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Abstract: Seismocardiography (SCG) is largely regarded as the state-of-the-art technique for contin-
uous, long-term monitoring of cardiac mechanical activity in wearable applications. SCG signals
are acquired via small, lightweight accelerometers fixed on the chest. They provide timings of im-
portant cardiac events, such as heart valves openings and closures, thus allowing the estimation of
cardiac time intervals of clinical relevance. Forcecardiography (FCG) is a novel technique that records
the cardiac-induced vibrations of the chest wall by means of specific force sensors, which proved
capable of monitoring respiration, heart sounds and infrasonic cardiac vibrations, simultaneously
from a single contact point on the chest. A specific infrasonic component captures the heart walls
displacements and looks very similar to the Apexcardiogram. This low-frequency component is
not visible in SCG recordings, nor it can be extracted by simple filtering. In this study, a feasible
way to extract this information from SCG signals is presented. The proposed approach is based
on double integration of SCG. Numerical double integration is usually very prone to large errors,
therefore a specific numerical procedure was devised. This procedure yields a new displacement
signal (DSCG) that features a low-frequency component (LF-DSCG) very similar to that of the FCG
(LF-FCG). Experimental tests were carried out using an FCG sensor and an off-the-shelf accelerometer
firmly attached to each other and placed onto the precordial region. Simultaneous recordings were
acquired from both sensors, together with an electrocardiogram lead (used as a reference). Quan-
titative morphological comparison confirmed the high similarity between LF-FCG and LF-DSCG
(normalized cross-correlation index >0.9). Statistical analyses suggested that LF-DSCG, although
achieving a fair sensitivity in heartbeat detection (about 90%), has not a very high consistency within
the cardiac cycle, leading to inaccuracies in inter-beat intervals estimation. Future experiments with
high-performance accelerometers and improved processing methods are envisioned to investigate
the potential enhancement of the accuracy and reliability of the proposed method.

Keywords: Forcecardiography; Seismocardiography; heart vibrations; piezoelectric sensor; ac-
celerometer; cardiac monitoring

1. Introduction

The mechanical activity of the beating heart generates weak forces on the thoracic
surface and the whole body. On one hand, the pulsatile force developed by the heart
contraction propagates through various chest tissues and reaches the surface, thus causing
small movements of the chest wall that can be felt by contact with the hands (practice
known as palpation). On the other hand, the blood flowing into the great vessels generates
recoil forces that result in subtle displacements of the body center of mass, mainly along
the superior-inferior axis (head to feet). The quantitative, non-invasive assessment of the
mechanical aspects of cardiac function dates back to the second half of the XIX century, with
the seminal works of Marey [1] and Gordon [2]. Marey described a direct method to obtain
a graphical representation of the vibrations induced on the animal and human chest wall
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by the beating heart. Gordon presented an apparatus to record the cardiac-induced whole-
body vibrations, based on the registration of motions of a subject laying on a suspended
bed, which appeared to be synchronous with subject’s heart beats. Since then, a number
of novel methods and apparatuses were proposed to record the low frequency vibrations
of the precordium and the whole body, which were based on several different physical
principles [3,4]. Only a few of them gained sufficient attention to be extensively investigated
as valuable tools for cardiovascular diseases discrimination, namely Apexcardiography
(ACG) [5], Ballistocardiography (BCG) [6], and Seismocardiography (SCG) [7–9]. While
ACG and BCG were originally based on displacement measurements, SCG was based on
acceleration measurements. ACG and SCG were used to capture the chest wall movements,
while BCG reflected the whole-body vibrations due to the center of mass displacements.
However, they all had in common the use of cumbersome instrumentation and uneasiness
of signals interpretation, which made them lose their appeal as practical indirect methods
for the evaluation of the cardiac function, especially with the emergence of ultrasound
imaging technologies [7]. In the last decade, the availability of small and lightweight
accelerometers based on microelectromechanical systems (MEMS) technologies gave rise to
a new research trend that largely focused on SCG [7–10], particularly to develop wearable
applications for continuous, long-term monitoring of both healthy and pathological subjects.
Indeed, the typical SCG signal is made of infrasonic oscillations, with various peaks and
valleys that have a temporal relationship with important cardiac cycle events, such as heart
valves opening and closures. From these fiducial markers, different cardiac time intervals
can be obtained (e.g., inter-beat interval, isovolumic contraction time, pre-ejection period,
left ventricular ejection time, isovolumic relaxation time, total filling time), which play a
major role in the clinical evaluation of several cardiac pathologies [7–9].

