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Abstract: Lung segmentation of chest X-ray (CXR) images is a fundamental step in many diagnostic
applications. Most lung field segmentation methods reduce the image size to speed up the subsequent
processing time. Then, the low-resolution result is upsampled to the original high-resolution image.
Nevertheless, the image boundaries become blurred after the downsampling and upsampling steps.
It is necessary to alleviate blurred boundaries during downsampling and upsampling. In this paper,
we incorporate the lung field segmentation with the superpixel resizing framework to achieve the
goal. The superpixel resizing framework upsamples the segmentation results based on the superpixel
boundary information obtained from the downsampling process. Using this method, not only can
the computation time of high-resolution medical image segmentation be reduced, but also the quality
of the segmentation results can be preserved. We evaluate the proposed method on JSRT, LIDC-IDRI,
and ANH datasets. The experimental results show that the proposed superpixel resizing framework
outperforms other traditional image resizing methods. Furthermore, combining the segmentation
network and the superpixel resizing framework, the proposed method achieves better results with an
average time score of 4.6 s on CPU and 0.02 s on GPU.

Keywords: lung segmentation; encoder–decoder network; superpixels; downsampling interpolation;
upsampling interpolation

1. Introduction

Chest X-ray (CXR) is the most common imaging technique widely used for lung
diagnosis and treatment, especially for COVID-19. Lung segmentation of CXR images is
a fundamental step in many diagnostic applications involving the detection, recognition,
and analysis of anatomical structures in computer-aided diagnosis systems. However,
manual identification of lung fields is time-consuming and error prone. Thus, accurate
automatic segmentation of lung fields has received attention from researchers as an essential
preprocessing step in automatically analyzing chest radiographs.

CXR images have higher resolutions. For example, the resolution of the public Japanese
Society of Radiological Technology (JSRT) dataset [1] is 2048 × 2048, which is widely used
to evaluate the performance of CXR lung segmentation methods. Therefore, most CXR
lung field segmentation studies downsample the image size to 128 × 128 or 256 × 256
through linear interpolation to reduce the computation time [2–4], especially for deep
learning-based methods. However, during downsampling, the graylevel information of
several pixels in the high-resolution images is merged to form the graylevel information
of a pixel in the downsampled low-resolution images. Thus, the boundary information
loss of pixels is unavoidable and causes boundary blurs or missing of the low-resolution
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images. On the other hand, most methods of lung segmentation usually rely on large gray
value contrasts between lung fields and surrounding tissues. As a result, the quality of the
segmentation for the image with blurred boundaries will degrade.

Additionally, high-resolution images are necessary for practical medical applications.
Thus, the segmentation methods based on downsampling preprocessing need to upsample
the segmented results to the original high-resolution images. However, the upsampled
results obtained from pixels of the low-resolution images will contain artifacts. Without
sufficient information, the boundaries of segmented tissues are hard to correctly recover
during upsampling. As a result, the quality of the upsampled segmentation results is worse
than that of the results processed from the original high-resolution images.

Solving the downsampling blurred boundary problem and the upsampling artifact
problem is necessary for deep learning-based segmentation methods for high-resolution
medical images. Most existing stand-alone downsampling and upsampling methods, such
as bilinear, bicubic, and nearest neighbor interpolation algorithms, focus on image down-
sampling and upsampling independent entities, rather than coupling steps simultaneously.
Thus, the existing methods cannot solve the problems mentioned above. To alleviate these
problems, this study employs a superpixel resizing framework to reduce information loss
during downsampling and reconstruct the boundaries of foreground segmentation results
during upsampling.

This paper proposes a lung field segmentation combining the ultrafast superpixel
extraction via quantization (USEQ) [5] superpixel resizing framework. Using this method
can reduce the computational time of high-resolution medical image segmentation and
preserve the quality of the segmentation results. In the experimental results, three datasets
are used to demonstrate the segmentation performance of the proposed method. Further-
more, we evaluate the performance of USEQ resizing and the bicubic interpolation resizing
algorithms in downsampling and upsampling steps. Lung field segmentation results us-
ing the USEQ superpixel resizing framework significantly outperform other stand-alone
resizing methods.

The remainder of this paper is organized as follows: Section 2 presents related work.
Section 3 describes the datasets and critical components of our proposed method. We
present our experimental results as well as an analysis in Section 4. Finally, Section 5
concludes this paper.

2. Related Work

In this section, we briefly revisit recent works on lung field segmentation and super-
pixel algorithms.

