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Abstract: Heart failure with preserved ejection (HFpEF) is a heterogenous condition affecting nearly
half of all patients with heart failure (HF). Artificial intelligence methodologies can be useful to
identify patient subclassifications with important clinical implications. We sought a comparison
of different machine learning (ML) techniques and clustering capabilities in defining meaningful
subsets of patients with HFpEF. Three unsupervised clustering strategies, hierarchical clustering, K-
prototype, and partitioning around medoids (PAM), were used to identify distinct clusters in patients
with HFpEF, based on a wide range of demographic, laboratory, and clinical parameters. The study
population had a median age of 77 years, with a female majority, and moderate diastolic dysfunction.
Hierarchical clustering produced six groups but two were too small (two and seven cases) to be
clinically meaningful. The K-prototype methods produced clusters in which several clinical and
biochemical features did not show statistically significant differences and there was significant
overlap between the clusters. The PAM methodology provided the best group separations and
identified six mutually exclusive groups (HFpEF1-6) with statistically significant differences in patient
characteristics and outcomes. Comparison of three different unsupervised ML clustering strategies,
hierarchical clustering, K-prototype, and partitioning around medoids (PAM), was performed on
a mixed dataset of patients with HFpEF containing clinical and numerical data. The PAM method
identified six distinct subsets of patients with HFpEF with different long-term outcomes or mortality.
By comparison, the two other clustering algorithms, the hierarchical clustering and K-prototype,
were less optimal.

Keywords: heart failure; preserved ejection fraction; unsupervised machine learning; cluster analysis

1. Introduction

The recognized heterogeneity in various clinical conditions has led to pleas for the
utilization of data analytic techniques to more precisely define patient groups to customize
or personalize treatment [1]. Cluster analysis has been championed as a methodology to
aid in the identification of patient subtypes in complex data sets, which may overstretch
a human’s capacity to evaluate such data. One condition that has challenged the field of
cardiovascular disease is heart failure with preserved ejection (HFpEF). This condition
affects nearly half of all patients with heart failure (HF) [2,3] and appears to have an
extremely heterogeneous pathophysiology [4,5]. HFpEF has been resistant to conventional
therapies, which have been successful in the treatment of other kinds of HF. The absence
of an array of effective therapies accounts, in part, for a reported 50% of mortality over
5 years for HFpEF and an annual mortality of 29% after an acute decompensated HF
admission [6–8]. The challenges in treating HFpEF underscore the importance of translating
the heterogeneity of its pathophysiology into clinically identifiable phenotypes.

Novel methods, such as machine learning (ML) and specifically cluster analysis, have
been proposed to aid in the understanding of this cardiovascular condition [9]. Unsuper-
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vised ML seeks inherent patterns in large complex datasets without prior knowledge of
the outcome [10]. Cluster analyses, such as hierarchical clustering, K-prototype and parti-
tioning around medoids (PAM), are important unsupervised ML techniques [10–12]. Each
of these commonly used approaches has its own strengths and weaknesses, necessitating
comparative studies for optimal algorithm selection. However, there is a lack of published
comparative data analytics in healthcare and specifically in HF that usually apply only one
clustering algorithm [13]. The objective of this study is to compare these three different
unsupervised ML approaches to the analysis of a single mixed dataset of outpatients with
HFpEF in order to determine which analytical methodology provides a better informatic
approach to the identification of patient subsets with different outcomes.

2. Materials and Methods
2.1. Study Population

The study population has been described in detail previously [14]. Briefly, it was a
retrospective study of 196 consecutive patients with HFpEF assessed at an ambulatory
cardiology clinic. The study was approved by the ethics department at the University of
British Columbia. The inclusion criteria were adults over the age of 18, in whom HFpEF
was confirmed on a transthoracic echocardiogram (TTE). HFpEF was defined based on
the 2016 European Society of Cardiology criteria that specified a left ventricular ejection
fraction (LVEF) ≥50% [15].

