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Abstract: Multi-wavelength (2D) fluorescence spectroscopy represents an important step towards
exploiting the monitoring potential of microtiter plates (MTPs) during early-stage bioprocess devel-
opment. In combination with multivariate data analysis (MVDA), important process information can
be obtained, while repetitive, cost-intensive sample analytics can be reduced. This study provides
a comprehensive experimental dataset of online and offline measurements for batch cultures of
Hansenula polymorpha. In the first step, principal component analysis (PCA) was used to assess
spectral data quality. Secondly, partial least-squares (PLS) regression models were generated, based
on spectral data of two cultivation conditions and offline samples for glycerol, cell dry weight, and
pH value. Thereby, the time-wise resolution increased 12-fold compared to the offline sampling
interval of 6 h. The PLS models were validated using offline samples of a shorter sampling interval.
Very good model transferability was shown during the PLS model application to the spectral data
of cultures with six varying initial cultivation conditions. For all the predicted variables, a relative
root-mean-square error (RMSE) below 6% was obtained. Based on the findings, the initial experi-
mental strategy was re-evaluated and a more practical approach with minimised sampling effort
and elevated experimental throughput was proposed. In conclusion, the study underlines the high
potential of multi-wavelength (2D) fluorescence spectroscopy and provides an evaluation workflow
for PLS modelling in microtiter plates.

Keywords: 2D fluorescence spectroscopy; online monitoring; multivariate data analysis; high-throughput;
microtiter plate

1. Introduction

Over the last decades, various microbioreactor designs, including stirred [1–4],
shaken [5–7], sparged [8–10] and pumped systems [11,12] have been developed to ac-
celerate early up-stream bioprocess development [13,14]. To follow the Process Analytical
Technology (PAT) guidance for process analytics and control [15], these microscale cul-
tivation vessels are often equipped with a miniaturised periphery [16], enabling at-line
and online process monitoring down to droplet-size cultivation volumes [17,18]. Amongst
others, spectroscopic measurement methods based on Raman [19,20], impedance [21–23]
or single-wavelength fluorescence [24,25] have successfully been transferred from lab-scale
reactors to microscale cultivation systems.

For exploring and exploiting the information of the acquired spectral datasets, multi-
variate data analysis methods (MVDA) or chemometrics are usually applied [26,27]. For
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example, principal component analysis (PCA) can be used to condense data with high
dimensionality to only a few uncorrelated dimensions. The dimensional reduction is
conducted by transferring the spectral data into a new coordinate system of so-called
principal components (PCs), which are iteratively generated according to the maximum
residing variance within the spectral data [28–30]. In bioprocess engineering, PCA has,
for example, been used to assess the lot-to-lot variability of raw medium powder and hy-
drolysates [31] or to characterise microbial or cell culture cultivation processes in different
reactor scales [32–37]. Besides PCA, a widely used regression-based MVDA approach is the
partial least-squares (PLS) regression [38]. During the calibration of PLS regression models,
latent variables (LVs) are generated, which iteratively maximise the covariance between
the independent, online data and dependent, offline data. The resulting linear relationship
can then be used to calculate the respective offline parameter value from unknown spectral
data. The implementations of PLS regression used for the online monitoring and control of
bioprocesses in stirred tank reactors are numerous and have extensively been reviewed in
the literature [26,39,40]. Yet, to date, the means for the online recording of high-dimensional
data in microbioreactors are limited, and applications of PLS modelling are mostly based
on spectral at-line measurements [19,20,41–43]. Recently, Sawatzki et al. [44] used PLS
regression to predict the endopolygalacturonase activity during fed-batch cultivations of
Saccharomyces cerevisiae in 8–12 mL stirred cultures. In the study, the PLS model relied
on a combination of online and automated at-line measurements. One microbioreactor
system, which can provide high-dimensional online data suitable for PLS modelling, is the
MTP-based BioLector® system. However, the currently commercially available system is
limited in the number of filters used for the measurement of fluorescence and scattered
light measurements. In a more recent advancement, Ladner et al. [45] implemented a
monochromator-based excitation wavelength scan in combination with a charge-coupled
device (CCD) camera for the measurement of highly-resolved emission spectra. The setup
allows for the multi-wavelength (2D) fluorescence monitoring of each well of an MTP.
In the initial study demonstrating the new setup, the generated 2D spectra were used to
generate PLS regression models for calculating characteristic process parameters during
batch cultivations of Hansenula polymorpha and Escherichia coli [45]. In a subsequent study,
PLS regression was combined with a mechanistic modelling approach to completely avoid
offline measurements for PLS model calibration [46]. In a third study, the setup was used
to conduct multi-wavelength online monitoring of the scattered light during co-cultures of
Lactococcus lactis and Kluyveromyces marxianus [47]. Here, PLS modelling was shown to be
applicable for the determination of the biomasses of the two individual organisms within
the co-culture.