Lately, Forcercardiography (FCG) has been proposed as a novel technique to measure
the cardiac-induced vibrations of the chest wall via force sensors [11]. FCG has first been
introduced by using sensors based on force sensing resistors (FSR), which had already been
used to monitor muscle contraction [12–14]. These FSR-based sensors have also proved
capable of capturing a respiratory-related signal, referred to as Forcerespirogram (FRG),
thus standing as promising devices for cardiorespiratory monitoring [15]. Very recently, a
new FCG sensor based on a piezoelectric transducer has been proposed, which captures
respiration, infrasonic cardiac vibrations and heart sounds, simultaneously from a single
contact point on the chest [16]. The infrasonic cardiac vibrations recorded by the FCG
sensor can be divided in two main components: a large, low-frequency component, referred
to as LF-FCG, that features a typical negative peak usually occurring at the end of the ECG
T-wave; a high-frequency component, referred to as HF-FCG, that presents an SCG-like
morphology [11,16]. Very recently, it has been shown that HF-FCG is able to provide the
timings of aortic valve opening (AO) events and estimates of pre-ejection period with high
accuracy and precision as compared to SCG [17]. The LF-FCG component seems to be
related to ventricular emptying and filling, which cannot be appreciated directly in SCG
recordings, nor extracted by simple low-pass filtering [11]. The reason could lie in the
inherent poor sensitivity that accelerometers exhibit to slow movements. Undoubtedly, the
low-frequency displacements associated to the ventricular volume variations usually result
in extremely smaller accelerations as compared to those produced by heart valves snaps,
thus making their observation in SCG recordings impractical. To the best of our knowledge,
no successful approaches have been proposed yet in literature to recover information on
ventricular emptying and filling from SCG.

In this study, we present a method to extract this information, which is based on
numerical double integration of accelerometric SCG signals. In fact, we show that by
integrating an SCG signal two times via a proper numerical procedure, a low-frequency
displacement signal can be obtained, which results very similar to the LF-FCG signal.
To this aim, signals from a piezoelectric FCG sensor [16] and a MEMS accelerometer
were synchronously acquired from the same location onto the chest wall, together with
an ECG lead that provided a reliable reference for the heartbeats. The similarity of the
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low-frequency displacement signal obtained from double integration of SCG with the
LF-FCG was assessed via different normalized cross-correlation (NCC) indices. Moreover,
the consistency of the new displacement signal within the cardiac cycle was assessed by
carrying out statistical analyses on the heartbeats detection performances, as well as on the
accuracy and precision of the related inter-beat intervals estimations.

2. Materials and Methods
2.1. FCG and SCG Sensors

This article presents a retrospective analysis of signals acquired during the study de-
scribed in [16]. The materials and methodologies adopted for the experiments are reported
below, but no measurements were carried out during this study. FCG signals were acquired
via the piezoelectric FCG sensor and the related conditioning circuit described in [16].
The sensor is composed by a lead-zirconate-titanate piezoelectric disk, with a diameter
of 30.50 mm and an electrical capacitance of 22 nF (measured at 2 kHz via a GWINSTEK
LCR-816 LCR meter, Good Will Instrument Co., Ltd., No.7-1, Jhongsing Road., Tucheng
Dist., New Taipei City 236, Taiwan), equipped with a dome-shaped mechanical coupler that
ensures a good mechanical transduction from subjects’ skin [11,15,16]. The dorso-ventral
SCG signals were simultaneously acquired by recording the z-axis acceleration signals of a
Freescale MMA7361 accelerometer, which was fixed onto the FCG sensor (as in [11,16]).

2.2. Measurement Setup and Protocol

The FCG and SCG sensors assembly was placed onto the chest of each subject via a
medical adhesive tape, by roughly locating the point of maximal impulse (i.e., the maximum
signal amplitude point around the fifth intercostal space on the midclavicular line), and
then fastened with a belt around the thorax (Figure 1). Simultaneous acquisitions of FCG
and SCG signals, together with an ECG lead I provided by a WelchAllyn Propaq® Encore
monitor (Welch Allyn Inc., New York, NY, USA), were carried out via a National Instrument
NI-USB4431 DAQ board (National Instruments Corp., 11500 N Mopac Expwy, Austin, TX
78759-3504, USA), with 24-bit precision and 10 kHz sampling frequency.

Five healthy volunteers (3 males, 2 females, age 36.6 ± 11.0), who signed a written
informed consent, were asked to comfortably sit on a chair, leaning against the seatback
while keeping their back straight. Multiple acquisitions were performed for each subject in
two respiratory conditions, i.e., quiet breathing and apnea.