2.2. Machine Learning

Cluster analysis identifies similar subjects based on their combined features. Similar
to other studies applying artificial intelligence to HFpEF, we identified variables that were
highly correlated, with Pearson’s correlation coefficient of >0.6 and removed them from the
analysis [16,17]. We removed medications from the cluster analysis as they were strongly
correlated with the medical conditions that were already in the dataset. Variables with
more than 1% missing data were removed from the clustering analysis. Imputation using
a Stochastic Gradient Descent [18] algorithm replaced a total of 10 missing values in the
entire dataset. A total of three different approaches to cluster analysis were applied to
the remaining 47 candidate variables. Normally distributed continuous variables were
described as mean and standard deviation, and others were expressed as medians and
interquartile ranges. A p-value of <0.05 was considered statistically significant. All analyses
were performed with RStudio version 1.2 (RStudio Inc., Boston, MA, USA).

Hierarchical clustering utilizes a tree-like structure, dendrogram, to identify clus-
ters closest to each other and distinct subgroups [10]. The Euclidean distance, a com-
mon metric in hierarchical clustering, was used to determine the separation between the
subgroups [19–21]. The second method was a non-hierarchical iterative clustering algo-
rithm, K-prototype. This algorithm integrates the K-means, for numerical variables, and
K-modes, for categorical variables, algorithms to cluster data with mixed numeric and
categorical values [11]. It uses an iterative process to create ‘k’ number of centroids, where
each data point is assigned to its closest centroid, and groups that have a high similar-
ity are defined [11]. The third method, partitioning around medoids (PAM), is another
non-hierarchical iterative method that assigns ‘k’ random entities to be medoids, the most
centrally located objects in each cluster. PAM is more robust than K-prototype [12,22].
Another difference between K-prototype and PAM is the distance metric used. PAM uses a
Gower distance metric to measure the similarity between variables. The Gower distance
selects a particular distance metric that suits each variable type and scales the results to fall
between zero and one [12].

As part of the internal validation, the commonly used silhouette width, connectivity
index, and the Dunn Index were evaluated for each clustering technique to arrive at the
optimal number of clusters. A silhouette plot was used to determine the optimal number
of clusters. This tool employs an aggregated measure of similarity between observations
within a cluster and compares it to observations in neighboring clusters [23]. The number
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of clusters resulting in the largest silhouette width is typically the recommended choice.
Silhouette width is an index reflecting the compactness of clusters and their separation
from each other [23]. The Dunn index identifies clusters that are compact, with a small
variance between members of the cluster and the connectivity index evaluates the inter-
consecutiveness of the members of the cluster. T-distributed stochastic neighbor embedding
(t-SNE) was used to visualize the high-dimensional data by giving each data point location
on a two-dimensional plot.

3. Results

The hierarchical clustering method revealed the underlying architecture of the dataset
and generated six different clusters. The optimal number of clusters was determined
by the dendrogram and the Euclidean distance between groups (Figure 1). They also
achieved better connectivity and a higher Dunn Index. Three larger clusters were found
with 46 (Cluster 3), 49 (Cluster 4), and 69 (Cluster 6) members. Three smaller clusters with
23 (Cluster 1), two (Cluster 2), and seven (Cluster 5) members were also identified. There
were significant differences among the clusters in features such as age, gender, diabetes,
dyslipidemia, and coronary artery disease (CAD) (Table 1). Although the outcomes demon-
strated statistical significance, they are not applicable clinically given the small size of two
of the clusters.
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Figure 1. Dendrogram for hierarchical clustering (n = 196). Each color represents once cluster
(cluster 1: green, cluster 2: red, cluster 3: blue, cluster 4: pink, cluster 5: yellow, cluster 6: black).

