quences is an important factor that affects the model quality. Therefore, the template is often
selected based on the alignment quality. In this study, we used various template structures
to model a single target and examined the relationship between the alignment and model
quality. Figure 3 shows a scatter plot of GDT_TS and the three indicators of alignment
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quality: identity, positive, and coverage. There was a positive correlation between the
alignment quality and GDT_TS. However, even if the identity and positive values were
high, GDT_TS was low in some cases. In contrast, there were cases where the GDT_TS was
high, even if the identity was low. Therefore, it was difficult to judge the quality of the
predicted model only on the alignment quality.
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Figure 2. The distribution of the maximum GDT_TS for each dataset. A single point represents the
maximum GDT_TS for a single target. For each dataset, superpositions of the native structure and
the best structure in the target with the median and the lowest maximum GDT_TS are shown. Native
structures are shown in green, and predicted structures are shown in cyan. The superpositions were
created using TM-score and structure visualizations were created by PyMOL [48].

Figure 3. Scatter plot between the model and alignment quality. The first row of the plot is for the
single-domain dataset, and the second row is for the multi-domain dataset. Columns 1 to 3 of the
plot are identity, positive, and coverage, respectively. The range of GDT_TS in the plot is 0.4 to 1.
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3.3. MQA Performance Evaluation for the Constructed Datasets

Previous MQA studies generally evaluated their performance using the CASP dataset,
and their performance for high-quality homology models was unclear. Thus, we bench-
marked the performance of the existing MQA methods. Additionally, most practical studies
using homology modeling often used sequence identity or the e-value to select the best tem-
plate and structure model. We therefore compared the selection performance of alignment
quality indices with those of the MQA methods of the constructed datasets.

The results for the single-domain dataset are listed in Table 1. Among the three indices
of alignment quality (identity, positive, and coverage), the performance of identity was the
best in terms of loss. The performance of the positive was better in terms of the Pearson
and Spearman correlations. The performance of the coverage was lower than those of the
other indices. Statistical potential-based methods (DOPE and SOAP) performed slightly
better than identity for all indices. Classical machine learning-based methods (ProQ3D
and SBROD) performed worse to loss. This is because structures with high identity are
often accurate, which makes this is a good index for selecting the best model. In contrast,
structures with low identity were not always inaccurate and had decreased performance for
the Pearson and Spearman correlations. Newer deep learning-based methods (P3CMQA
and DeepAccNet) performed better than alignment quality, both for loss and correlations.
However, the improved performance of the latest deep learning-based methods compared
to alignment quality (identity) was not significantly different (p > 0.01) for loss. From the
viewpoint of MAE, the performances of classical machine learning-based methods were
comparable to those of the latest deep learning-based methods, likely because most of
these methods were not designed to output GDT_TS itself. Instead, most methods estimate
an average lDDT. The MAE values were not sufficiently small, but they could be used as
guidelines to estimate the absolute quality of the structure models.

The results for the multi-domain dataset are listed in Table 2. There was no signifi-
cant differences in the results for the single domain dataset. However, all MQA methods
performed better than alignment quality for loss. Indeed, the latest deep learning-based
methods were significantly different from alignment quality (identity) in terms of all metrics.

The detailed results with p-values are shown in Tables S4 and S5. In addition, the re-
sults when RMSD is used as a label are shown in Tables S6 and S7.

Table 1. MQA performance for the single-domain dataset.

Method Loss MAE Pearson Spearman

identity(%) 4.096 (0.371) 0.636 0.507
positive(%) 4.902 (* 0.215) * 0.661 * 0.540
coverage(%) * 10.068 (* 0.211) * 0.438 * 0.359

DOPE 4.013 - * 0.745 * 0.675
SOAP 3.818 - 0.642 * 0.603

ProQ3D 4.562 * 0.129 * 0.725 * 0.663
SBROD 5.797 - 0.676 * 0.613

P3CMQA 3.091 * 0.096 * 0.838 * 0.777
DeepAccNet 3.288 * 0.238 * 0.748 * 0.675
DeepAccNet-Bert 3.372 * 0.173 * 0.821 * 0.754

The first column represents the method name. The second column shows the average GDT_TS loss of the selected
models for each target. The values are multiplied by 100 for clarity. The third column shows the average mean
absolute error (MAE) between the GDT_TS and estimated scores per target. The fourth and fifth columns show
the average Pearson and Spearman correlation coefficients for each target, respectively. The MAE values for
identity, positive, and coverage are given in parentheses because they are not scores that directly predict the
quality of the model structures. The best values are in bold. An asterisk indicates values for which the p-value
(calculated by the Wilcoxon signed-rank test against identity) was less than 0.01.
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Table 2. MQA performance for the multi-domain dataset.

