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Abstract: This study is aimed at understanding the serious foaming problems during microalgal
cultivation in industrial raceway ponds by studying the dynamic foam properties in Arthrospira
platensis cultivation. A. platensis was cultivated in a 4 L bowl bioreactor for 4 days, during which
the foam height above the algal solution increased from 0 to 30 mm with a bubble diameter of
1.8 mm, and biomass yield reached 1.5 g/L. The algal solution surface tension decreased from
55 to 45 mN/m, which favored the adsorption of microalgae on the bubble to generate more sta-
ble foams. This resulted in increased foam stability (FS) from 1 to 10 s, foam capacity (FC) from
0.3 to 1.2, foam expansion (FE) from 15 to 43, and foam maximum density (FMD) from 0.02 to 0.07.
These results show a decrease in CO2 flow rate and operation temperature when using the Foamscan
instrument, which minimized the foaming phenomenon in algal solutions to a significantly lower
and acceptable level.

Keywords: foam; stability; flow rate; photobioreactor; carbon dioxide; temperature

1. Introduction

Microalgae have been the subject of growing industrial research for years due to
their greater photosynthetic efficiency in utilizing CO2, sunlight, and inorganic nutrients,
which in turn contribute to reducing the effects of global warming [1,2]. Many studies
have indicated that microalgae are an important source of high-value products and a
strong candidate for sustainable and eco-friendly energy sources worldwide; this brings
the potential to meet the need of rapidly growing economies, particularly in developing
countries, by offering fewer adverse atmospheric effects [3–7]. The microalgal raceway
ponds are usually 15 to 25 cm deep, supplied with a source of CO2, equipped with a paddle
wheel, and have guided barriers in the flow channel to ensure homogeneity. These raceway
ponds are generally lit by sunlight under controlled temperature and have a ready source
of water; this is currently the most industrially marketable technology because of its lower
costs compared to the closed bioreactors [8–13].

Foaming is desirable for a number of global industries, such as in the food indus-
try, where foam is of great importance for basic food textures owing to its lightness and
large specific surface area [14–16]. Several engineering processes, however, are directly
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affected by the unwanted foams, such as in metal industries, wastewater treatment plants,
and anaerobic digesters. Foams can obstruct gas transport and render the process ineffi-
cient, thus significantly increasing cost [17–20]. Foam becomes problematic during algal
cultivation when it is formed to a level that can hinder the regular process tasks. This
phenomenon has remained unnoticed and been ignored for decades. Foams may last for
short times (up to hours) on solution surfaces during large-scale algal cultivation in an
open pond, as shown in Figure 1. This results in adverse effects, such as a decrease in
growth, loss of volume, lower light penetration (since phototrophic microalgal cultivation
strongly depends on light energy), pond structure failure, and difficult manual cleaning of
the reactor. Such impacts can lead to economic losses of varying magnitudes. Numerous
studies have provided advances in structural engineering in reactor design for attaining
maximum algal biomass yield; however, the formation of foam during algal cultivation in
photo-bioreactors is still unreported in the existing literature [21–24].
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Figure 1. Formation of stable CO2 bubbles at different foam heights.

To understand the serious foaming problems that present during microalgal cultivation
in industrial raceway ponds, the dynamic foam properties from A. platensis cultivation
were characterized in this study to clarify the processes in foam formation and foam
evolution. The reduced surface tension of algal cultures, combined with ionic sulfate and
phosphate surfactant adsorption on bubble walls, was found to generate more stable foams.
This resulted in an increase in foam stability, foam capacity, foam expansion, and foam
maximum density.

2. Materials and Methods
2.1. Instrumental Setup

The main instrument used in this study was a Foamscan system (Teclis Instruments,
Civrieux-d’Azergues, France). A schematic diagram of the Foamscan instrument is shown
in Figure 2. This system is connected with software for precise determination of foam
volume, liquid fraction and volume, and controlling the gas flow rate, stirring speed, and
measuring the bubble size and distribution. Foamscan optically measures the foaming
capabilities by providing information on stability, drainage rate, and bubble size distribu-
tion [25]. Additionally, the foam column is layered with a temperature sensor inside the
tube. In the present study, the Foamscan system was used to determine the foam stability
(FS), foam capacity (FC), foam expansion (FE), and foam maximum density (FMD).
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Figure 2. Schematic illustration of foam measurement system.