In the K-prototype method, utilizing the optimal silhouette width, four different clus-
ters were found. This was also signaled by the slightly better connectivity and Dunn Index
compared to the other cluster sizes using this method. Figure 2 demonstrates the t-SNE
plot for the clusters produced by K-prototype. Cluster 2 was the smallest cluster with nine
members. The age and gender of subjects in these clusters were significantly different with
Cluster 4 having the youngest members (Table 2). Clusters 1 and 3 consisted of predomi-
nantly females while Clusters 2 and 4 were predominantly male. Comparing comorbidities,
only atrial fibrillation (AF) and chronic kidney disease (CKD), defined as estimated GFR
< 60 mL/min/1.73 m2, were significantly different among the clusters. Systolic blood
pressure (SBP) and serum low-density lipoprotein cholesterol (LDL-c) showed significant
differences. Cluster 1 had the highest SBP, and Cluster 4 had the highest LDL-c. Serum
BNP was significantly higher in Cluster 2 compared to the others. There were significant
differences among the clusters on TTE, specifically LVEF, mitral valve E/A ratio, average
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E/e’ ratio and pulmonary artery pressure. The presence of elevated filling pressure was
significantly higher in Cluster 2 and lowest in Cluster 4. The degree of diastolic dysfunction
was significantly higher, and more likely to be moderate or severe, in Clusters 2 and 1 while
most likely to be mild in Cluster 4. The Meta-Analysis Global Group in Chronic Heart
Failure (MAGGIC) risk score was significantly higher in Cluster 3 compared to the other
clusters. With respect to outcomes, HF exacerbation was highest in Cluster 1, whereas
cardiovascular mortality, all-cause mortality, and the composite of endpoints were highest
in Cluster 2.

Table 1. Summary of clusters using the hierarchical method (n = 196).

Clusters 1 2 3 4 5 6 p-Value

Number of subjects 23 2 46 49 7 69

Age (years) 80
(72, 84)

76
(75, 77)

78
(70.5, 83)

68
(59, 72)

83
(68, 89)

83
(71.5, 88) <0.001

Male (%) 13 0 57 73 86 23 <0.001
Atrial fibrillation (%) 17 0 24 14 43 35 0.100

Hypertension (%) 65 100 83 73 86 68 0.410
Dyslipidemia (%) 48 50 72 63 29 32 <0.001

Diabetes (%) 9 0 43 27 14 16 0.006
Coronary artery disease (%) 17 50 57 43 29 26 0.007
Chronic kidney disease (%) 4 0 22 12 29 26 0.153
Stroke or transient ischemic

attack (%) 0 50 7 4 14 14 0.046

Obstructive sleep apnea (%) 0 0 13 8 14 6 0.447
Lung disease (%) 17 0 13 4 0 6 0.260

Body mass index (kg/m2)
23.1

(21, 26.6)
30.6

(22, 39.1)
25.9

(24.1, 28)
28.1

(24, 32.7)
38.5

(38, 38.5)
24.6

(22.5, 28) 0.004

Systolic blood pressure (mmHg) 139
(129, 150)

142.5
(140, 145)

136.5
(123, 153)

130
(120, 130)

123
(101, 136)

134
(120, 144) 0.055

Low-density lipoprotein
(mmol/L)

2.4
(2, 3.4)

2.7
(2, 3.3)

1.6
(1.0, 2.2)

2.0
(1.5, 2.7)

2.2
(1.2, 2.5)

2.1
(1.7, 2.8) <0.001

Serum creatinine (mmol/L) 69
(62, 96)

81.5
(67, 96)

94.5
(79, 119)

90
(73,102)

94
(91,155)

87
(71, 133) 0.012

HbA1c (%) 5.8
(5.6, 6.1)

9.1
(5.6, 12.6)

6
(5.8, 6.7)

6
(5.6, 6.7)

5.8
(5.6, 6.4)

5.8
(5.5, 6.2) 0.111

Left ventricular ejection
fraction (%)

60
(56, 61)

60
(55, 65)

55
(51.8, 60)

60
(53, 60)

57
(55, 60)

60
(55, 65) <0.001

Right ventricle diameter (mm) 30
(28, 33)

37
(37, 37)

35
(31.8, 38)

34
(32, 38)

38
(34, 43)