Method Loss MAE Pearson Spearman

identity(%) 4.885 (0.318) 0.787 0.551
positive(%) 4.410 (* 0.171) * 0.805 * 0.577
coverage(%) * 16.252 (0.285) * 0.424 * 0.387

DOPE * 2.468 - 0.809 * 0.712
SOAP * 2.921 - * 0.741 * 0.620

ProQ3D 3.587 * 0.095 0.817 * 0.723
SBROD 3.684 - 0.785 * 0.676

P3CMQA * 1.884 * 0.075 * 0.884 * 0.802
DeepAccNet 2.873 * 0.194 * 0.858 * 0.734
DeepAccNet-Bert * 2.760 * 0.142 * 0.882 * 0.788

The first column represents the method name. The second column shows the average GDT_TS loss of the selected
models for each target. The values are multiplied by 100 for clarity. The third column shows the average mean
absolute error (MAE) between the GDT_TS and estimated scores per target. The fourth and fifth columns show
the average Pearson and Spearman correlation coefficients for each target, respectively. The MAE values for
identity, positive, and coverage are given in parentheses because they are not scores that directly predict the
quality of the model structures. The best values are in bold. An asterisk indicates values for which the p-value
(calculated by the Wilcoxon signed-rank test against identity) was less than 0.01.

4. Discussion
4.1. Differences in the Quality of Models with the Same Template

In this study, we generated multiple predicted structures from a single template
structure. It is possible to select a template that is most likely to be similar to the target
from multiple template candidates based on the alignment quality between the template
and the target sequences. However, the quality of the template alignment cannot be used
to rank multiple structures predicted from the same template and alignment. Thus, we first
analyzed the extent to which the quality differed among the model structures predicted
from the same template. We also examined whether the MQA method can rank model
structures predicted from the same template.

The difference between the best and worst template models in the single-domain
dataset is shown in Figure S4. Note that we only show the difference in quality between
the structures predicted from the template for which the best model was derived. The
difference for most of the templates was small (less than 0.025), but some were large, with a
maximum difference of approximately 0.175. Therefore, it is important to rank multiple
structures predicted from the same template. The results for all templates are shown in
Figure S5. The same trend was observed for all templates.

We tested whether the MQA method can select the best model among the model
structures generated from the same template. For testing purposes, we used the seven
templates in Figure S4 where the difference between the best and worst models was greater
than 0.05. GDT_TS loss was used as the evaluation metric. To compare with the case of
random selection, we calculated and compared the expected value. We also compared the
case where the worst model was selected. The results of this test are shown in Figure 4. As
shown in Figure 4, most MQA methods tend to select better models than random selection.
However, there were some cases where the worst model was selected, and there was no
method that could always select a model close to the best model.

4.2. Situation-Specific MQA Performance Analysis

The results of the MQA performance comparison show that the current MQA methods
perform better overall. However, in some cases, it is better to choose a model based on
alignment quality rather than MQA methods. Therefore, we analyzed when the alignment
quality was effective in selecting a model and when the MQA method was effective.
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First, we created categories based on the distribution of the alignment quality of the
templates for each target and then compared the performance for each category. We created
the following three categories.

• Single top: identity1st—identity2nd > 0.1
• Multi top: identity1st—identity[len(templates) × 0.1 + 0.5] > 0.1 and not single top
• No identical top: identity1st—identity[len(templates) × 0.1 + 0.5] ≤ 0.1

Random

Worst

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Loss

DOPE

SOAP

ProQ3D

SBROD

P3CMQA

DeepAccNet

DeepAccNet-Bert

Target
1EXR_A
1HTA_A
1VLK_A
3JAI_SS
4EFH_A
4V52_BC
4WE5_A

M
et

ho
d

Figure 4. The bar plot and swarm plot of the GDT_TS loss for structure models with GDT_TS
difference greater than 0.05 within the same template. The labels on the x-axis represent the method
name. In addition to the values of the MQA methods, the values obtained by random selection and
the values when the worst model is selected are shown. The bar graph shows the average value of
the method, and the error bar represents the 95% confidence interval.