2.3. Signals Processing

The signals acquired during quiet breathing and apneas were processed and ana-
lyzed separately. All processing and analyses were carried out in MATLAB® R2017b (The
MathWorks, Inc., 1 Apple Hill Drive, Natick, MA 01760, USA).

2.3.1. FCG Sensor Signals Processing

As shown in [15,16], the raw FCG sensor signals contain information on both respi-
ratory and cardiac activity, referred to as Forcerespirogram (FRG) and Forcecardiogram
(FCG), respectively. In signals acquired during quiet breathing, the FRG was first extracted
via a 3rd order Savitzki-Golay filter [18], with a frame length corresponding to about a 1.5 s
interval. Then, the FRG thus obtained was subtracted from the raw FCG sensor signal to
isolate the actual FCG signal, which was further processed via a 2nd order Butterworth
band-pass filter with cut-off frequencies set at 0.5–5 Hz, to eventually obtain the LF-FCG
signal. In signals acquired during apneas, the FRG subtraction step was not carried out
since no respiratory activity had been captured, so the raw FCG sensor signal was directly
band-pass filtered in the 0.5–5 Hz frequency band to extract the LF-FCG signal.
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Figure 1. (a) Lateral view of sensors assembly applied on the chest of a subject; (b) frontal view of
sensors positioning area on the chest (green dashed line).

2.3.2. SCG Signals Processing

Numerical double integration of SCG signals was performed via the following proce-
dure. Before the integration, DC removal was performed on the accelerometric signal by
subtracting its time average. The actual numerical integrations were then performed via the
MATLAB® fa punction “cumtrapz”, which computes an approximation of the cumulative
integral of a signal via the trapezoidal method. After each integration step, the resulting
signal was iteratively processed via a 4th order, zero-lag, Butterworth high-pass filter with
0.6 Hz cut-off frequency for 40 times. This strong high-pass filtering is a fundamental step,
since it allows filtering out spurious low-frequency components produced by the numerical
integration, which show up with extremely higher amplitudes as compared to the signals of
interest. Finally, the double-integrated signal, referred to as “Displacement SCG” (DSCG),
was processed via the same band-pass filter used to extract the LF-FCG, so as to obtain the
low-frequency component of the DSCG, referred to as LF-DSCG.
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2.4. Morphological Comparison

The morphologies of LF-FCG and LF-DSCG signals were compared by evaluating
the following NCC indices: (a) between the whole signals; (b) between single correspond-
ing heart beats extracted from the two signals; (c) between the ECG-triggered ensemble
averages (synchronized with R-peaks) of the two signals. This analysis was carried out
separately for signals acquired during quiet breathing and during apneas.

2.5. Statistical Analyses

The consistency of the LF-DSCG signal within the cardiac cycle was assessed by
evaluating its ability to detect the heartbeats, as well as the accuracy and precision of the
derived heart rate measurements. These performances were assessed by assuming the ECG
signal as the reference, and were further compared with those achieved by the LF-FCG
signal. To this aim, the R-peaks were first located in the ECG signal via the “BioSigKit”
MATLAB® toolbox, which implements the well-known Pan and Thompkins algorithm [19].
Then, the heartbeats were detected both in the LF-FCG and LF-DSCG signals by considering
the negative peaks of the first derivatives of the signals as fiducial markers, which were
located by taking advantage of the a priori knowledge of R-peaks locations [16]. The
annotation of the missed heartbeats in the LF-FCG and LF-DSCG signals was carried
out by comparison with the ECG. Finally, the inter-beat intervals computed from the
fiducial markers of the LF-FCG and LF-DSCG signals were compared with those obtained
from the ECG R-peaks via regression, correlation and Bland-Altman analyses, which were
carried out by using the MATLAB® function “bland-altman-and-correlation-plot” [20]. The
intervals related to the missed heartbeats were excluded from these statistical analyses.

3. Results
3.1. Morphological Comparison of LF-FCG and LF-DSCG Signals
3.1.1. Apnea

Figure 2 shows a comparison of the LF-FCG and LF-DSCG signals acquired during
apneas, along with the ECG signal acquired concurrently. In Table 1 the NCC indices of the
LF-FCG and LF-DSCG signals acquired during apneas are reported for each subject. For the
indices related to the whole signals (NCCW) and to the ECG-triggered ensemble averages
(NCCE), a single value was reported, while for the indices related to single heartbeats,
the mean and the standard deviation (SD) of the indices scored for all heartbeats were
reported for each subject, and referred to as NCCMEAN and NCCSD, respectively. The
ECG-triggered ensemble averages scored NCCE of 0.93 ± 0.054 (mean ± SD), which turned
out to be in excess of 0.94 for all but one subject (#5). On single heartbeats, LF-FCG and
LF-DSCG scored NCCMEAN of 0.88 ± 0.083, which turned out to be in excess of 0.9 for 3
out of 5 subjects and reduced by less than 5% with respect to NCCE in all but one subject
(#1), and NCCSD of 0.063 ± 0.057, which turned out to be lower than 0.1 for all but one
subject (#1). The whole LF-FCG and LF-DSCG signals scored NCCW of 0.82 ± 0.15 and
turned out to be reduced by less than 15% with respect to the related NCCMEAN and NCCE
in all but one subject (#1).