36
(33.5,39) <0.001

Left atrial volume index (mL/m2)
35

(29, 40)
30.5

(29, 32)
39.5

(35, 47.3)
33

(29, 37.5)
53

(43, 55)
47.4

(37.5, 55) <0.001

Left ventricle end-diastolic
diameter index (mm/m2)

25
(22, 27)

28.5
(23, 34)

26
(23,28.6)

24
(22, 26.3)

22.5
(19, 25.2)

28.1
(25, 30.8) <0.001

Mitral valve E/A ratio 0.7
(0.6, 0.8)

0.8
(0.6, 1)

1.1
(0.9, 1.2)

0.9
(0.7, 1.3)

3.7
(1.9, 4.8)

1.2
(0.8, 1.7) <0.001

Average E/e’ ratio 12.8
(8.9, 15.6)

10.3
(7.5, 13)

15.1
(12, 17.5)

8.8
(7.8, 11.5)

21.6
(14.5, 27)

16.7
(14, 19.5) <0.001

Elevated filling pressure (%) 21.7 0 80 26.5 100 91.3 <0.001
Diastolic

dysfunction (%)
Moderate 8.7 0 71.7 24.5 57.1 72.5

<0.001Severe 0 0 4.3 0 42.9 11.6
Meta-analysis Global Group in

Chronic Heart Failure
23.5

(18.8, 25)
21.5

(21, 22)
24

(18, 28)
24

(15, 30)
13

(13, 13)
23

(18, 27.5) 0.780

Heart failure exacerbation (%) 17.4 0 28.3 8.1 85.7 46.4 <0.001
Cardiovascular mortality (%) 8.7 0 2.2 2 57.1 7.2 <0.001

All-cause mortality (%) 8.7 0 10.9 4.1 71.4 21.7 <0.001
Composite endpoints (%) 17.4 0 32.6 12.2 85.7 52.2 <0.001

p-value < 0.05 is statistically significant.

The PAM method generated six significantly different clusters, which were well-
separated as demonstrated by the optimal silhouette width, connectivity index and Dunn
Index. The features of these six subgroups were compared in detail [14]. Briefly, there were
three groups of women, those with a low proportion of vascular risk factors (HFpEF1),
individuals with a high proportion of hypertension and diabetes (HFpEF3), and older
individuals with high rates of atrial fibrillation and chronic kidney disease (HFpEF4).
The other clusters were mostly men with a high proportion of coronary artery disease,



Bioengineering 2022, 9, 175 5 of 10

dyslipidemia and diastolic dysfunction (HFpEF2), those with the highest BMI, obstructive
sleep apnea and poorly controlled diabetes (HFpEF5), and individuals with high rates of
AF, elevated BNP and biventricular remodeling (HFpEF6) [14]. Figure 3 demonstrates the
t-SNE plot for the clusters produced by PAM.

Table 2. Summary of clusters using the K-prototype method (n = 196).

Clusters 1 2 3 4 p-Value

Number of subjects 61 9 53 73

Age (years) 80
(70.5, 87)

83
(72, 89.5)

84
(80, 87.5)

69
(61, 74.5) <0.001

Male (%) 48 78 13 60 <0.001
Atrial fibrillation (%) 36 33 25 15 0.043

Hypertension (%) 67 78 77 75 0.603
Dyslipidemia (%) 56 33 38 59 0.065

Diabetes (%) 33 11 17 23 0.183
Coronary artery disease (%) 44 22 34 34 0.445
Chronic kidney disease (%) 25 33 25 8 0.029

Stroke or transient ischemic attack (%) 11 22 8 5 0.294
Lung disease (%) 7 11 9 8 0.934

Obstructive sleep apnea (%) 10 11 2 10 0.328

Body mass index (kg/m2)
26.6

(24.1, 31.5)
38.5

(28.5, 38.5)
23.1

(21.2, 25)
27.3

(24.1, 32.4) <0.001

Systolic blood pressure (mmHg) 137
(121.5, 150)