2.2. Foam Generation and Stability Analysis

For foam generation, a 50 mL sample solution was injected through an inlet into
the foam column, equipped with a temperature sensor inside the tube. The experimen-
tal parameters were set by using the connected software. For all experiments, the final
foam volume limit was set at 70 mL. The foam was generated by sparging CO2 gas into
the injected sample solution in the foam column, and its volume was controlled with
the help of the connected software. Gas sparging was automatically stopped once the
foam volume reached the preset final limit, and tests were performed to separately in-
vestigate the effects of CO2 and temperature. For CO2 flow rate tests, the temperature
was fixed at 30 ◦C, whereas CO2 aeration was varied according to the testing parameters
(200, 250, 300, 350, and 400 mL/min). The temperature effect was determined at vary-
ing temperatures (20, 25, 30, 35, and 40 ◦C), whereas the CO2 aeration rate was fixed at
300 mL/min. The foam stability, also known as the half-life, was determined in terms of
FE, FC, and FMD, as described below:

FE was determined as the ratio of the total foam volume to the liquid volume within
the bubbles after foam generation is completed by using Equation (1).

FE =
Vffoam

Viliq − Vfliq
(1)

where Vffoam (mL) is the total foam volume after the completion of the foaming process,
Viliq (mL) is the liquid volume at the initial state, and Vfliq (mL) is the volume of liquid
remaining after the completion of the foaming process.
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FC was determined as the ratio of the total foam volume to the gas volume after foam
generation is completed by using Equation (2) [26].

FC =
Vffoam
Vfgas

(2)

FMD was determined as the ratio of the difference between the initial liquid volume
and the final liquid volume with the final foam volume.

2.3. Surface Tension

The surface tension (mN/m) of the solution was measured by using a digital surface
pressure device via the du Noüy ring method. Briefly, the fluid samples were added
to a container with an automated adjustable height. After each reading, the ring was
thoroughly washed with double distilled water and then heated in a flame. Measurements
were performed three times for reproducibility and accuracy.

2.4. Cultivation Conditions

The A. platensis strain was cultivated with 4 L Zarrouk’s medium in a bowl photobiore-
actor aerated with the 15% CO2, and the flow rate was controlled at 300 mL/min using
a mass flow meter (Sevenstar CS200, Beijing, China). The experiment was conducted in
an artificial climate greenhouse with an indoor temperature of 30 ± 2 ◦C, and the light
intensity was kept at 8000 ± 200 lux. Biomass was measured using optical density with
algal solution (10 mL) using a WFJ 7200 visible spectrophotometer at the wavelength of
560 nm with deionized water as blank. Error bars shown were found with Excel’s stan-
dard deviation (SD) function. The pH value throughout the study was determined using
an FE20 laboratory pH meter. The data for the dry weight curve of the A. platensis was
obtained by (y = 0.51x − 0.034, where y refers to dry weight, and x refers to OD). Each
measurement during all experiments was performed twice a day at 9:00 and 21:00 to ensure
reproductively and accuracy of the results, and each data throughout the figures is a mean
of three data with an error bar to represent uncertainty in the measurements [26].

2.5. Microscopic Observation

The bubble diameter of foam was determined, as described previously [22], by using a
Nikon inverted fluorescence microscope (Nikon Corporation, Tokyo, Japan) and calculated
by using software (NIS-Elements BR4.00.12). The bubble diameter was measured twice per
day for 4 consecutive days. Data were collected from at least 50 bubbles each time.

