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Abstract: This paper presents a new analog front-end classification system that serves as a wake-up
engine for digital back-ends, targeting embedded devices for epileptic seizure prediction. Predicting
epileptic seizures is of major importance for the patient’s quality of life as they can lead to paralyzation
or even prove fatal. Existing solutions rely on power hungry embedded digital inference engines
that typically consume several µW or even mW. To increase the embedded device’s autonomy, a
new approach is presented combining an analog feature extractor with an analog Gaussian mixture
model-based binary classifier. The proposed classification system provides an initial, power-efficient
prediction with high sensitivity to switch on the digital engine for the accurate evaluation. The
classifier’s circuit is chip-area efficient, operating with minimal power consumption (180 nW) at low
supply voltage (0.6 V), allowing long-term continuous operation. Based on a real-world dataset, the
proposed system achieves 100% sensitivity to guarantee that all seizures are predicted and good
specificity (69%), resulting in significant power reduction of the digital engine and therefore the total
system. The proposed classifier was designed and simulated in a TSMC 90 nm CMOS process, using
the Cadence IC suite.

Keywords: analog VLSI implementation; analog wake-up; epileptic seizure; Gaussian mixture model;
low-power design; seizure prediction

1. Introduction

The continuing progress in integrated circuit (IC) technologies has resulted in complex
and power-efficient systems that address the challenges of various Internet of Things (IoT)
and machine learning (ML) applications [1,2]. A particular example is wearable systems
that monitor the user’s health condition, such as electroencephalogram (EEG) monitors [3].
In this case, the subject’s brain activity is monitored through the use of electrodes attached
to the scalp in order to track, classify, and diagnose epileptic seizures. By continuously
monitoring EEG signals throughout the everyday life of the subject, accurate conclusions
about their condition can be drawn and intractable epileptic seizures [4,5], which are not
amenable to medication, can be forecasted [6,7].

Wearable devices that track the EEG signals can be employed in an everyday fash-
ion. However, the need to operate unobstructed on a Lithium battery or using energy
harvesters [8] poses constraints on the acquisition procedure; all-digital signal processing
and ML-powered inference can be power-hungry and limit the system’s autonomy. A trend
to alleviate this limitation is the employment of cascaded classifiers, where the first ones
consume relatively low power and are always on, activating more complex units only when
needed [9]. Although weight quantization and pruning [10] have notably reduced the
power dissipation per inference for digital ML models [11], the digital processing blocks
that are provided with the models’ input features consume considerable power [12,13].
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This renders the aforementioned cascaded classification scheme sub-optimal. To address
this, recent work has proposed moving the feature extraction procedure in the analog part
of the processing chain [12–15]. Front-end signal processing blocks, like switched capacitor
filter banks, operate on the signals prior to the analog-to-digital converter (ADC) to lower
the overall system’s power. The digitized features are then input to the ML model in the
digital back-end.

To increase the autonomy of wearable EEG monitoring devices, overall power con-
sumption must be decreased below the µW range. Because the energy performance of
typical ML models in digital circuitry is in the µW [12,16], an alternative approach seems to
be preferable. To this end, in this work we propose an ultra-low power classification system
that takes advantage of analog features and uses an analog classifier as a switching device
for the power-hungry digital back-end [17]. The proposed architecture, along with the
mainstream approaches discussed previously, are illustrated conceptually in Figure 1. The
classifier is a Gaussian mixture model (GMM), and its analog implementation consumes
180 nW of power when operating on a 0.6 V supply voltage, in the sub-threshold region. Its
predictions are used to switch on and off a subsequent stage of a digital classifier, which pro-
vides high accuracy for the whole processing chain. For evaluation, the proposed classifier
is designed and verified using a real-world intractable epileptic seizure dataset [4,5].
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Figure 1. Architecture comparison. (a) All-digital inference. (b) Analog feature extraction block with
a digital classifier. (c) Proposed concept architecture, where the digital back-end is turned on and off
based on the low power analog classifier’s output.