115
(97, 134)

135
(123, 144)

132
(121, 144) 0.022

Low-density lipoprotein (mmol/L) 1.8
(1.2, 2.4)

2.1
(1.3, 2.4)

2.1
(1.6, 2.8)

2.2
(1.6, 2.9) <0.034

Serum creatinine (mmol/L) 90
(78, 122.5)

94
(82, 147)

89
(68, 115)

88
(71, 98.5) 0.119

HbA1c (%) 5.9
(5.6, 6.4)

5.8
(5.4, 6.2)

5.8
(5.6, 6.2)

5.9
(5.6, 6.7) 0.651

B-type natriuretic peptide (pg/mL) 282
(111, 769)

817
(514, 1276)

128
(65, 515)

78
(25, 175) <0.001

Meta-analysis Global Group in Chronic
Heart Failure

23
(18, 27.8)

13
(13, 13)

24
(22, 29.5)

19
(12.3, 22) <0.001

Left ventricular ejection fraction (%) 55
(53, 60)

57
(55, 60)

60
(60, 65)

60
(55, 60) <0.001

Mild to Moderate mitral
regurgitation (%) 76 89 85 53 <0.001

Mild to Moderate aortic stenosis (%) 14 11 22 8 0.089
Mild to Moderate aortic

regurgitation (%) 22 44 57 11 <0.001

Mild to Moderate tricuspid
regurgitation (%) 68 89 84 47 <0.001

Right ventricle diameter (mm) 36
(34, 40)

38
(34, 43)

34
(29, 37)

34
(30, 37) <0.001

Left atrial volume index (mL/m2)
44

(36, 54)
53

(43, 56)
40

(35, 50)
33

(29, 39) <0.001

Left ventricle end-diastolic diameter
index (mm/m2)

27
(24, 29)

22.5
(19, 24.5)

28
(25, 30)

25
(22.5, 28)

<0.001

Mitral valve E/A ratio 1.2
(1, 1.9)

2.1
(1.7, 4.5)

0.8
(0.67, 1.1)

0.9
(0.7, 1.2) <0.001

Average E/e’ ratio 15.8
(14.3, 19.6)

21.6
(15, 25.2)

16.7
(14, 19.3)

9.3
(7.9, 11.4) <0.001

Pulmonary artery pressure (mmHg) 34
(27, 40)

48
(33, 49)

31
(24, 36)

26
(23, 29) <0.001

Elevated filling pressure (%) 98 100 74 23 <0.001
Diastolic

dysfunction
Moderate 80 67 60 19

<0.001Severe 15 33 0 1
Heart failure exacerbation (%) 41 89 34 11 <0.001
Cardiovascular mortality (%) 5 67 4 3 <0.001

All-cause mortality (%) 21 78 9 5 <0.001
Composite endpoint (%) 48 89 38 14 <0.001
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4. Discussion

This is the first study, to our knowledge, to compare different clustering algorithms
using the same dataset of outpatient subjects with HFpEF. Hierarchical clustering was the
first method used to separate patients with HFpEF. Hierarchical clustering, visualized by
dendrograms, produces a single nested hierarchy from which a partition can be obtained
for any possible choice of the number of clusters [24]. While this feature makes hierarchical
clustering popular, it is also a challenge to interpret whether the identified clusters represent
an important underlying structure or are artifacts of natural sampling variation [24]. This
method is limited by its experimental approach and the arbitrary determination of the
number of clusters based on the resulting dendrogram and is consistent with the contention
of others [16]. In our study, in addition to encountering this limitation, the cluster sizes
were widely different from each other. Two of the smallest clusters had only two (Cluster 2)
and seven (Cluster 5) members. Having such small clusters could indicate that there was a
significant separation distance between each of these clusters and the larger ones. Compar-
ing the clinical and echocardiographic features of these two clusters with their neighbors,
however, fails to show any important features that justifies having these two groups. In
fact, the more likely explanation is that Cluster 2 and Cluster 5 contain members that lie on
the border of their neighboring clusters or are borderline outliers. Thus, the hierarchical
algorithm, which works well when large separation distances exist between clusters [19–21],
may be artificially forming these smaller subgroups. In fact, if a slightly larger cut-off of
Euclidean distance was used, by moving the horizontal line on the dendrogram higher,
these smaller clusters would have been joined with larger groups. The challenges posed by
identifying the optimal number of clusters using the hierarchical method and our clinical
understanding of the results conclude that this method is not optimal.