3. Results and Discussion
3.1. Foam Morphology during A. platensis Cultivation

The foam morphology above the solution was observed during algal cultivation. With
increasing microalgae density in solution, the surface tension decreased, which weakened
the interfacial properties at the air-liquid interface. Therefore, the microalgal solution
resulted in fast adsorption kinetics and high surface visco-elastic interface properties. These
properties are favorable for foam formation [15,27,28]. Figure 3 illustrates the process in-
volved in stable and unstable bubble formation and a typical mechanism of foam formation
during the cultivation of A. platensis. A sticky gel-like material was continuously excreted
through the walls of A. platensis, known as extracellular polymeric substance (EPS), that
generated an aggregate formation by adhesion between microalgae surfaces which were
trapped in the thin bubble films that promoted stable foam over the solution surface [27,28].
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Figure 3. Mechanism of foam formation during cultivation of A. platensis.

As shown in Figure 4a, the foam height over the surface of microalgae solution
gradually increased and reached the highest value of 30 mm after 4 days (Figure 4b).
During this time, the bubble diameter also increased and reached 1.8 mm after 4 days
(Figure 4b). Importantly, the bubble diameter close to the surface was smaller as compared
to the bubbles located at the top of foams and away from the solution. This phenomenon
occurred due to coarsening.
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Figure 4. (a) Foam formation during cultivation of A. platensis cultivation in industrial raceway ponds
(b) Qualitative and quantitative demonstration of increasing foam height and bubble diameter after
4 days of microalgal growth.

Bubbles generated by aeration can resist bursting because adsorption of the sticky
nature of algal cells attached to bubbles led to the formation of a resistant armor that slowed
down the drainage, reduced bubble breakage, and increased coarsening, which resulted
in more stable and long-lasting foam [29]. As the foam height rises, bubble diameter
increases, and bubbles coarsen from smaller bubbles to larger bubbles over time due to gas
diffusion [30]. According to the Laplace–Young law, ‘coarsening’ involves the transport
of gas between bubbles due to their differences in pressure, leading to an increase in the
average bubble diameter over time [31,32].
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3.2. Stability of Foam during Biomass Production

Foaming was a gradual and continuous process during the cultivation of microalgae,
and 1.5 g/L of microalgal biomass was produced after 4 days (Figure 5). When the
biomass grew denser and A. platensis cells started to produce EPS around their walls,
a large portion of EPS was attached to the surface of A. platensis cells, whereas some
were released into the culture medium. The separation of EPS from the cell surface is a
well-established phenomenon [30,33,34]. The released EPS formed stable thin films in the
solution and resulted in the formation of stable foams. This polymeric substance, i.e., EPS,
consists of sulfated substitutes (0.5–22%), uronic acids (14–40%), and polysaccharides. The
results showed an association between the microalgal biomass and surface tension. The
surface tension continuously decreased with increasing microalgal biomass (Figure 5). The
amphiphilic nature of the algal solution is due to the presence of uronic acids and peptides
in EPS [35]. Therefore, the emulsifying property of the solution was significantly enhanced,
which is caused by the presence of rhamnose and fucose deoxy sugars [29,33,36]. During
the cultivation time, the pH of the solution also increased, although only slightly, from
~9.8 to ~10.2 (Figure 5). This slight increase in pH during foam formation could be due to
the CO2 uptake.
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Figure 5. Formation of microalgal biomass and its impact on the solution surface tension and pH
during the 4 days growth of A. platensis. The algal biomass increased with time, which increased the
pH and decreased the surface tension of the solution.

The dependence of foaming characteristics, including FS, FC, FE, and FMD, on the
microalgal growth rate was monitored (Figure 6). FC increased steadily with increasing
dry biomass weight and reached 1.2 when 1.5 g/L dry biomass was produced after 4 days.
A similar trend was found for FE that increased from 15 to 43 when dry biomass of 1.5 g/L
was produced after 4 days. The foam produced by 1.5 g/L microalgal dry biomass remained
stable for 10 s. Similarly, the FMD was increased from 0.02 to 0.07 during the formation
of 1.5 g/L microalgal dry biomass. The results showed that all foaming characteristics,
including FS, FC, FE, and FMD, were increased with the increasing microalgal biomass
dry weight. Bubble interfaces were accumulated by microalgae together with EPS and
formed a soft adhesive gel that favoured the formation of stable and long-lasting foams,
as shown in Figure 4. As the microalgal density increased, the cells were adsorbed by the
bubble and carried over to the surface of the solution during aeration or paddle wheel
rotation. The EPS excretion gradually decreased the surface tension of the solution because
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EPS behaved as a surfactant and increased the stickiness of the culture, therefore creating a
positive environment to generate stable foaming [33,37].
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Note: Foam Stability = Half-life of foam from generation to disappear, Foam capacity = Ratio of
foam volume to gas volume, Foam expansion = Ratio of foam volume to reduced liquid volume
from initial to final condition, and Foam maximum density = Ratio of the difference between the
initial liquid volume and the final liquid volume with the final foam volume. Note: Each data point
is an average of three replicates with a standard deviation, n = 3.