The remainder of this paper is organized as follows. The background regarding
epiliptic seizure prediction and analog classifiers is provided in Section 2. Section 3 explains
the mathematical foundations of GMMs. The proposed architecture and its building blocks
are discussed in Section 4. Section 5 presents the experimental results of the proposed
approach on a real-world EEG dataset. A comparison study and discussion are provided in
Section 6. Concluding remarks are given in Section 7.

2. Motivation and Background

In this section we provide the necessary background on epiliptic seizure prediction
and a summary of existing approaches. To introduce the reader to the state-of-the-art
in analog implementations of ML systems, a summary of existing analog classifiers is
also given.

2.1. Epileptic Seizure Prediction

An epileptic seizure is a sudden excessive neural activity or electrical disturbance in
the brain [18,19].

An individual suffering from epilepsy demonstrates symptoms that vary from un-
noticeable to paralyzing or even lethal. In practice, patients’ quality of life is severely
affected by the unpredictability and the frequency of the seizures. A remedy to this can
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be prediction and warning about upcoming epileptic episodes. An accurate prediction
of an upcoming seizure could allow them to prepare accordingly and avoid potentially
dangerous activities, like, for instance, driving. Epileptic seizure prediction stems from
examining the patients’ health using bio-signal acquisition methods.

There are four different states regarding epileptic seizures; (a) pre-ictal, (b) ictal, (c)
post-ictal, and (d) inter-ictal [18,19]. States (a)–(c) refer to the periods shortly before, during,
and shortly after a seizure, respectively, whereas (d) refers to the period between two
seizures, when the patient is considered to be in a normal state. Based on the analysis
presented in [20], the duration of the pre-ictal and post-ictal periods varies from 30 min
to 2 h. An accurate and real-time identification of the pre-ictal state is crucial, as it is
equivalent to predicting an upcoming seizure.

In the literature there are numerous epileptic seizure prediction systems, which follow
different approaches to identify the pre-ictal periods. Although the use of EEG signals is
the most common approach [20–28], electrocardiograph (ECG) [29,30], electromyograph
(EMG) [30], heart rate [30,31], and vibration [31,32] signals have also been used. These
systems achieve high accuracy (>80%) on predicting the epileptic seizures. Some of these
implementations are edge computing (on-sensor computing) wearable devices [15,21–23],
whereas others, to reduce the local power consumption, combine simple data acquisition
devices with remote computing [20,24–32] (smartphone or cloud computing). In either
case, the low power efficiency of these devices limits their capabilities and usability.

However, there exist multiple architectures that employ analog design methodologies
to address epileptic seizure prediction through monitoring EEG signals. The work in [13,15]
employs analog feature extraction to greatly minimize the system’s power consumption.
A different approach includes employing analog pre-processing circuits directly on the
acquisition device in remote computing applications [33–35]. In particular, the analog
circuit reduces the overall power consumption of the communication device by reducing
the data that need to be transferred to the remote server for prediction. A brief summary of
seizure prediction systems in terms of employed algorithms, operating device, and power
consumption for all the aforementioned implementations is provided in Table 1.

Table 1. Performance summary for epileptic seizure prediction systems.

Ref. Model Device Power Related Metric

[13] SVM hardware 3.07 µW

[15] SVM hardware 66 µW

[20] LSTM software N/A

[21] SVM hardware 7.13 uJ
feature

[22] SVM hardware 1.35 uJ
classification

[23] Perceptron hardware 55.89 mW/25 h

[24] VAE software N/A

[25] CNN software N/A

[26] SVM software N/A

[27] multi-model smartphone N/A

[28] ANN software N/A

[29] custom (MCU) MSP430 and Cloud N/A

[30] custom smartphone N/A
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Table 1. Cont.