The K-prototype method produced four different clusters. We found some similarities
between these clusters and the four groups of HFpEF identified using a similar algorithm,
K-means, by Harada et al., in the outpatient setting [25]. In that study, similar demographics
and clinical information were used with the difference that clinical outcomes were also
applied to assist in forming the clusters. Categorical variables had to be converted to
numerical ones due to the inherent limitations of the K-means algorithm. Another limitation
of this method was that the K-means and K-prototype algorithms require an estimate of
the number of clusters that naturally exist in the data and cannot identify the optimal
number of clusters [25]. This limitation opens the door for random errors and biases in this
clustering approach. Group 1 with younger patients and LV relaxation abnormality had
the lowest mean mitral E/e′ ratio and was most similar to Cluster 4. Group 2 with older
patients with renal dysfunction was similar to Cluster 2. Group 3 with AF and advanced
biventricular diastolic dysfunction was similar to Cluster 1. Group 4 with older patients,
renal dysfunction and had a high PASP was similar to Cluster 3. The K-prototype method
discovered some underlying data structure; however, several clinical and biochemical
features did not show statistically significant differences. Additionally, there was significant
overlap between the clusters as demonstrated graphically (Figure 2). Thus, this approach
did not satisfy the aim of identifying optimized HFpEF clusters.

Utilizing the PAM method, we discovered six distinct clusters in our database [14].
The clustering results using the PAM method not only showed significant clinical features,
but also had better overall internal validity, including increased cluster compactness and
separation distance. In contrast, the hierarchical and K methods produced a subgroup that
consists of only 5% or less of the population thereby suggesting a less meaningful group.
We used measures of internal validity as mentioned in the methods section to arrive at the
optimal number of clusters within each clustering technique and did not utilize these to
compare the different methods.

Few studies have conducted head-to-head comparison of different clustering algo-
rithms on the same dataset. In a study by Bose and Radhakrishnan, three different unsuper-
vised ML algorithms (hierarchical, K-means, and PAM) were used to identify subgroups
of outpatients with HF [26]. They concluded that hierarchical clustering was the best
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technique using internal validation methods. There are several limitations to that study.
First, from the perspective of the study of HFpEF, it did not distinguish HFpEF from
HFrEF, and no laboratory or echocardiographic features were used for clustering. Instead,
focus was placed on medical history, symptoms and quality of life. By performing feature
selection, the number of variables used for identifying the potential clusters was reduced
from nearly 300 to only seven. This was performed using a software package to find the
“best fit” features for the data [26]. The drastic reduction in the number of features and use
of internal validity instead of clinical outcomes for comparing the clustering techniques
limit the reliability of their conclusion.

In another study, Preud’homme et al. used three unsupervised ML algorithms (hierar-
chical clustering or PAM, K-prototypes) to compare their efficacy [27]. These methods were
first applied to a dataset of virtual populations and subsequently to the dataset from the
EPHESUS randomized clinical trial, which only included patients with HFrEF [27]. For
the latter analysis, the number of clusters was fixed at four for all the different algorithms
allowing minimal flexibility. The authors concluded that K-prototype was dominant be-
tween the unsupervised ML methods compared. The conclusion was based on comparing
the clusters from different methods using the adjusted rand index, which is a measure of
similarity between clusters [27]. We believe arbitrarily setting the number of clusters to
four is a major limitation in this study because it introduces significant bias and restricts
the algorithms from identifying the optimal number of clusters. Outcome data were also
not used to compare how the clusters differ from each other. Furthermore, that study is
likely not relevant to HFpEF since all subjects had HFrEF.