This paper extensively elaborates on the application and limits of 2D fluorescence
online monitoring in MTPs using the MVDA methodologies of PCA and PLS. A com-
prehensive experimental dataset of H. polymorpha cultivations is generated, consisting of
online 2D fluorescence spectra and offline measurements of the key process parameters of
glycerol, cell dry weight (CDW), and pH value. The experiment is conducted at an elevated
throughput with a total of eight different initial cultivation conditions comprising varying
glycerol concentrations and CDWs. Based on the online and offline measurements from
two replicates of two different cultivation conditions, individual PLS regression models
for the three key process parameters are generated. PLS model validation is conducted
using additional offline samples for the two different cultivation conditions, which were
not used for the model generation. Subsequently, model transferability is demonstrated by
applying the generated PLS models to spectra of unknown cultivation conditions. Based on
the modelling results, the applicability of the validation approach, as well as the necessity
for spectral replicates, are discussed, finally leading to a revised experimental layout with
reduced sampling efforts.
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2. Materials and Methods
2.1. Microorganism

Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP), expressing green fluorescent pro-
tein (GFP), was maintained at −80 ◦C in modified SYN6-MES medium [48] supplemented
with 150 g/L glycerol.

2.2. Media Composition

A modified SYN6-MES mineral medium based on Jeude et al. [48] was used for pre
and main cultures. The basic solution consisted of 1.0 g/L KH2PO4, 7.66 g/L (NH4)2SO4,
27.3 g/L 2-morpholinoethanesulfonic acid (MES), 3.0 g/L MgSO4·7H2O, 3.3 g/L KCl
and 0.3 g/L NaCl. Before sterilisation at 121 ◦C for 20 min, the pH was adjusted to
6.0 using 1 M NaOH. For supplementation of the basal solution, a concentrated, sterile-
filtered trace-element solution was added to provide 0.65 mg/L NiSO4·6H2O, 0.65 mg/L
CoCl2·6H2O, 0.65 mg/L H2BO4, 0.65 mg/L KI and 0.65 mg/L Na2MoO4·2H2O. A sterile
microelement solution was supplemented to provide 66.5 mg/L EDTA (Titriplex III),
66.5 mg/L (NH4)2Fe(SO4)2·6H2O, 5.5 mg/L CuSO4·5H2O, 20 mg/L ZnSO4·7H2O and
26.5 mg/L MnSO4·H2O. A final concentration of 1.0 g/L CaCl2·2H2O was supplemented
from a sterile stock solution. Additionally, a sterile vitamin solution was added to supply
0.4 mg/L d-biotin and 133.4 mg/L thiamine · HCl. For the preparation of the stock solution,
the d-biotin was first dissolved in a 10 mL mixture (1:1) of 2-propanol and deionised
water and then added to the thiamine hydrochloride, dissolved in 90 mL deionised water.
Glycerol was added to the media from a sterile 500 g/L stock solution to achieve the
respective final glycerol concentration. Sterile water was added to account for differences
in volumes.