Ref. Model Device Power Related Metric

[31] custom arduino N/A

[32] SDA cloud N/A

[33] filters hardware 30.4 µW

[34] filters hardware 3.65 mW

[35] filters hardware 23 µW

2.2. Analog Classifiers

Analog integrated circuits (ICs), powered by their capability to operate in the sub-
threshold domain [36], are gaining popularity as a means to reduce power consumption in
comparison to their digital counterparts. Applications that employ real-time ML techniques
are typically power hungry and could greatly benefit from analog circuitry. Nonetheless,
analog circuits struggle with high dimensional classification problems as they typically
require multiple cascaded multipliers. In practice, analog multipliers are usually unreliable
and their operating voltage range is limited. Two main approaches regarding this issue are
to either tailor multipliers for specific applications [37,38] or utilize architectures and/or
circuits that avoid multipliers [39–43]. Following the former approach, translinear-based,
current-mode multipliers [44] are the most popular choice. Regarding the latter, Gaussian
function circuits are a commonly used solution [45].

Translinear-based Gaussian function circuits [45] that consist of squaring and expo-
nentiator circuits are utilized in [39,40]. In this case, by leveraging the properties of the
exponential function, the multiplication is replaced by the summation of the exponents,
which is a trivial task. Alternatively, the work proposed in [41–43] uses more compact
building blocks, e.g., bump circuits [41], that implement multivariate Gaussian functions
without the use of multipliers. A performance summary of the aforementioned work is
presented in Table 2.

Table 2. Performance summary for analog classifiers.

Ref. Technology Model Dimensions Power Consumption Area

[37] 0.5 µm SVM 14 840.0 nW 9.000 mm2

[38] 180 nm LSTM 16 × 16 matrix 460.3 mW 9.990 mm2

[39] 180 nm SVM 64 N/A 0.125 mm2

[40] 180 nm K-means 164 N/A N/A

[41] 90 nm Bayesian 5 365 nW 0.030 mm2

[42] 180 nm SVM 2 220.0 µW 0.060 mm2

[43] 0.5 µm RBF NN 2 N/A 2.250 mm2

By examining Table 2, the implementation with the lowest power consumption is [41]
(365 nW). This is due to the combination of a compact and simple ML model with ultra low-
power building blocks that operate in the sub-threshold domain with a low supply voltage.
Based on our previous work in [41], here we build a low power analog classifier and
improve upon the accuracy by employing a GMM model instead of a simple Gaussian one.

3. Gaussian Mixture Model

In this section, the mathematical foundations of GMMs, which comprise the core of
the proposed classifier, are given. In addition, the use of the GMMs within the scope of
classification is also described.
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Consider an N-dimensional random variable X = [x1, . . . , xn] and its probability
density function (PDF) p with X ∼ p. The GMM is a probabilistic model that consists
of a weighted sum of Gaussian distributions and can be used to approximate unknown
PDFs from data [46]. In the case of X, the GMM’s Gaussian distributions, also noted as
components, are also N-dimensional. GMMs belong to the general class of mixture models
(MMs) and are widely used in the literature, as they combine both the approximation
capabilities of MMs and the properties of Gaussian distributions.

The approximate PDF of X, as modeled by a GMM λ, is given by

p(X|λ) =
K

∑
i=1

wi · N (X|Mi, Σi). (1)

Here, the component count is K ≥ 1 and for the weights it holds that ∑K
i=1 wi = 1. Each of

the components is an N-dimensional Gaussian distribution with a (N × 1) mean vector Mi
and a (N × N) covariance matrix Σi, for i = 1, . . . , K.

In the special case of diagonal covariance matrices, each Gaussian distribution is
given by

N (X|Mi, Σi) =
N

∏
n=1
N (xn|µi

n, (σi
n)

2), (2)

where superscript ‘i’ denotes the Gaussian component and subscript ‘n’ the dimension,
i.e., µi

n is the nth component of vector Mi and σi
n is the nth component of the diagonal of

matrix Σi. Hence, each component is derived by the product of N univariate Gaussian
distributions given by

N (xn|µn, (σn)
2) =

1√
(2π) · (σn)2

e
− 1

2 ·
(xn−µn)2

(σn)2 . (3)

GMMs are adapted to data by using the expectation-maximization (EM) algorithm [46].
Although their unsupervised nature renders them suitable for clustering problems, they
can also be used within the scope of supervised classification models. Considering a dataset
D with N-dimensional input vectors and C classes, one can fit C separate GMMs [λi]

C
i=1 to

each subset of D associated with each class. Therefore, the PDF of the input vectors that
belong to each class is approximated by a GMM.