2.1. Lung Field Segmentation

Over the past decades, several lung field segmentation methods have been proposed.
Hu et al. [6] proposed a three-step process of identifying the lungs in three-dimensional pul-
monary X-ray CT (computed tomography) images. Additionally, Wang et al. [7] also used
a three-step approach to segmenting lungs with severe interstitial lung disease (ILD) in tho-
racic CT. Alternatively, a fuzzy-based automatic lung segmentation technique from CT im-
ages was proposed [8]. This system needs no prior assumption of images. Sluimer et al. [9]
proposed a refined segmentation-by-registration scheme based on an atlas to segment the
pathological lungs in CT. Chama et al. [10] introduced an improved lung field segmentation
in CT using mean shift clustering. Ibragimov et al. [11] used a supervised landmark-based
segmentation in CXR lung field segmentation. Similarly, Yang et al. [4] proposed a com-
putationally efficient method of lung field segmentation using structured random forests
to detect lung boundaries from CXR images. Their approach is highly computationally
efficient; it promotes a fast and practical procedure of lung field segmentation.

Deformable model-based methods adopt the internal force from object shape and the
external force from image appearance to guide the lung segmentation. Back in 2006, Van
Ginneken et al. [12] compared three methods for segmenting the lung fields in CXRs, includ-
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ing active shape model (ASM), active appearance model (AAM), and pixel classification. A
hierarchical deformable approach based on shape and appearance models originated from
the work conducted by Shao et al. [13]. Similarly, learnable MGRF (Markov–Gibbs random
field) was introduced by Soliman et al. to accurately segment pathological and healthy
lungs for reliable computer-aided disease diagnostics [14]. Their module integrates two
visual appearance sub-models with an adaptive lung shape sub-model. A fully automated
approach to segmenting lungs with high-density pathologies has been introduced [15].
They utilized a novel robust active shape model matching method to roughly segment the
lungs’ outline. Hu and Li [16] proposed an automatic segmentation method of lung field in
CXRs based on the improved Snake model. Bosdelekidis and Ioakeimidis [17] introduced
a deformation-tolerant procedure based on approximating rib cage seed points for lung
field segmentation.

Deep learning is state-of-the-art in semantic image segmentation [18–22]. Novikov et al. [3]
proposed convolutional neural network (CNN) architectures for automated multi-class
segmentation of lungs, clavicles, and heart on a dataset. Most deep learning segmentation
algorithms adapt an encoder–decoder architecture, e.g., U-net and Seg-Net [23,24]. U-Net
is an encoder–decoder network model that has served as the baseline architecture for
most CXR segmentation models. Many studies have tried to modify the U-Net structure.
For example, Wang [2] used a U-Net to segment multiple anatomical structures in CXRs.
Arora et al. [25] proposed a modified UNet++ framework, and Yahyatabar et al. [26] offered
a Dense-Unet inspired by DenseNet and U-Net for the segmentation of lungs. Moreover,
Wang et al. [27] proposed a cascaded learning framework for the automated detection
of pneumoconiosis, including a machine learning-based pixel classifier for lung field
segmentation, and Cycle-Consistent Adversarial Networks (CycleGAN0) for generating
large lung field images for training, and a CNN-based image classier.

2.2. Superpixels

A superpixel is a group of perceptually similar pixels. Superpixels represent image
regions and adhere to intensity edges for segmentation purposes. There are three main
desirable properties for superpixel extraction algorithms [28]: (1) superpixels should ac-
curately adhere to image boundaries and should consist of perceptually similar pixels;
(2) superpixels should be computationally efficient as they are used in preprocessing and
postprocessing steps; (3) superpixels should improve speed and segmentation quality.

Superpixel algorithms are divided into two categories: graph-based and gradient-
ascent-based methods. Graph-based methods treat each pixel as a node in the graph
and the edge weights between two nodes are proportional to the similarity between
neighboring pixels. The superpixels are generated by minimizing a cost function defined
over the graph [29–32]. Gradient-ascent-based methods [28,33–36] start from a rough initial
clustering of pixels and apply gradient-ascent methods. It takes steps proportional to
the positive of the gradient and approaches a local maximum of that function. Then, it
iteratively refines the clusters until some convergence criterion is met to form superpixels.

Compared to the superpixel mentioned earlier, the USEQ algorithm achieves better
and more competitive performance regarding boundary recall, segmentation error, and
achievable segmentation accuracy. It is much faster than other methods because it does
not use an iterative optimization process. It performs spatial and color quantization in
advance to represent pixels and superpixels. Unlike iterative approaches, it aggregates
pixels into spatially and visually consistent superpixels using maximum a posteriori (MAP)
estimation at pixel-level and region-level. Motivated by these works, we propose an
approach that combines the USEQ superpixel resizing framework and an encoder–decoder-
based segmentation network in a unified manner.
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3. Materials and Methods
3.1. Datasets and Preprocessing

All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethical Committee of China Medical University Hospital,
Taichung, Taiwan (CMUH106-REC2-040 (FR)). The datasets used in this study include
two public datasets: JSRT and Lung Image Database Consortium Image Collection (LIDC-
IDRI) [37], and a non-public An Nan Hospital (ANH) dataset collected from An Nan
Hospital. The images used in these three datasets are 247, 33, and 58, respectively. JSRT
images have a fixed resolution of 2048 × 2048. However, the resolutions of LIDC-IDRI and
ANH images are varied. The average resolutions of LIDC-IDRI and ANH are 2700 × 2640
and 2705 × 3307, respectively. The resolution distribution of all images is shown in Figure 1.
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Figure 1. Resolution distribution of all images.