2.3. Precultures

Precultures were carried out in 250 mL shake flasks using a shaking frequency (n) of
350 rpm, a shaking diameter (d0) of 50 mm, and a filling volume (VL) of 10 mL. The medium
was inoculated with an initial optical density measured at a wavelength of 600 nm (OD600)
of 0.1 and cultivation was carried out at a temperature (T) of 30 ◦C. The initial glycerol
concentration was 10 g/L. The precultures were harvested after growth had stopped,
indicated by oxygen transfer rate (OTR) measurements. Thereby, carryover of glycerol
from the preculture to the main culture was avoided. Additionally, before inoculation of
the main culture media, the cells were washed in fresh, glycerol-free medium.

2.4. Main Cultures

Main cultures were carried out in 48-round-well microtiter plates with a transpar-
ent bottom (MTP-R48-B, Beckman Coulter GmbH, Baesweiler, Germany). In contrast
to the studies conducted in the 2D fluorescence cultivation system by Ladner et al. [45]
(Figures 1 and 2A), in this study, multiple cultivation systems including multiple MTPs
were used (Figure 2B–D). To provide identical starting conditions for each cultivation
condition, indicated by the colours in Figure 2, the medium was supplemented with the
respective volume of glycerol and inoculum. The resulting “master mixes” were distributed
over the MTPs. Afterwards, for the OTR-monitored cultures (Figure 2B), a polyolefin-based
gas-permeable membrane (900371-T, HJ-Bioanalytik GmbH, Erkelenz, Germany) was used
as a sterile barrier, according to Flitsch et al. [49]. The aeration rate of humidified air was set
to 1.0 vvm. The MTPs for spectroscopically monitored (Figure 2C) and sampled cultures
(Figure 2D) were sealed with a gas-permeable membrane (AeraSeal film, A9224-50EA,
Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and incubated in a humidified atmo-
sphere. For all MTPs, the filling volume (VL) of each well was 0.8 mL. During cultivation,
all MTPs were incubated at 30 ◦C, and continuously shaken at a shaking frequency of
1000 rpm and a shaking diameter of 3 mm.
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Figure 1. Schematic setup of cultivation system for 2D fluorescence online monitoring in microtiter 
plates. The shaker table provides continuous shaking of the microtiter plate (MTP). The optical fibre 
is displaced below each well of the MTP by an X–Y-positioning device. With the tuneable mono-
chromator, the excitation wavelength is selected and sent to the MTP via the optical fibre. The emit-
ted light is collected by the fibre and sent to a second static monochromator. The static monochrom-
ator disperses the emitted light into its constituent wavelengths. The resulting emission spectrum is 
recorded by a charge-coupled device (CCD) camera. To guarantee a reproducible shaker-table po-
sition during measurement, the spectral measurement of the CCD camera is triggered by a hall sen-
sor. The emission spectra are assembled into 2D spectra for each excitation wavelength scan of each 
well over the cultivation time. Modified from [45] and used with permission from publisher. 

Figure 1. Schematic setup of cultivation system for 2D fluorescence online monitoring in microtiter
plates. The shaker table provides continuous shaking of the microtiter plate (MTP). The optical
fibre is displaced below each well of the MTP by an X–Y-positioning device. With the tuneable
monochromator, the excitation wavelength is selected and sent to the MTP via the optical fibre.
The emitted light is collected by the fibre and sent to a second static monochromator. The static
monochromator disperses the emitted light into its constituent wavelengths. The resulting emission
spectrum is recorded by a charge-coupled device (CCD) camera. To guarantee a reproducible shaker-
table position during measurement, the spectral measurement of the CCD camera is triggered by a
hall sensor. The emission spectra are assembled into 2D spectra for each excitation wavelength scan
of each well over the cultivation time. Modified from [45] and used with permission from publisher.

2.5. Online Monitoring

The spectral online monitoring was conducted using the MTP cultivation system
introduced by Ladner et al. [45] as shown in Figure 1.