Using the above setting, one can infer the class y of a new input vector X of an
unknown class as the one whose approximate PDF provides the highest likelihood, i.e.,

y = argmax
c∈[1,C]

{
p(X|λc)

}
= argmax

c∈[1,C]

{ K

∑
i=1

wc
i · N (X|Mc

i , Σc
i )
}

.
(4)

In this case, superscript ‘c’ denotes the class. It is important to note that in Equation (4) all
GMMs share the same number of components K. In the supervised setting, K is denoted as
clusters, and this is the naming this paper follows for the rest of the sections. The number of
clusters is a hyperparameter of the overall classifier and it is chosen based on the complexity
of the data.

4. Proposed Architecture

In this section, the architecture of the proposed analog classifier and the operation of
its building blocks are analyzed. To reduce the overall power consumption, in the following
building blocks, all transistors operate in the sub-threshold region, and the power supply
rails are set to VDD = −VSS = 0.3V for the entire classifier.

Based on Section 3, a GMM-based classifier requires two basic building blocks: one that
generates a Gaussian PDF, as in (1), and another that implements the argmax operator, as
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in (4). In the case of analog hardware, bump circuits have been proposed for the hardware
implementation of a univariate Gaussian PDF [47]. Recently, a modified version of the
bump circuit was proposed to generate multivariate PDFs as well [48]. Concerning the
analog implementation of the argmax operator, winner-take-all (WTA) circuits have been
employed in the literature [49]. In this work, we modify a typical bump circuit and use it in
the proposed classifier in order to increase its accuracy.

The modified bump circuit is a combination of two sub-circuits: a symmetric current
correlator [48] and a differential block [50]. The aim of this modification is to increase the
quality of the Gaussian curve and reduce the distortion in the case of the multivariate
bump circuits. In particular, the symmetric current correlator improves the symmetry
of the Gaussian curve around the mean value [48]. The simple differential block offers
good control of the Gaussian curve’s parameters with a minimal area [50]. The cascode
mirrors are used instead of the standard ones, to offer robust mirroring even for small bias
currents. This is necessary for multivariate bump circuits. This bump circuit, shown in
Figure 2, provides a more accurate Gaussian curve, shown in Figure 3, than either of [48,50].
Transistors’ dimensions are summarized in Table 3. The mean value, the variance, and the
height of the Gaussian curve are controlled via the voltage parameters Vr and Vc and the
bias current Ibias, respectively [48,50].

✄ ☎ ✡

☛

☞ ✎

☛

☞

✜

✢ ☞ ✣ ✤

✁ ✁

Mn6Mn5

Ibias

VDD
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Mp4
Mp1

Mp3

Iout

✄ ✝ ✠

Mp2
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I1 I2
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Mn8Mn7

✄ ☎
✟

✒ ✑ ✏

Mn1 Mn2

Vin Vr

Mn3 Mn4

Vc
VS

Vc

Figure 2. The proposed analog architecture implementing a Gaussian function (bump circuit). Vin,
Vr, Vc, and Ibias are the input voltage, the voltages controlling the mean value, and the variance and
the bias current controlling the height of the Gaussian curve, respectively.

Figure 3. The output of the bump circuit for Ibias = 12 nA, Vr = 0 V, and Vc = 0 V.
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Table 3. MOS transistors’ dimensions (Figure 2).

Differential Block W/L (µm/µm) Current Correlator W/L (µm/µm)

Mn1,Mn2 2.0/1.0 Mp1,Mp2 0.8/1.6
Mn3,Mn4 2.0/0.1 Mp3–Mp6 0.4/1.6

Mn5–Mn7 0.4/1.6 - -
Mn8 1.6/1.6 - -

The multivariate Gaussian PDF is realized by multiplying two or more bump circuits,
as described in Equation (2). Consider a sequence of two bump circuits. Biasing the second
one with the output current of the first one results in an overall output current that is equiv-
alent to the multiplication of their respective Gaussian curves [48]. An implementation of a
4D Gaussian PDF (four cascaded bump circuits) is shown in Figure 4. Only the first bump is
biased with a preset current (Ibias), representing the weight wi of the corresponding cluster
i. The topology in Figure 4 constitutes a cluster of the proposed GMM-based classifier.