The original image pixels are stored in 12-bit with 4096 graylevels. The file format for
the LIDC-IDRI and ANH datasets is Digital Imaging and Communications in Medicine
(DICOM), while headers are not used in the JSRT dataset. Therefore, the original images are
mapped to 8-bit and stored in PNG format at their actual sizes. In most cases, deep learning
algorithms perform better when trained on more data. Therefore, this work augments
images by generating randomly rotated images with a maximum rotation of ± 10 degrees
for each original image. Examples of augmented images from the JSRT dataset are shown in
Figure 2. The work also creates manual reference segmentations drawn by medical experts
for each image. The segmentation masks are labeled with values of 0 and 1, corresponding
to the background and lung fields. A ground truth example of the LIDC-IDRI dataset is
shown in Figure 3.
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3.2. Overview of the Lung Field Segmentation

The proposed lung field segmentation method combines an encoder–decoder segmen-
tation network and the USEQ superpixel resizing framework [38] to obtain high-quality
segmentation results. The architecture of the method is shown in Figure 4. First, the input
image is downsampled using the downsampling interpolation function to find the low-
resolution image to reduce the computation time in the subsequent segmentation network.
Next, the downsampled low-resolution image is processed through the encoder–decoder
segmentation network to segment lung fields. Then, the proposed upsampling interpolation
function upsamples the segmentation results based on the superpixel boundary information
obtained from the downsampling process. The stored superpixel boundary information is
used to recover the high-resolution segmentation results. Finally, post-processing is applied
to correct the segmentation results.
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3.3. USEQ Superpixel Extraction

USEQ algorithm consists of four computationally efficient steps of generating su-
perpixels. First, it employs spatial quantization to generate the initial superpixels based
on pixel locations. Second, the color space of each pixel is also quantized to obtain the
dominant color within each initial superpixel. In spatial quantification, the USEQ algorithm
calculates the initial width and height of a superpixel, and then defines the spatial relation-
ship between pixels and superpixels. The initial width and height of each superpixel are
computed as follows:

w =
W√

δ
(1)

h =
H√

δ
(2)

where W and H represent image width and height, respectively. The target number of
superpixels is denoted by δ. Pixels belonging to superpixel spi are defined as follows:

spi =
{

pk
∣∣||pk − spi|| <

∣∣∣∣pk − spj
∣∣∣∣∀ j 6= i

}
(3)
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were pk is the position of the k-th pixel in an image. The spatial neighbor relationship
e
(
spi, spj

)
between superpixels spi and spj is defined as follows:

e
(
spi, spj

)
=

{
1 spi and spj are neighbor grid
0 otherwise

(4)

These enabled the algorithm to build a spatial neighbor relationship between superpixels.
Third, after the spatial and color quantifications, a non-iterative maximum a posteriori

(MAP) pixel label assignment uses both spatial and color quantization results to reassign
labels of pixels for better boundary adherence of objects. Finally, a MAP estimation-based
neighborhood refinement is used to merge small adjacent superpixels with visual similarity
to obtain superpixels with more regular and compact shapes. Figure 5 shows the flowchart
of the USEQ superpixel extraction method. An example of the USEQ result is shown in
Figure 6.
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3.4. USEQ Superpixel Resizing Framework

The superpixel resizing framework is mainly composed of the downsampling interpo-
lation function FD(·) and the upsampling interpolation function FU(·). Let I, be the input
image, and ID and IU be the downsampled and upsampled images of I. The image matrix
I is composed of a homogeneous matrix H of homogeneous regions and a boundary matrix
B of the boundaries of objects as follows:

I = H + B. (5)

Here, the USEQ superpixel extraction separates the image matrix I to the homogeneous
matrix H and the boundary matrix B. To obtain ID, a downsampling interpolation function
FD(·) is applied to I as follows:

ID= FD(I) (6)

To recover the high-resolution image IU , the upsampling interpolation function FU(·)
is applied to ID, and IU is represented as follows:

IU= FU
(

ID
)

(7)

To obtain high-quality upsampled results which are similar to original images, the
distance function D