A Y-shaped optical fibre bundle was sequentially displaced below each well of a
continuously shaken 48-well microtiter plate using an X–Y-positioning device. At the
measurement position, 2D spectra were acquired by cycling through discrete excitation
wavelengths using an automated grating-based monochromator (CP140-1602, Horiba Jobin
Yvon GmbH, Bensheim, Germany) connected to the optical fibre. A spectral range from
280 nm to 700 nm with an increment step size of 10 nm was scanned. The light emitted
from the culture within the well was collected by the optical fibre and transmitted to a
second, static monochromator (microHR, Horiba Jobin Yvon GmbH, Bensheim, Germany),
allowing for light dispersion and the subsequent recording of high-resolution emission
spectra. For the spectral measurement using a CCD camera (Synapse, Horiba Jobin Yvon
GmbH, Bensheim, Germany), an integration time of 30 ms was chosen. Reproducible
measurements were ensured by a Hall effect sensor providing the information on the
shaker-table position. After measurement, 2D spectra were generated by stacking the
single-emission spectra according to the excitation wavelength, the respective well and
measurement time. An intermediate 10 min break of measurements was included after
measuring all 48 individual wells in one measurement cycle to reduce device wearing. As
a result, one full 2D spectrum for each well of the 48-well MTP was obtained every 30 min.

The OTRs were measured using the Respiration Activity MOnitoring System (RAMOS)
adapted for MTPs (µRAMOS). Oxygen-sensitive fluorescence spots are used in every
individual well to determine the oxygen partial pressure (pO2) of the gas phase, using
the Stern–Volmer equation for quenching. The OTR was determined as described by
Flitsch et al. [49].
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metabolic activity in the form of the oxygen transfer rate (OTR) was measured in the µRAMOS 
cultivation system published by Flitsch et al. [49] (B). Recording of 2D spectra (C) and offline sam-
pling (D) were conducted in two individual devices. Cross-hatched wells indicate cultures moni-
tored over the whole cultivation time. Diagonal-hatched wells indicate monitored wells being sam-
pled during cultivation. Unhatched wells indicate non-monitored wells used for sampling. Grey 
wells indicate wells with non-inoculated medium. White, struck-through wells were not used. 

Figure 2. Comparison of experimental sampling strategies used in previous and current publica-
tion. The previous publication by Ladner et al. [45] included direct sampling from an MTP in the
online-monitoring cultivation system, limiting both the amount of online data and offline samples
(A). This study used multiple MTPs in parallel cultivation devices (B–D), indicated by dashed boxes.
The metabolic activity in the form of the oxygen transfer rate (OTR) was measured in the µRAMOS
cultivation system published by Flitsch et al. [49] (B). Recording of 2D spectra (C) and offline sam-
pling (D) were conducted in two individual devices. Cross-hatched wells indicate cultures monitored
over the whole cultivation time. Diagonal-hatched wells indicate monitored wells being sampled
during cultivation. Unhatched wells indicate non-monitored wells used for sampling. Grey wells
indicate wells with non-inoculated medium. White, struck-through wells were not used.
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2.6. Determination of Offline Parameters

Cultures were regularly sampled from MTPs (MTP-R48-OFF, Beckman Coulter,
Baesweiler, Germany) and shaken in a separate humidified incubator (ISF1-X, Adolf Küh-
ner AG, Birsfelden, Switzerland) (Figure 2D). Sampling was conducted by harvesting the
culture volume of one well at each sampling point. The complete culture volume was
harvested without interrupting the shaking. At the starting time (t = 0 h), samples were
taken from the main culture master mixes. The OD600 of the samples was determined in
micro cuvettes (PS, Carl Roth, Karlsruhe, Germany) using a photometer (GENESYS 20,
Thermo Scientific, Dreieich, Germany). Before measurement, the samples were diluted with
a 0.9% (w/v) NaCl solution to allow a measurement between 0.1 and 0.3. The CDW was cal-
culated from the OD600 using a linear correlation (Figure S1). The pH value was determined
using a two-point calibrated pH meter (HI21, HANNA instruments Inc., Woonsocket, US,
electrode: InLab Solids, Mettler Toledo GmbH, Columbus, OH, USA) and was measured in
undiluted, non-centrifuged samples. For the determination of residual glycerol, the sample
was centrifuged at 13,000 rpm for 5 min (SIGMA 1-15; Sigma Laborzentrifugen GmbH,
Osterode am Harz, Germany). The supernatant was filtered using a 0.2 µm syringe filter
(Acrodisc® syringe filter 13 mm Minispike 0.2 µm GHP membrane, PALL GmbH, Dreieich,
DE). Until the HPLC measurement was performed, samples were stored at 4 ◦C. The
HPLC measurement (UltiMate3000, Dionex, Sunnyvale, CA, USA) was conducted using
an organic acid resin column (250 × 8 mm; CS-Chromatographie Service, Langerwehe,
Germany) at a flow rate of 0.8 mL/min and a temperature of 75 ◦C with 5 mM sulphuric
acid. The final glycerol concentration was determined using a refractive-index detector
(Shodex RI-101; Showa Denko Europe, Wiesbaden, Germany).