Ibias

VDD

Iout1

Ibias

VDD

VDD

Vc1

Vr1

Vin1
Bump 1

Vin

Vr

Vc

Iout

VSS

VSS

Iout

Ibias

VDD

VDD

Vc 4

Vr 4

Vin 4

Bump 4
Vin

Vr

Vc

Iout

VSS

VSS

Iout 3

Figure 4. A 4D Bump circuit implementation composed of four sequentially connected univariate
bump circuits.

The second block of the proposed architecture is a Lazzaro WTA circuit [49]. Its
flexibility and simplicity make it the most popular choice for the implementation of the
argmax operator. This WTA circuit is composed of sub-blocks denoted as neuron cells.
For a C class classification problem the number of neuron cells must be also C, each one
responsible for a single class. In particular, each neuron cell receives the likelihood from
a specific GMM and outputs a current in binary format; if the GMM corresponds to the
class with the highest likelihood, this current is logical one (which is close to the WTA’s
bias current), otherwise it is logical zero (less than 100 pA). For demonstration purposes, a
transistor level implementation of a WTA circuit with two neurons is shown in Figure 5.
All transistors’ dimensions are equal to W/L = 0.4 µm/1.6 µm.

✄ ☎
✟

Mp2

✄☎
✟

Mp3
✄☎

✟

Mp1

✜

✢ ☞ ✣ ✤

Iin1

✁ ✁

Iout1 Iout2

✄ ☎
✟

Mp4

✜Iin2

✁ ✁

VSS

Ibias✁ ✁

VDD

VSS

Neuron Cell Neuron Cell

Figure 5. The Lazzaro WTA circuit composed of two PMOS-based neuron circuits.
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Utilizing the aforementioned building blocks and based on Equation (4), the proposed
GMM-based classifier with two classes, two clusters per class, and 4D inputs is shown in
Figure 6. Each GMM class is comprised of two 4D bump circuits, which correspond to
the two clusters, and two current mirrors that are used to add the output currents of each
cluster. The overall output current [Ici]

2
i=1 of each class is analogous to the class’ likelihood.

The WTA circuit compares these probabilities and the predicted class is determined via the
currents [Ii]

2
i=1.

It should be noted that it is impractical to provide the classifier’s 34 controlling
parameters ([Vrj]

16
i=j, [Vcj]

16
j=1 and [Ibiasi]

2
i=1) externally. Therefore, an alternative option that

involves integrating analog memories adjacent to the classifier is preferable. In particular,
as typically the classifier will be trained only once prior to its deployment, non-volatile
analog memories are a promising choice [51,52]. However, for a general purpose classifier
that may require altering this configuration multiple times, dynamic memories can be a
more opportune solution [53,54].

Ibias

Ibias1 VDD
VDD

Vr1...4 Vr1...4
Vc1...4

Iout

VSS

VSS

Vin1...4

Vc1...4

Iout1

VDD

Ibias2
VDD
VDD

Iout

VSS

VSS

Iout2

Ic1

Vr1...4

Vc1...4

Vin1...4
Vr5...8

Vin1...4

Iin1

Iin2

Iout1

Iout2

WTA
     

Ibias,p

VDD
VDD

I1

Ibias,p

I2

Cluster 1

Cluster 2

GMM Class 1

Ibias

VDD

GMM Class 2

VSS

4-D Bump

4-D Bump

Vc5...8

Current 
Mirror
    

Current 
Mirror
    

Vr9...16
Vc9...16

Ic2

Figure 6. Analog GMM-based classifier with two classes, two clusters per class, and 4D inputs (four
input features). (left) GMM class with two clusters; (right) WTA circuit. GMM class 2 follows the
same architecture as the depicted GMM class 1.

5. Epileptic Seizure Prediction Application

In this section, the proposed classifier is tested on a real-world epilepsy seizure
prediction problem [4,5] to confirm its proper operation. The classifier has been designed
using the Cadence IC suite in a TSMC 90 nm CMOS process. All simulation results are
conducted on the layout (post-layout simulations), which is shown in Figure 7.
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Figure 7. Layout of the proposed classifier circuit.