(
IU , I

)
between IU and I should be minimized as follows:

D
(

IU , I
)
= min‖IU − I‖2 (8)

Substitute Equations (5)–(7) to Equation (8), D
(
IU , I

)
is then derived as follows:

D
(

IU , I
)
= min‖FU

(
FD(H + B)

)
− (H + B)‖2. (9)

For a superpixel spi, we classify the pixels in spi into homogeneous and boundary
pixels, respectively. The boundary set spB

i of pixels in spi are the pixels that spatially
connected to the pixels in the neighbor superpixel spj, where i 6= j, as follows:

spB
i = {pk|pk ∈ spi and d(pk, pl) = 1} (10)

where d(pk, pl) =
{ ∣∣∣∣pk − pl || | pk ∈ spi, pl ∈ spj, i 6= j

}
and pk = [xk, yk]

T is the 2D image
position of the k-th pixel pk in I. The homogeneous set spH

i is then defined as pixels are in
spi but are not in the boundary set spB

i as:

spH
i = spi − spB

i (11)

With spH
i and spB

i , HM(pk, spi) is then defined as follows:

HM(pk, spi) =

{
I(pk), pk ∈ spH

i
0, otherwise

(12)

which represents the pixels in the homogeneous regions in spi. Similarly, BM(pk, spi) is
defined as follows:

BM(pk, spi) =

{
I(pk), pk ∈ spB

i
0, otherwise

(13)

which represents the pixels in the boundaries in spi.
Because the number of superpixels equals to the number of pixels of the downsampled

image ID, the color value I
(

pD
i
)

of the pixel pD
i of ID is computed from the corresponding
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superpixel spi. Therefore, downsampling interpolation function FD(·) is designed to map
the colors of pixels of spi to pD

i as follows:

FD(HM(pk, spi)) =

∑
pk∈spi

{
HM(pk, spi)

∣∣pk ∈ spH
i
}

∑
pk∈spi

{
1
∣∣pk ∈ spH

i
} . (14)

Using Equation (14), the color value I
(

pD
i
)

of the pixel pD
i is then obtained as follows:

I
(

pD
i

)
= FD(HM(pk, spi)) (15)

Because spH
i contains homogeneous pixels of spi, the obtained I

(
pD

i
)

is also visually
similar to the colors of the pixels of spi.

The boundary between spi and spj retains between pD
i and pD

j of the downsampled

image, which means that the downsampling interpolation function FD(·) can effectively
preserve boundaries of objects during downsampling. In this way, we can obtain a high-
quality, low-resolution image containing clear boundaries of segmented objects to avoid
degradation of segmentation results. Here, spB

i of each superpixel is reserved for bound-
ary information and used to recover the high-resolution segmentation results during
the upsampling.

To obtain the high-resolution segmentation results, the upsampling interpolation
function FU(·) is designed based on spB

i , which preserves the boundary information for su-
perpixels in an image. Because boundary matrix B stores the boundary information during
downsampling, it complements the missing boundary information for image upsampling.
Thus, FU(·) is designed to map the colors of pixels pD

i of ID to pixels in IU as follows:

FU(I(pD
i ), pk) =


I(pD

i ), pk ∈ spH
i

BM(pk, spi), pk ∈ spB
i

0, I(pD
i ) ∈ background

(16)

where I
(

pU
k
)
= FU(I

(
pD

i
)
, pk
)

is the color of pk which belongs to the superpixel spi of the
image. In Equation (16), pixels of the same superpixels of the upsampled image will have
consistent colors. Moreover, the colors of pixels between boundaries will differ based on the
superpixel information. Thus, the upsampled image can maintain the original boundaries
of segmented objects. In addition, the time complexity in the image upsampling step is
very low, because only pixel value assignment is performed based on the superpixels.

3.5. Encoder–Decoder Segmentation Networks

The encoder–decoder segmentation network consists of five encoder layers with
corresponding decoder layers. The network architecture is shown in Figure 7. Each
convolutional layer is followed by batch normalization and ReLU (rectified-linear units)
nonlinearity. These are followed by max pooling with a 2 × 2 window size without
overlapping and a stride length of two. The resulting feature map from max-pooling is
subsampled by a factor of two which enables it to achieve translation invariance for robust
classification. Although max-pooling and subsampling achieve translation invariance, they
cause a loss of resolution in the feature maps. In this work, we use SegNet [24] to address
this problem by storing the location of the maximum feature value in each pooling window
and passing it to the decoder.