3.1.2. Quiet Breathing

Figure 3 shows a comparison of the LF-FCG and LF-DSCG signals acquired during
quiet breathing, along with the ECG signal acquired simultaneously and the FRG signal
(respiratory activity) extracted from the raw FCG sensor signal. In Table 2 the NCC indices
of the LF-FCG and LF-DSCG signals acquired during quiet breathing are reported for
each subject. The ECG-triggered ensemble averages scored NCC of 0.90 ± 0.027, which
turned out to be in excess of 0.90 for 3 out of 5 subjects. On single heartbeats, LF-FCG
and LF-DSCG scored NCCMEAN of 0.81 ± 0.022, which turned out to be in excess of 0.8
for 3 out of 5 subjects and reduced by about 10% with respect to the related NCCE for all
subjects, and NCCSD of 0.12 ± 0.011, which turned out to be lower than 0.15 for all subjects.
The whole LF-FCG and LF-DSCG signals scored NCC of 0.72 ± 0.12 and turned out to be
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reduced by less than 10% with respect to the related NCCMEAN and less than 20% with
respect to the related NCC of the ensemble averages, in all but one subject (#5).
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Table 1. Normalized cross-correlation indices of the LF-FCG and LF-DSCG signals acquired during
apneas. The correlation indices were computed between the whole signals, between single corre-
sponding heartbeats (mean and SD of correlation indices are reported) and between the ECG-triggered
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Mean SD
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#5 0.7300 0.7932 0.07253 0.8341
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Table 2. Normalized cross-correlation indices between LF-FCG and LF-DSCG signals acquired
during quiet breathing. The correlation indices were computed between the whole signals, between
single corresponding heartbeats (mean and SD of correlation indices are reported) and between the
ECG-triggered ensemble averages.

Subject Whole Signals Single Heartbeats Ensemble Averages

Mean SD

#1 0.7125 0.7919 0.1232 0.8728
#2 0.7840 0.8248 0.1085 0.9262
#3 0.8060 0.8244 0.1195 0.9251
#4 0.7649 0.8145 0.1040 0.9012
#5 0.5166 0.7739 0.1306 0.8728

3.2. Statistical Analyses
3.2.1. Apnea

In the signals acquired from all subjects during apneas, 4 and 63 missed heartbeats
were found, respectively, in LF-FCG and LF-DSCG, out of a total of 698 heartbeats detected
in the simultaneously acquired ECG signals. Consequently, LF-FCG and LF-DSCG scored a
sensitivity of 99.4% and 91.0% respectively. Figure 4 shows the results of the regression,
correlation and Bland-Altman analyses that were performed on the inter-beat intervals
extracted from LF-FCG and LF-DSCG, as compared to those extracted from ECG. The inter-
beat intervals related to the missed heartbeats were discarded from the analyses, which
were performed on a total of 670 intervals for LF-FCG and 581 intervals for LF-DSCG.
The statistical analyses reported, for LF-FCG, a slope and intercept of 1.003 and −2.8 ms
(R2 = 0.995) and a non-significant bias (p = 0.96) with limits of agreement of ±12.6 ms; for
LF-DSCG, a slope and intercept of 0.983 and 14.1 ms (R2 = 0.603) and a non-significant bias
(p = 0.89) with limits of agreement of ±134.4 ms.

3.2.2. Quiet Breathing

A total of 1026 heartbeats were detected in the ECG signals acquired from all subjects
during quiet breathing. In the related LF-FCG signals a total of 11 missed heartbeats were
found, while 125 missed heartbeats were found in the LF-DSCG signals. Consequently,
LF-FCG and LF-DSCG scored a sensitivity of 98.9% and 87.8%, respectively. Figure 5
shows the results of the statistical analyses that were performed on the inter-beat intervals
extracted from the signals acquired during quiet respiration. The inter-beat intervals related
to the missed heartbeats were discarded from the analyses, which were performed on a
total of 1000 intervals for LF-FCG and 819 intervals for LF-DSCG. Slope and intercept of
0.9985 and 1.4 ms (R2 = 0.993) were found for LF-FCG, as well as a non-significant bias
(p = 0.91) with limits of agreement of ±16.2 ms, while for LF-DSCG, a slope and intercept of
0.997 and 1.3 ms (R2 = 0.631) and a non-significant bias (p = 0.51) with limits of agreement
of ±139.9 ms were found.
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Figure 5. Statistical analyses on inter-beat intervals extracted from LF-FCG and LF-DSCG signals
during respiration. (a) Results of regression and correlation analyses of LF-FCG vs. ECG; (b) results
of Bland-Altman analysis of LF-FCG vs. ECG; (c) results of regression and correlation analyses of
LF-DSCG vs. ECG; (d) results of Bland-Altman analysis of LF-DSCG vs. ECG.