Here, identityNth denotes the Nth highest identity, and len(templates) is the number of
the template structures for a target. These categories were created based on the assumption
that it would be better to select a model based on its identity when there is a template
with an outstandingly high identity among the templates and to select a model based
on the MQA score when there are multiple templates with high identity. The results for
each category in the single-domain dataset are shown in Table 3, and the results for the
multi-domain dataset are listed in Table S9. From the loss of each category, it was found
that it is best to select a model based on identity when there is a template with exceptionally
high identity. In the other cases, MQA methods were found to better select a structure
model. Therefore, although identity is an important indicator that affects the model quality,
it does not represent the detailed model quality, so model selection using MQA method is
better when the difference in identity is less than approximately 10%.

In addition to the distribution of identity for each target, the following four categories
were created based on the maximum identity value, and the performance of each category
was compared.

• High: 0.8 ≤ Maximum identity
• Mid-high: 0.6 ≤ Maximum identity < 0.8
• Mid-low: 0.4 ≤ Maximum identity < 0.6
• Low: Maximum identity < 0.4

The results for each category in the single-domain and multi-domain datasets are
shown in Tables 4 and S11, respectively. In the single-domain dataset, identity-based
selection was best when the identity was 0.8 or higher. Otherwise, MQA method-based
selection was better. In many cases, when sequence identity is quite high (over 0.8),
the quality of the predicted structure is high, thus if we select the model with the best
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identity, the model is quite close to the best model. If not, it is better to use the MQA
method because it is difficult to identify which models are highly accurate.

Table 3. MQA performance for each category based on the distribution of identity for the single-
domain dataset.

Category Num Targets Method Loss Pearson Spearman

Single top 9 identity(%) 1.900 0.709 0.511
positive(%) 1.900 0.734 0.554
ProQ3D 4.348 0.877 0.744
P3CMQA 3.833 0.926 0.821
DeepAccNet 3.573 0.855 0.757
DeepAccNet-Bert 2.539 0.914 0.808

Multi top 41 identity(%) 3.177 0.661 0.481
positive(%) 3.659 0.693 0.533
ProQ3D 4.064 0.699 0.660
P3CMQA 2.459 0.822 0.769
DeepAccNet 2.070 0.752 0.671
DeepAccNet-Bert 3.159 0.817 0.752

No identical top 50 identity(%) 5.244 0.602 0.528
positive(%) 6.461 0.623 0.542
ProQ3D 5.008 0.718 0.651
P3CMQA 3.475 0.836 0.775
DeepAccNet 4.237 0.725 0.664
DeepAccNet-Bert 3.697 0.807 0.745

The first column represents the name of the category based on the distribution of sequence identity. The second
column shows the number of the targets for each category.

Table 4. MQA performance for each category based on the maximum identity for the single-
domain dataset.

Category Num Targets Method Loss Pearson Spearman

High 24 identity(%) 4.357 0.726 0.581
positive(%) 4.788 0.751 0.607
ProQ3D 6.376 0.659 0.605
P3CMQA 5.377 0.814 0.731
DeepAccNet 5.014 0.732 0.636
DeepAccNet-Bert 5.760 0.762 0.672

Mid-high 23 identity(%) 3.544 0.652 0.498
positive(%) 4.014 0.682 0.536
ProQ3D 4.543 0.753 0.703
P3CMQA 1.981 0.866 0.814
DeepAccNet 2.336 0.776 0.712
DeepAccNet-Bert 3.056 0.848 0.781

Mid-low 39 identity(%) 3.969 0.623 0.504
positive(%) 4.679 0.643 0.541
ProQ3D 4.413 0.731 0.669
P3CMQA 2.695 0.825 0.772
DeepAccNet 2.758 0.731 0.659
DeepAccNet-Bert 2.598 0.830 0.773

Low 14 identity(%) 4.908 0.491 0.402
positive(%) 7.175 0.525 0.426
ProQ3D 1.896 0.771 0.681
P3CMQA 2.096 0.870 0.808
DeepAccNet 3.373 0.776 0.725
DeepAccNet-Bert 1.954 0.851 0.796

The first column represents the name of the category based on the maximum value of identity per target, and the
second column shows the number of the targets for each category.
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We also compared the performance for each class of targets in the single-domain
dataset and for each number of domains of the targets in the multi-domain dataset, but there
was no significant difference in performance. Therefore, there is little difference between
MQA methods that are superior in estimating the quality of a particular structure (e.g.,
a structure with many alpha helix). This may be due to the many methods using the same
dataset for training. As for the number of domains, it is difficult to discuss the performance
difference between the MQA methods because the domain number of most targets was
two. Detailed results are shown in Tables S12 and S13.