The decoder network uses the stored pooling indices to upsample the encoder′s input
feature map(s). Each convolutional layer in the decoder is preceded by upsampling with
the mapped pooling indices from the encoder and succeeded by batch normalization
and ReLU nonlinearity. The feature map from the final decoder layer is fed to a softmax
classifier for pixel-wise classification. The output of the softmax classifier is the probability
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of the N-channel image, where N is the number of classes. In this study, there are classes,
background, and lung fields.
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3.6. Post-Processing

The softmax classifier at the end of the decoder network classifies each pixel on the
image as the background and lung fields. The purpose of this study is to segment the
lungs. Because the lung field is full of air, the pixel intensity in the lung fields is very low.
Therefore, the dark areas are classified as the lung fields, and the white areas on the image
are classified as the background. However, due to anatomy, dark spots outside the lungs
were also found in the body cavity, such as the stomach. These dark spots are also classified
as lung fields. On the other hand, due to certain diseases, some white spots in the lung
field are also classified as the background.

For the above reasons, post-processing is used to correct the segmentation results.
Only the two largest segmented regions are considered lung fields, the left and right lungs.
Other small-segmented areas will be discarded. Similarly, the hole in the lungs will be
filled. Two examples are shown in Figure 8. The entire lung filed segmentation algorithm
is summarized in Algorithm 1.

Algorithm 1. Lung Field Segmentation

Input: Given a set of CXR images X and a set of ground truth masks Y. I ∈ X and M ∈ Y.
Output: O, the segmentation results.
1 Decompose I into homogeneous matrix H of homogeneous regions and a boundary matrix

B of the boundaries of superpixels using superpixel extraction.
2 Downsample I to obtain the downsampled image ID using Equation (14).
3 Downsample M to obtain the downsampled image MD.
4 Store the superpixel label information for each pixel of I.
5 In training phase:

5.1 Input a set of ID and a set of MD to the encoder–decoder segmentation network to
train the model.

6 In prediction phase:
6.1 Input ID to the encoder–decoder segmentation network to predict the low-resolution

segmentation results OD.
6.2 Upsample OD to obtain the high-resolution segmentation results O using Equation (16).
6.3 Run the post-processing procedure on O to correct the segmentation results.

6.3.1 Keep the two largest regions and discard other small regions.
6.3.2 Fill all the holes in the two largest regions.

7 Output the final result O.
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is classified as the background; (c,f) are the post-processed results.

4. Experimental Results
4.1. Datasets and Model Training

The datasets used in this experiment include JSRT, LIDC-IDRI, and ANH, which
consist of 247, 33, and 58, respectively. JSRT and LIDC-IDRI are public datasets, while
ANH is a non-public dataset. In the experiments, we used these three datasets to train and
build five segmentation network models and named each model according to the dataset.
Eighty percent of each dataset is used for training and the remaining twenty percent is
used for testing.

After the data argumentation process, the JSRT model is trained on 2370 JSRT images,
the LIDC model is trained on 1870 LIDC-IDRI images, and the ANH model is trained on
836 ANH images. We also combine training data from the LIDC-IDRI and JSRT datasets
to train on the LIDC_JSRT hybrid model. In the same way, all datasets are combined
and trained on the LIDC_JSRT_ANH hybrid model. We conducted all experiments on
a computer with Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz CPU and GeForce GTX
TitanX GPU with 12 GB of memory. The batch size is set to 4 and the maximum number of
iterations is 40,000. The Adam optimizer with learning rate of 0.0005 is used to train the
network parameters. Table 1 shows the number of images used for the training and testing
of each model.
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Table 1. The number of images used for training and testing of each model.

Models Training Data Testing Data Total

JSRT 2370 594 2964

LIDC 1870 462 2332

ANH 836 208 1044

LIDC_JSRT 4240 1054 5294

LIDC_JSRT_ANH 5076 1262 6338

4.2. Performance Comparison of Superpixel and Bicubic Interpolations

Since the goal of the experiments is not only to segment the lung, we also demonstrate
the performance of the USEQ superpixel resizing framework. As mentioned before, the
image boundaries become blurred after the downsampling and upsampling steps. Here, the
peak signal-to-noise ratio (PSNR) [39] is used to evaluate the USEQ superpixel interpolation
with other interpolation algorithms used in the downsampling and upsampling steps.

Given an image I with size W × H and C channels, image I is downsampled to image
ID with a specified size, and then upsampled to the original resolution, which is called
image IU . Channels C can be ignored here because CXR images are single channel. The
PSNR is defined by the mean squared error (MSE) for a single channel, the MSE is defined
as follows:

MSE =
1

W × H

W−1

∑
i=0

H−1

∑
j=0

[
I(i, j)− IU(i, j)

]2
(17)

The PSNR is defined as:

PSNR = 20·log10(MAXI)− 10·log10(MSE) (18)

where the MAXI is the maximum value of an image. Higher PSNR means better visual
quality and less information loss.