2.7. Spectral Data Processing

The data preprocessing and multivariate data analysis were performed using Mat-
lab 9.8.0.1380330 (R2020a) Update 2. For the initial spectral data reduction, the detected
spectral range was reduced by only including emission wavelengths between -10 nm and
+270 nm relative to the excitation wavelength. A moving average filter with a window
size of 25 values was applied for every emission spectrum to reduce signal noise. The 2D
spectra were converted to row vectors and reduced to every fifth wavelength combination.
This accounts for a spectral resolution of 2 nm and is expected to represent the spectral
information appropriately. Finally, each wavelength combination intensity (I) was refer-
enced to the wavelength combination intensity of the first measurement cycle (I0) of the
respective well by subtraction (I-I0).

2.8. Multivariate Data Analysis

For dataset handling, PCA, and PLS regression, the open-source Matlab toolbox mda-
tools [50] was used. For the temporal alignment of the spectral data from the online-
monitored MTP (Figure 2C) and the offline measurements from the sampling MTPs
(Figure 2D), the offline parameters for glycerol concentration, CDW and pH value were
linearly interpolated between two sampling points. Subsequently, the interpolated offline
parameter value, calculated for the time of spectral measurement, was extracted.

For each offline parameter, PLS models were finally generated using the SIMPLS
algorithm [51]. PLS model calibration was conducted using the interpolated data of the
samples taken every 6 h. For the statistical evaluation of the models, the root-mean-square
error (RMSE) of the respective dataset was determined. The RMSE of the calibration dataset
was calculated twice. Firstly, the linear interpolation of the sample taken every 6 h of
cultivation was used (RMSEcal,6-h). Secondly, the linear interpolation of the samples taken
every 1.5 h of cultivation was used as the reference values (RMSEcal,1.5-h). The RMSE of the
prediction dataset was calculated for the 1.5 h sampling interval (RMSEpred,1.5-h).

For the PLS model for glycerol, before PLS regression model generation, the residual
glycerol concentrations were converted to total consumed glycerol concentrations, as this
was proven to improve the predictability (data not shown). After applying the generated
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PLS model to the spectral data, the residual glycerol concentration was then recalculated
from the initial glycerol concentration.