5. Conclusions and Future Work

In this study, we constructed two MQA benchmark datasets: a single-domain dataset
named HMDM-single and a multi-domain dataset named HMDM-multi. Homology
modeling was used as the modeling method, and the datasets contained high-quality
models for each target. We compared the performance of the existing MQA methods
using the constructed datasets and showed that the latest deep learning-based methods
performed better. Thus, it is better to consider the score of the MQA method when selecting
one structure from multiple predicted structures. However, the deep learning-based
method is not superior for all targets. The sequence identity is a good indicator for
selecting the best model when there are templates whose identity is much higher than
other templates or when there are templates whose identity is quite high. Therefore, it is
better to use the MQA method or sequence identity to select the best predicted structural
model depending on the situation. The constructed datasets can be downloaded from
http://www.cb.cs.titech.ac.jp/hmdm (accessed on 12 March 2022).

One of the future works is to improve the dataset construction protocol. The current
number of targets is acceptable considering the target selection method, but increasing
the number of targets in the future will enable more reliable evaluation. The sampling
method of the model structure can also be improved. There are no significant problems
with the current sampling method, but since it is a simple method, further reducing the
bias in accuracy will enable better evaluation. Other improvements could be achieved in
the selection of multi-domain targets. In homology modeling, we assume that there is no
significant difference in orientation between domains in a family, and we do not assign any
specific restrictions to the targets. However, there are cases where the orientation differs,
thus it is required to select targets based on the strength of the interaction between domains.
Furthermore, the addition of targets with no high-identity templates can be considered
as future work. There are few targets in this dataset for which only low identity (<30%)
templates exist. The ability to select the best structure for such targets is important in
real-life applications, thus we will need to add such targets in the future.

Another possible future work is to verify the accuracy estimation performance for
AlphaFold2 structures. Recently, the release of AlphaFold2 has made it possible to predict
3-dimensional structures with high accuracy without using homology modeling. Since
it is expected that AlphaFold2 structures will be used more in practical applications, it is
important to verify the accuracy estimation performance for AlphaFold2 structures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9030118/s1, Figure S1: Sequence length distribution
of targets in the datasets; Figure S2: The distibution of the GDT_TS for each target in the single-
domain dataset; Figure S3: The distibution of the GDT_TS for each target in the multi-domain dataset
Figure S4: The distribution of the difference in GDT_TS between the best and the worst models from
the same template and alignment in the single-domain dataset (For only the best template); Figure S5:
The distribution of the difference in GDT_TS between the best and the worst models from the same
template and alignment in the single-domain dataset (For all templates); Table S1: List of 100 targets
in the single-domain dataset; Table S2: List of 100 targets in the multi-domain dataset; Table S3:
Number of targets for which the maximum GDT_TS value exceeds the threshold in each dataset
compared with CASP dataset; Table S4: MQA performance for the single-domain dataset; Table S5:
MQA performance for the multi-domain dataset; Table S6: MQA performance for the single-domain

http://www.cb.cs.titech.ac.jp/hmdm
https://www.mdpi.com/article/10.3390/bioengineering9030118/s1
https://www.mdpi.com/article/10.3390/bioengineering9030118/s1
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dataset with RMSD as a label; Table S7: MQA performance for the multi-domain dataset with RMSD
as a label; Table S8: MQA performance for each category based on the distribution of identity for the
single-domain dataset; Table S9: MQA performance for each category based on the distribution of
identity for the multi-domain dataset; Table S10: MQA performance for each category based on the
maximum identity for the single-domain dataset; Table S11: MQA performance for each category
based on the maximum identity for the multi-domain dataset; Table S12: MQA performance for each
class of the single-domain dataset; Table S13: MQA performance for each number of domains of the
multi-domain dataset;
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