We compare USEQ superpixel interpolation with nearest-neighbor interpolation [40],
bilinear interpolation [41], and bicubic interpolation [42] at different downsampling rates
(i.e., 0.125, 0.25, and 0.5). Figure 9 shows the average PSNR evaluation results for each
dataset. As shown in the figures, nearest-neighbor interpolation is the worst, bilinear and
bicubic interpolations are moderate, but bicubic is slightly better. The proposed USEQ
superpixel interpolation outperforms other interpolations because it considers boundary
information during downsampling and upsampling.
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We combine the segmentation network with different interpolation algorithms, USEQ
superpixel interpolation and bicubic interpolation to evaluate the segmentation results.
The segmentation network outputs are upsampled to their original space using the same
interpolation algorithm used in the downsampling. Figure 10 shows segmentation results for



Bioengineering 2022, 9, 351 12 of 18

JSRT, LIDC, and ANH models using USEQ superpixel interpolation and bicubic interpolation.
Although the results are broadly similar, there are some differences in the details.
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Figure 10. Segmentation results for two resizing algorithms: (a,d,g) are images from JSRT, LIDC-IDRI
and ANH datasets; (b,e,h) are the segmentation result of the JSRT, LIDC, and ANH models using
USEQ superpixel interpolation; (c,f,i) are the segmentation results of the JSRT, LIDC, and ANH
models using bicubic interpolation.

The contours of the segmentation results are drawn on the original image to show
the adherence to the lung field boundaries. Figure 11 shows the boundary adherence
between USEQ superpixel interpolation and bicubic interpolation. Figure 11a,c,e are the
results of LIDC, JSRT, and ANH. Figure 11b,d,f are the zoom-in versions of it. The blue
contours are the results of USEQ, the red contours are bicubic, and the green contours are
the ground truth. From the zoom-in parts in Figure 11b,d,f, these figures clearly show that
the contour of using the USEQ superpixel interpolation is better than that of using the
bicubic interpolation.
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Figure 11. Examples of the boundary adherence between USEQ superpixel interpolation and bicubic
interpolation. The blue contours are the results of USEQ, the red contours are the results of bicubic,
and the green contours are the ground truth; (a,c,e) are the results of LIDC, JSRT, and ANH; (b,d,f) are
the zoomed-in parts of the black rectangle in (a,c,e).

Four metrics are also employed to measure the quantitative impact of segmentation
results between USEQ superpixel interpolation and bicubic interpolation. These metrics
include dice similarity coefficient (DSC), sensitivity, specificity, and Modified Hausdorff
distance (MHD) as follows [10]:

DSC =
2× TP

2× TP + FP + FN
(19)

Setsitivity =
TP

TP + FN
(20)

Speci f icity =
TN

TN + FP
(21)

where TP (true positives) represents correctly classified lung pixels, FP (false positives)
represents pixels classified as lung but are background, FN (false negatives) represents
pixels classified as background but are part of the lung, and TN (true negative) represents
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correctly classified background pixels. The MHD calculates the average distance between
the segmentation result and the ground truth, defined as follows:

h
(

Sseg, Sgold

)
=

1∣∣∣Sgold

∣∣∣ ∑
q∈Sgold

min
{

d(p, q)
∣∣∣p ∈ Sgold

}
(22)

where Sseg and Sgold represent segmentation results and the ground truth, respectively.∣∣∣Sgold

∣∣∣ is the total number of pixels in the ground truth. p and q are points on the boundaries
of Sseg and Sgold, and d(p,q) is the minimum distance of a point p on the boundary Sseg to
the point q on the boundary Sgold.

The average metric score results for each dataset are shown in Table 2. According to
the metric results, USEQ superpixel interpolation has been shown to outperform bicubic
interpolation. In USEQ superpixel interpolation, the average DSC, sensitivity, and speci-
ficity score is greater than 97%. The average MHD of USEQ is less than 2, while the average
MHD of bicubic interpolation is about 4. Therefore, USEQ superpixel interpolation has a
better boundary adherence than bicubic interpolation.

Table 2. Quantitative performance of the segmentation results between USEQ superpixel interpola-
tion and bicubic interpolation.