3. Results
3.1. Experimental Layout and Sampling Strategy

The hitherto studies, introducing 2D spectroscopy in MTPs, used a single MTP for
the monitoring and sampling of only two or three different cultivation conditions per
experiment [45,46] (Figure 2A). This significantly limited the experimental throughput,
which otherwise is one of the huge advantages of the microbioreactor cultivation system.
Further, the reduced throughput did not allow an extensive elaboration of the possibilities
and limitations of 2D fluorescence monitoring in MTPs, which is an essential requirement
for establishing a new online-monitoring technology. Hence, to increase the size of the
generated datasets of H. polymorpha cultures to a total of eight different initial conditions,
an experimental layout including a total of five 48-well MTPs in three parallel cultivation
devices was chosen in this study (Figure 2B–D). The metabolic activity represented by
the OTR was monitored online using the µRAMOS technology for MTPs [49] (Figure 2B).
Further, the spectroscopic setup shown in Figure 1 was used to generate 2D spectra of
each culture of a 48-well MTP every 30 min (Figure 2C). With up to six replicates per
condition, the chosen layout also allows the evaluation of the reproducibility of the spectral
measurements. For extensive sampling and offline measurement, three additional MTPs
were incubated in a separate incubator (Figure 2D). With a total of 120 samples and up to
16 samples per cultivation condition, the progression for the concentration of glycerol,
CDW, and pH value can be described in detail over the cultivation time. For the eight
different cultivation conditions, the initial CDW and glycerol concentrations were varied.
For the three initial cultivation conditions, a glycerol concentration of 9 g/L was chosen and
the initial CDW was varied between 0.03 g/L to 0.13 g/L (Figure 2B–D, conditions I–III).
For the remaining five initial cultivation conditions, the initial CDW was kept constant at
0.03 g/L, while the glycerol concentration was successively reduced to 0 g/L (Figure 2B–D,
conditions IV–VIII).

3.2. Online and Offline Monitoring of Microtiter Plate Cultivations

In Figure 3, exemplary 2D spectra from individual wells of three different cultivation
conditions after 0.1 h (Figure 3A–C) and 30.2 h (Figure 3D–F) of cultivation are shown
(other conditions see Figure S2).

The scattered light is represented by the bisecting line, describing identical wave-
lengths for excitation and emission. Fluorescence was observed in areas where the emission
wavelength is higher than the respective excitation wavelength and, thus, to the right of
the scattered light. The shift to a wavelength of lower energy, known as the Stokes shift,
occurs as the absorbed energy is partially dissipated by a non-radiative processes [52]. The
most prominent area of fluorescence was recognised for excitation wavelengths between
440 nm and 550 nm and emission wavelengths between 470 nm and 600 nm. This area
can be ascribed to the fluorescence of GFP, which is expressed by the applied recombinant
H. polymorpha strain [53,54]. The second area of fluorescence was observed at lower exci-
tation wavelengths between 360 nm and 440 nm and comparable emission wavelengths
between 470 nm and 550 nm. While this area is mainly connected to the fluorescence of
intracellular flavines [55], spectral overlap from GFP fluorescence is also conceivable [53,56].
Comparing the spectra of the different cultivation conditions at the beginning of the cultiva-
tion, the GFP fluorescence intensity increased with an increasing initial CDW (Figure 3A–C).
In contrast to that, after 30.2 h of cultivation (Figure 3D–F), the GFP intensities were ob-
served to increase with the amount of the initially supplemented glycerol. For the cultures
with high initial glycerol concentrations, after 30.2 h an additional area of fluorescence
was observed at excitation wavelengths between 300 nm and 330 nm and emission wave-
lengths between 470 nm and 550 nm. Again, a relation to the flavines or the expressed
GFP is conceivable [55,56]. Finally, increased fluorescence intensities were measured for
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excitation wavelengths between 280 nm to 350 nm and emission wavelengths between
290 nm and 360 nm. Although this area is commonly ascribed to the fluorescence of
aromatic amino acids [57], the high intensities have previously been connected to the
fluorescing polystyrene bottom of the microtiter plates [45,58]. This is partially supported
by the 2D spectra of the non-inoculated medium shown in Figure S2F,L. In both 2D spectra,
comparable fluorescence spots were detected in the respective spectral area, thus indicating
a non-biogenic compound of constant concentration.
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Figure 3. Exemplary 2D spectra of H. polymorpha RB11 pC9-FMD (PFMD-GFP) cultures in SYN6
medium after 0.1 h (A–C) and 30.2 h (D–F) for different initial cell dry weights (CDWt0) and glycerol
concentrations (Glyt0). The spectra are recorded for cultures with 0.13 g/L CDWt0 and 9.0 g/L
Glyt0 (A,D), 0.03 g/L CDWt0 and 9.0 g/L Glyt0 (B,E), and 0.13 g/L CDWt0 and 2.0 g/L Glyt0

(C,F). The spectra are smoothed according to the methods section, but not referenced to the
first cycle. Spectroscopic measurement settings: excitation wavelength range = 280 nm–700 nm
(step size = 10 nm), emission wavelength range = 278 nm–720 nm (step size = 0.45 nm), integration
time = 30 ms. Cultivation conditions: 48-round-well microtiter plate, liquid volume = 800 µL, shaking
diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 ◦C.