The data are acquired from the CHB-MIT Scalp EEG database [4,5] and contain EEG
signals from children with intractable epilepsy. The ictal periods are labeled by expert
physicians. Here, pre-ictal and post-ictal periods are considered to span an hour before
and an hour after the seizure, respectively. The data samples that do not belong in ictal,
pre-ictal, or post-ictal periods are labeled as inter-ictal.

There are four features for the classification: the signal’s peak-to-peak voltage and
energy percentages in the alpha and the first and second half of the gamma frequency
bands [55]. These features can be efficiently derived from the raw EEG signals using analog
feature extraction techniques [13,56]. The system’s necessary parameters are derived by
software-based training, prior to the circuit’s deployment.

The aim of the classifier is to successfully distinguish the pre-ictal from the inter-ictal
periods. In order to operate as a minimal power front-end wake-up circuit, it must predict
all possible seizures and maintain a low number of false positive alarms. The first require-
ment is equivalent to having high classification sensitivity [57], which is measured by:

sensitivity =
Predicted Seizures

Predicted Seizures + Missed Seizures
. (5)

Achieving a high sensitivity score is crucial for the patient’s health, as it ensures that all
upcoming seizures will be predicted. However, the second requirement is equivalent to
minimizing the rate with which the high power consumption digital back-end is turned on.
This leads to a significant power consumption reduction for the whole system, shown in
Figure 1c. An appropriate measure to quantify this reduction is the specificity [57] of the
analog classifier, given by:

specificity =
True Negative

True Negative + False Positive
. (6)

In practice, this metric is the ratio of the time that the digital back-end is idle to the duration
of all the inter-ictal periods (no risk for seizure).

To test the proposed classifier both in terms of classification specificity and circuit’s
behavior in PVT variations, two separate tests are conducted. The first one is a compar-
ison between the proposed implementation and a software-based one. In particular, 20
separate software-based training iterations are conducted to account for random effects.
The resulting specificity scores are summarized in Table 4. The proposed architecture’s
mean specificity is only 2% lower than that of a software-based implementation. For
demonstration purposes, the state of four patients along with the predictions of the analog
classifier are presented in Figure 8. The classifier successfully predicts all 17 seizures (100%
sensitivity) of the test set. The second test is a Monte-Carlo analysis for N = 100 points,
for one of the previous 20 candidates. The Monte-Carlo analysis histogram is shown in
Figure 9. Its mean value is µM = 69.93% with a standard deviation of σM = 0.41%. This
confirms the proper performance and operation of the proposed architecture.
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Patient 1 Patient 2

Patient 3 Patient 4

Figure 8. The alarms triggered by the classifier for four patients in a 24-h period. The ideal behavior is
the raising of at least one alarm in each pre-ictal period, without raising alarms during the inter-ictal
ones. The ictal and post-ictal regions are irrelevant for the classifier.

Table 4. Specificity (over 20 iterations).

Method Best Worst Mean Std.

Software 71.30% 71.08% 71.27% 0.07%
Proposed 70.65% 67.39% 69.07% 0.51%

68.2

Specificity (%)

68.7 69.2 69.7 70.2

Figure 9. Post-layout Monte-Carlo sensitivity analysis simulation results on the specificity of the
classifier for one of the previous 20 iterations.

6. Discussion and Comparison

A comparison between this work and other studies that employ analog design method-
ologies to address epileptic seizure prediction through monitoring EEG signals is provided
in Table 5. Here, it is seen that this work achieves very low power consumption per channel
(180 nW per channel), outperforming all the implementations except that from [13], which
achieves 96 nW per channel. Nonetheless, as the proposed implementation requires only
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a single channel, its total power consumption is significantly smaller. In particular, the
proposed architecture consumes power in the range of nW, which is not the case for the
rest of the implementations in Table 5. This power dissipation is achieved using a supply
voltage of only 0.6 V, which is also the lowest one in Table 5. The specificity of the proposed
classifier is 69%, which, along with [13] (86%) and [15] (84.4%), constitutes the three highest
specificity scores.