Models Lungs
USEQ Superpixel Interpolation Bicubic Interpolation

DSC Sensitivity Specificity MHD DSC Sensitivity Specificity MHD

JSRT Left 0.977 0.973 0.996 1.107 0.953 0.949 0.992 2.779
Right 0.978 0.975 0.999 1.002 0.96 0.958 0.992 4.201

LIDC
Left 0.972 0.971 0.995 0.888 0.926 0.93 0.989 4.645

Right 0.972 0.97 0.994 1.718 0.938 0.934 0.989 6.72

ANH
Left 0.97 0.979 0.999 1.942 0.953 0.936 0.994 4.428

Right 0.982 0.978 0.994 1.24 0.948 0.949 0.992 3.783

LIDC_JSRT Left 0.973 0.966 0.996 0.815 0.95 0.941 0.994 3.284
Right 0.979 0.978 0.995 1.448 0.948 0.941 0.991 3.755

LIDC_JSRT_ANH Left 0.964 0.967 0.994 1.736 0.947 0.962 0.991 2.962
Right 0.968 0.975 0.994 2.094 0.952 0.953 0.992 3.81

Average 0.9735 0.9732 0.9956 1.399 0.9475 0.9453 0.9916 4.0367

4.3. Cross-Dataset Generalization

To test the generalization of the segmentation models, the five trained models were
tested on different datasets that did not appear during their training. The cross-dataset
test results of the DSC metric are shown in Figure 12. Compared with their datasets, the
segmentation performance on different datasets has decreased slightly. This is because
the three datasets differ in the image size and gray-level range, especially the aspect ratio
(width/height). The aspect ratio of JSRT is 1, the ratio of LIDC-IDRI is about 1.02, but the
ratio of ANH is 0.82. In Figure 12, except for the ANH model, the DSC scores of the other
four models are approximately or higher than 90%. One possibility that may cause this
situation is the difference in X-ray imaging machines.

Nevertheless, the models LIDC_JSRT and LIDC_JSRT_ANH trained from the combi-
nation of datasets have achieved excellent results. The results show that increasing data
diversity can enhance the model generalization and improve performance.



Bioengineering 2022, 9, 351 15 of 18
Bioengineering 2022, 9, x FOR PEER REVIEW 15 of 18 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LIDC ANH JSRT ANH JSRT LIDC JSRT LIDC ANH JSRT LIDC ANH

JSRT LIDC ANH LIDC_JSRT LIDC_JSRT_ANHModel

Test Dataset

DS
C

 
Figure 12. Cross-dataset test results of the DSC metric. 

4.4. Comparison with other Lung Segmentation Methods 
Jaccard index (Ω) [3,4,11–13,43,44] and the mean boundary distance (MBD) are also 

calculated as additional metrics to compare the proposed method with other lung seg-
mentation methods. Jaccard index is computed as: 

Ω =
ܶܲ

ܶܲ + ܲܨ + ܰܨ
 (23)

MBD measures the average distance between the boundary S of the segmentation 
result and the boundary T of the ground truth, defined as follows [4]: 

MBD =
1
2

ቆ
∑ ௜ݏ)݀ , ܶ)௜

|{௜ݏ}| +
∑ ݀൫ݐ௝ , ܵ൯௜

ห൛ݐ௝ൟห
ቇ (24)

where ݏ௜ and ݐ௝ are the points on boundaries S and T, respectively. ݀(ݏ௜ , ܶ) is the mini-
mum distance of point ݏ௜  on boundary ܵ to boundary ܶ, defined as follows: 

௜ݏ)݀ , ܶ) = ݉݅ ௝݊ฮݏ௜ − ௝ฮ (25)ݐ

Comparisons are made only on the JSRT dataset, as most studies use this dataset, as 
listed in Table 3. The proposed method outperforms other methods, such as SEDUCM [4], 
SIFT-Flow [43], and MISCP [44] in the Jaccard index, DSC, and MDB metrics. It also excels 
in the variance of the Jaccard index and DSC metrics. Variance is understood in machine 
learning as how much the prediction for a given point varies between model implemen-
tations. Bias measures the overall gap between the model′s predictions and the ground 
truth. In some cases, low variance does not guarantee a model with low bias. However, 
the Jaccard index measures the overlap between model predictions and ground truth in 
semantic segmentation. Therefore, the higher the value of Ω, the less biased the model 
predictions are. The bias-variance trade-off in our method is minimized compared to other 
methods. That is, our method has the most consistent prediction results. 

Although some methods in the literature slightly outperform the proposed method 
in terms of computational time, our method is still comparable due to the different com-
puting power of machines. The computational time of the methods was computed on im-
ages of size 256 × 256. The proposed method achieves an average time score of 4.6 s on 
CPU and 0.02 seconds on GPU. According to the results described in Table 3, our method 

Figure 12. Cross-dataset test results of the DSC metric.