4. Discussion

This study focused on a method to extract information on ventricular emptying
and filling events from the SCG signal. SCG analysis usually discards low-frequency
vibrations because slow motions result in extremely small accelerations. To the best of
our knowledge, no successful approaches have been proposed yet in literature to recover
this information from SCG. To address this issue, a specific numerical procedure based on
double integration of SCG was presented. The proposed method yields a new displacement
signal (DSCG), which is not directly visible in SCG recordings, nor can it be extracted by
simple filtering operations, also overcoming the well-known problems associated with
numerical double integration (usually prone to large errors). The DSCG signal features a
low-frequency component (LF-DSCG) that captures Apexcardiography-like information
on heart walls displacements related to ventricular volume variations. This component
also shows high similarity to the LF-FCG signal. Therefore, the morphologies of LF-DSCG
and LF-FCG signals were quantitatively compared by evaluating different normalized
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cross-correlation indices. The ECG-triggered ensemble averages of LF-FCG and LF-DSCG
scored, on average, NCC indices in excess of 0.9, both during apnea and quiet breathing.
These results show that the proposed approach based on numerical double integration of
SCG signals successfully recovered the essential features of the LF-FCG morphology, i.e.,
those that got through the ensemble averaging operation. The morphological comparison
of single heartbeats (without ensemble averaging) reported slightly lower correlations (on
average 0.8 < NCCMEAN < 0.9), which turned out to be reduced by less than 5% in all but
one subject during apneas, and by about 10% in all subjects during quiet breathing. These
findings suggest that the LF-DSCG could be able to monitor morphological variations in
different heartbeats. However, the higher NCCSD obtained in quiet breathing with respect
to apneas suggest that the interference of the respiratory activity may impair the quality
of LF-DSCG signals. Concerning the results obtained for the whole signals, while during
apneas the average NCCW turned out to be still higher than 0.8, during quiet breathing it
reduced to about 0.7, which is by more than 10% with respect to NCCMEAN and more than
20% with respect to NCCE. This result implies that LF-DSCG, as obtained via the proposed
approach, is not able to track the beat-by-beat changes in morphology and amplitude of
LF-FCG with reasonable accuracy.

Moreover, statistical analyses were carried out on the heartbeats detection perfor-
mances, as well as on the accuracy and precision of the related inter-beat intervals estima-
tions, to assess the consistency of the LF-DSCG within the cardiac cycle. The results show
that LF-DSCG achieved fair sensitivity in heart beats detection (about 90%) but exhibited
moderate consistency within the cardiac cycle, which led to limits of agreement with ECG
higher than 130 milliseconds for inter-beat interval estimation.

In conclusion, when properly processed with a specific numerical procedure, the SCG
signal could provide information on heart walls displacements, as the FCG. This informa-
tion was first captured by Apexcardiography, which has been shown to give important
insights into the mechanical behavior of the beating heart, both under physiological and
pathological conditions [21–28]. This technique has lost its appeal due to the cumbersome
instrumentation required and to the clear superiority of Echocardiography as a diagnostic
tool in clinical settings. Nonetheless, FCG and DSCG stand as promising ways of recovering
the wide knowledge acquired on ACG, both in normal and pathological conditions, and
transfer it to wearable monitoring applications. The results of this study show that LF-FCG
exhibits higher consistency within the cardiac cycle with respect to LF-DSCG. This suggests
that FCG currently outperforms the double integration of SCG. However, further exper-
iments with high-performance accelerometers and advanced processing methods could
improve the accuracy and reliability of DSCG [29]. Finally, a deeper investigation through
the comparison with Echocardiography is envisioned in the future to assess the relationship
of FCG and DSCG with actual heart walls displacements. To this aim, the application
of the proposed double integration procedure to tridimensional SCG signals will also be
investigated, as it has been shown that 3D accelerations may bring more comprehensive
information about cardiac-induced vibrations of the chest wall [30].
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