Another important metric for measuring efficiency in analog computing, which is
invariant to the application and is therefore a relatively fair metric for comparing archi-
tectures designed for different applications, is the energy consumed per operation. The
proposed classifier consumes 180 nW and can achieve a computational speed of 166 K
classifications per second, which results in 1.1 pJ per classification. Each classification, for a
GMM-based classifier composed of two classes, two clusters per class, and 4D inputs, re-
quires 131 operations. This results in the classifier’s consumption being 8.2 fJ per operation.
Unfortunately, these metrics are not provided in the literature for comparison purposes.

Table 5. Performance summary for analog epileptic seizure prediction systems.

Ref. Technology Power Supply Power Consumption
per Channel

Total Power
Consumption

No. of
Channels Specificity

This work 90 nm 0.6 V 180 nW 180 nW 1 69%

[13] 65 nm N/A 96 nW 3.07 µW 23 86%

[15] 180 nm 1.8 V 8.25 µW 66 µW 8 84.4%

[33] 350 nm 1.25 V 950 nW 30.4 µW 32 55%

[34] 90 nm 1.25 V 1.14 µW 3.65 mW 32 48.5%

[35] 180 nm 1.8V 23 µW 23 µW 1 50%

As shown in Table 5, most epileptic seizure prediction systems employ multiple
channels, i.e., electrodes, in order to increase their accuracy. Nonetheless, acquisition
devices with multiple electrodes are usually uncomfortable for the patient and impractical
for constant monitoring. To this end, this work focuses on extracting data from a single
electrode. By doing so, the resulting device is less bulky and more convenient to use. In
addition, to further increase the device’s portability, the classifier is proposed to operate
in an embedded device. In this way, the patient can be monitored constantly with no
requirements for wireless communication with other devices as proposed in [33–35].

In real-world scenarios, EEG signal acquisition is affected by uncontrolled parameters
and environmental factors. In the case of a single electrode in particular, motion artifacts,
electrode misplacement, and external electromagnetic interference can drastically reduce
the quality of the signal and potentially lead to diagnostic errors. Having multiple elec-
trodes for signal acquisition may seem more robust, as the contaminated recordings could
be only a fraction of the total inputs to the prediction system, but this comes at the cost of the
system’s portability and with no theoretical guarantee. Efforts to determine the goodness of
the acquired signals have been proposed in the literature via employing ML classification
techniques [58]. We argue that this quality assessment can implicitly take place within
the GMM classifier of our system provided that: (a) real-world, noise-contaminated EEG
signals are used for training and, (b) the classifier is expanded to provide confidence bounds
about its predictions. By doing so, additional systems for quality assessment, as in [58], can
be avoided and thereby the area and power consumption of the device is unchanged.

Another important design consideration is the trade-off between the wake-up circuit’s
power consumption and its specificity. As the specificity of the wake-up circuit increases,
the overall power consumption of the digital circuit, which is typically greater than the
analog one’s, decreases. However, to achieve high specificity values, it is essential to
increase the complexity of the analog circuit. In particular, to improve the classifier’s
performance, improved-performance acquisition devices, more analog feature extraction
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circuits, and larger analog memories storing the classifier’s parameters are required. All
the aforementioned modifications result in increased power consumption. In practice,
increasing the power consumption of the analog front-end must be done cautiously; a
classification system with a power greedy analog classifier that switches on and off a digital
one may consume more power than an all-digital one.

7. Conclusions

A fully analog processing unit was presented as an alternative to the conventional
front-end architectures for inference systems targeting EEG signals. The proposed system
includes an 180 nW or 8.2 fJ per operation analog integrated GMM-based classifier, which
activates the high-performance digital inference back-end only when needed. Its main
building blocks are Gaussian function circuits and the Lazzaro WTA circuit. The classifier
was trained on a real-world seizure prediction dataset and designed in a TSMC 90 nm
technology. Post-layout simulation results suggest that the proposed circuit achieves 100%
sensitivity, as all 17 seizures of the test set are predicted, and 69.07% specificity.
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