4.4. Comparison with other Lung Segmentation Methods

Jaccard index (Ω) [3,4,11–13,43,44] and the mean boundary distance (MBD) are also
calculated as additional metrics to compare the proposed method with other lung segmen-
tation methods. Jaccard index is computed as:

Ω =
TP

TP + FP + FN
(23)

MBD measures the average distance between the boundary S of the segmentation
result and the boundary T of the ground truth, defined as follows [4]:

MBD =
1
2

(
∑i d(si, T)
|{si}|

+
∑i d

(
tj, S

)∣∣{tj
}∣∣

)
(24)

where si and tj are the points on boundaries S and T, respectively. d(si, T) is the minimum
distance of point si on boundary S to boundary T, defined as follows:

d(si, T) = minj‖si − tj‖ (25)

Comparisons are made only on the JSRT dataset, as most studies use this dataset, as
listed in Table 3. The proposed method outperforms other methods, such as SEDUCM [4],
SIFT-Flow [43], and MISCP [44] in the Jaccard index, DSC, and MDB metrics. It also
excels in the variance of the Jaccard index and DSC metrics. Variance is understood in
machine learning as how much the prediction for a given point varies between model
implementations. Bias measures the overall gap between the model′s predictions and
the ground truth. In some cases, low variance does not guarantee a model with low bias.
However, the Jaccard index measures the overlap between model predictions and ground
truth in semantic segmentation. Therefore, the higher the value of Ω, the less biased the
model predictions are. The bias-variance trade-off in our method is minimized compared
to other methods. That is, our method has the most consistent prediction results.

Although some methods in the literature slightly outperform the proposed method in
terms of computational time, our method is still comparable due to the different computing
power of machines. The computational time of the methods was computed on images of
size 256 × 256. The proposed method achieves an average time score of 4.6 s on CPU and
0.02 seconds on GPU. According to the results described in Table 3, our method outperforms
other methods on Ω, DSC, and MBD. Considering the difference in the computing power
of machines, the speed of this method is not bad compared to other methods.
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Table 3. Comparison of lung field segmentation methods on JSRT dataset.

Method Ω (%) DSC (%) MBD (mm) Time (s)

Proposed method 95.5 ± 0.02 97.7 ± 0.01 0.542 ± 0.79 CPU: 4.6
GPU:0.02

SEDUCM [4] 95.2 ± 1.8 97.5 ± 1.0 1.37 ± 0.67 <0.1

SIFT-Flow [43] 95.4 ± 1.5 96.7 ± 0.8 1.32 ± 0.32 20∼25

MISCP [44] 95.1 ± 1.8 / 1.49 ± 0.66 13∼28

Hybrid voting [12] 94.9 ± 2.0 / 1.62 ± 0.66 >34

Local SSC [13] 94.6 ± 1.9 97.2 ± 1.0 1.67 ± 0.76 35.2

Human observer [12] 94.6 ± 1.8 / 1.64 ± 0.69 /

GTF [11] 94.6 ± 2.2 / 1.59 ± 0.68 38

InvertedNet [3] 94.6 97.2 0.73 7.1

PC post-processed [12] 94.5 ± 2.2 / 1.61 ± 0.80 30

ASM tuned [12] 92.7 ± 3.2 / 2.30 ± 1.03 1

ASM_SIFT [12] 92.0 ± 3.1 / 2.49 ± 1.09 75

AAM whiskers [12] 91.3 ± 3.2 / 2.70 ± 1.10 3
The values on the table are recorded as mean ± standard deviation except for the time column.

5. Conclusions

We propose lung field segmentation in this study using the USEQ superpixel resizing
framework and an encoder–decoder segmentation network. The superpixel resizing frame-
work stores the superpixel boundary information in the downsampling step and reloads
the boundary information in the upsampling step. In this way, the framework can reduce
information loss during downsampling and reconstruct the boundaries of segmentation
results during upsampling. Using the superpixel resizing framework, the computation
time of the segmentation network can also be reduced while preserving the quality of
the segmentation.

This study uses the ability of superpixels to adhere to object boundaries. USEQ gener-
ates superpixels based on spatial and color quantization results to reveal the boundaries of
objects in an image perceptually. It uses this information during image resizing to maintain
the resolution and the correct localization of objects. This property enables the proposed
method to delineate lung fields in CXR images accurately. To evaluate the impact of seg-
mentation results between USEQ superpixel interpolation and bicubic interpolation, four
metrics, DSC, sensitivity, specificity, and MHD, are used. The experimental results show
that the USEQ superpixel interpolation has better results on all metrics in the three datasets.
The proposed method is also compared with existing methods on the JSRT dataset. Our
method not only outperforms other methods in Jaccard index, DSC, and MDB metrics, but
also performs better on the bias-variance trade-off. That is, our method has the most consis-
tent prediction results. Cross-dataset evaluations are also performed. The results show that
increasing data diversity can enhance the model generalization and improve performance.

To conclude, the proposed method is the first to provide a superpixel resizing frame-
work for lung field segmentation. Our approach can be used for the analysis of CXR lung
fields. The technique can potentially be extended to other medical image segmentation
problems to reduce computation time and preserve segmentation quality.
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