Our analysis supports the contention that multiple relevant partitions can be found
in a population, and cluster analysis can be considered successful if it makes sense to the
practitioner specialized in the field [27]. Our study is the first, to our knowledge, to compare
different clustering algorithms using the same dataset of outpatient subjects with HFpEF to
identify the most suitable algorithm yielding clinically relevant results in this population.

While some might argue that heart failure is a clinical entity in which the clinician’s
role is critical in the diagnosis, and there is no need for the application of machine learning
to define subsets of patients, it is important to underscore the heterogeneous etiology of
HFpEF which demands characterization. HFpEF has been attributed to a diverse range
of abnormalities of cardiomyocyte structure and function, cardiac fibrosis, myocardial
extra-cellular matrix, and vascular function [4,5]. Each of these distinct pathophysiologic
entities may have different manifestations and their definition will eventually permit a
tailored approach to the treatment or implementation of a precision medicine approach to
the treatment of HFpEF.

Several studies have applied machine learning approaches to search for subtypes
or different phenogroups in patients with HFpEF. Segar et al. examined a subset of
654 participants in the TOPCAT (Treatment of Preserved Cardiac Function Heart Fail-
ure with an Aldosterone Antagonist) study [17]. They also removed variables with a
correlation coefficient >0.6, keeping the variable that was most clinically meaningful. They
identified three mutually exclusive phenogroups of HFpEF participants using penalized
finite mixture model-based clustering analysis on 61 mixed-data phenotypic variables [17].
Kao et al. examined data from patients with HFpEF in the I-PRESERVE (Irbesartan in
Heart Failure With Preserved Systolic Function) study and considered eleven prospectively
selected clinical features [28]. Data analysis used the polkas library in the R statistical pack-
age and Latent class analysis (LCA) definitions were derived using maximum-likelihood
estimation to determine the most likely subgroup for each patient [28]. They identified six
phenogroups [28]. Hedman et al. evaluated data from 320 patients with HFpEF clustering
32 echocardiographic and 11 clinical or laboratory variables from the Karolinska-Rennes co-
hort (KaRen study) [29]. Model-based clustering of standardized variables was performed
using the Mclust function and the optimal model and number of clusters was determined
by the maximum BIC with three multinomial classification methods in the R statistical
package [29]. They identified six composite phenogroups [29].
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5. Limitations

There are several limitations of the study that have been previously discussed in
detail [14] and some warrant further comment. ML algorithms handling small sample
sizes with a large number of variables can run into dimensionality and overfitting [13].
Thus, we reduced the number of highly correlating variables to minimize the effects of
dimensionality. Second, the number of patients studied is small. However, the data
collection allowed for a detailed description of each person. Third, we used only three
different ML methodologies so that we could readily compare them. Other approaches exist
and warrant comparison but increasing the number of methods would be more challenging
to compare. Lastly, defining the best ML method for defining subsets of patient phenotypes
can be challenging. However, we contend that a method that defines a subgroup consisting
of only 5% or less of the population does not identify a meaningful group. We selected
the PAM method not only because it avoided small and less meaningful subgroups, but
because it also identified subgroups with significant clinical features and had better overall
internal validity, including increased cluster compactness and separation distance. The
computational time of the different methods were not recorded and could not be used as
an index for comparison.

6. Conclusions

This is the first study, to our knowledge, to conduct cluster analysis on outpatients
with chronic HFpEF, an entity with a high mortality and resistant to most current ther-
apies, utilizing and comparing three different unsupervised ML approaches. The PAM
method was found to perform in a robust fashion for this mixed dataset identifying six
different subtypes of HFpEF1-6 that were found to be discrete when assessed on indepen-
dent clinical outcomes. In contrast, hierarchical clustering and the K-prototype methods
did not yield clusters that were clinically as distinct. This study demonstrates the need
for careful evaluation of data analytic techniques in machine learning when applied to
clinical medicine.
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