3.3. Effect of CO2 Aeration on Foam Stability

Since CO2 gas influenced the rapid volume expansion of foam when the bioreactor
was continuously aerated from the bottom, the EPS attached to the A. platensis cell wall
enhanced the formation of stable foams. The maximum solubility of CO2 in an algal
solution was essential for efficient algal growth, but when the aeration rate became greater
than the solubility capability of the solution, the supplied gas went through the algal
solution idly and contributed to the foam formation on the surface of the solution.

The effect of CO2 flow rate on the formation of foam was investigated by using the
Foamscan instrument that helped to analyze four different characteristics of the algal foam,
including the FS, FC, FE, and FMD. Figure 7a shows that the FS of the solution increased
gradually from 1 to 10 s during the 4 days as the algal growth increased. It also showed
that FC and FE increased from 0.26 ± 0.03 to 0.90 ± 0.03 and 22 ± 0.46 to 38 ± 0.46 over
time (Figure 7a,b). These results indicate that CO2 aeration and A. platensis cell density
increased simultaneously. FMD was the only parameter that decreased from 5.5 ± 2.8 to
3.1 × 10−2 ± 2.8 with the increasing aeration rate of gas (Figure 7b). This could be attributed
to the continuous supply of CO2 gas that led to rapid bubble formation that ruptured more
quickly due to the high aeration rate. Thus, larger bubbles with lower density were formed
at higher flow rates.
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3.4. Effect of Cultivation Temperature on Foaming Stability

Temperature is one of the most important control parameters during the algal growth,
as the metabolic and enzymatic activities are directly influenced by it during the simultane-
ous production of biomass and EPS [34,36,38]. A higher temperature reduces the solubility
of gaseous components (i.e., CO2) in the culture medium, whereas a lower temperature
leads to reduced algal growth and decreases the kinetics of metabolic activities [38].

The experimental data show that temperature greatly contributed to affecting the
foaming events. A higher temperature affected the bubble drag, bubble rise velocity,
surface tension, and flow behavior of the foam, which led to an increased mixing and
gaseous hold up within the bubbles. These results are in accordance with a previous
study [18]. The foam film permeability increased with the increasing temperature, whereas
the surface tension decreased, as reported previously [39]. Temperature behaves as an
indirect contributor to foaming events in photo-bioreactors. In Figure 8a,b, it is shown
that foaming characteristics increased during the culture, such as FS from 0 to 9 s, FC from
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0.28 ± 0.03 to 0.89 ± 0.03, and FE from 26 ± 0.41 to 38 ± 0.41. On the other hand, only FMD
decreased from 6.1 ± 0.28 to 3.0 × 10−2 ± 0.28 (Figure 8b). The decreased FMD could be
due to the fact that a higher temperature resulted in the formation of larger but less dense
bubbles, which caused rapid drainage of liquid through the film-forming unstable foam.
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4. Conclusions

The foaming mechanism in algal culture was investigated with varying CO2 flow rates
and temperature using a Foamscan instrument. It is concluded that, as the microalgae
solution became denser and reached 2.4 g/L, the adhesive EPS released from A. platensis
decreased the surface tension to 45 mN/m. Consequently, an increased CO2 flow rate
of 400 mL/min and a temperature of 40 ◦C increased the stability of the foam up to 10 s
with 30 mm height and 1.8 mm bubble diameter. Based on the findings of this study, it is
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recommended that a high temperature and rigorous CO2 aeration should be avoided to
mitigate the foaming problem in photobioreactors.
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