For each of the recorded 2D spectra, the intensities of a singular wavelength combi-
nation can be extracted to describe the progression of the different cultures. In Figure 4,
online signals of the OTR (Figure 4A), the scattered light at 600 nm (Figure 4B), and the GFP
fluorescence intensity at an excitation wavelength of 420 nm and an emission wavelength of
530 nm (Figure 4C) are visualised over the cultivation time. The signals are averaged from
three individual wells for the OTR measurement, and six individual wells for the spectral
data. The shaded area describes the standard deviation of the replicates. The individual
signals for each well are shown in Figures S3 and S4, respectively.
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Figure 4. Time-resolved (A–C) online-monitoring signals and (D–F) offline sample measurements
of H. polymorpha RB11 pC9-FMD (PFMD-GFP) cultivations in SYN6 medium at eight different ini-
tial cell dry weights (CDWt0) and glycerol concentrations (Glyt0). (A) Mean oxygen transfer rate
(OTR) of cultures in triplicates determined by µRAMOS device [49]. Only every 5th data point is
indicated by a hollow symbol for clarity. The standard deviation of triplicates is shown as shaded
areas, which are barely visible due to good reproducibility. Singular online signals are shown in
Figure S3. (B) Mean scattered light intensity at an excitation and emission wavelength of 600 nm and
(C) mean GFP fluorescence intensity at an excitation wavelength of 420 nm and emission wavelength
of 530 nm extracted from 2D spectra. Only every 5th data point is indicated by a hollow symbol for
clarity. For inoculated cultures with glycerol concentrations above 0 g/L, scattered light and GFP sig-
nals describe mean values and standard deviation of six replicates, as described in Figure 2. For 0 g/L
scattered light and GFP signals describe quadruplicates, while for medium wells the signals describe
duplicates. Values of (D) glycerol, (E) cell dry weight (CDW), and (F) pH value for initial biomass
and glycerol concentrations of 0.07 g/L and 9.0 g/L (blue) as well as of 0.03 g/L and 2.0 g/L (red) are
based on singular HPLC and at-line measurement from parallel cultivation as described in Figure 2.
Hollow symbols show offline measurements for 1.5 h sampling interval, whereas linearly interpolated,
filled symbols indicate a 6 h sampling interval. Dashed vertical lines after 25 h indicate the last mea-
surement included for PLS model generation, as explained in the text. Spectroscopic measurement
settings: excitation wavelength range = 280 nm–700 nm (step size = 10 nm), emission wavelength
range = 278 nm–720 nm (step size = 0.45 nm), integration time = 30 ms. Cultivation conditions:
48-well microtiter plate with round geometry, liquid volume = 800 µL, shaking diameter = 3 mm,
shaking frequency = 1000 rpm, temperature = 30 ◦C.

The initially increasing OTR in Figure 4A indicates non-limited exponential growth.
For the cultures with the highest glycerol concentration (Figure 4A, purple circles, blue



Bioengineering 2022, 9, 438 10 of 23

upwards triangles, light blue pentagons), a maximum OTR of 33 mmol/L/h was mea-
sured, before sharply dropping to a value below 5 mmol/L/h. With decreasing glycerol
concentrations, a flattened OTR curve and a reduced maximum value were observed. With
increasing initial CDW (Figure 4A, light blue pentagons, blue upwards triangles, purple
circles), the OTR increased earlier. Comparable to the OTR, for the culture with the highest
glycerol concentrations, the scattered light signal at 600 nm increased exponentially up to
maximum signal intensities of 18,000 a.u. (Figure 4B, light blue pentagons, blue upwards
triangles, purple circles). Cultures with lower initial glycerol concentrations showed lower
maximum scattered light values. When the peak in the OTR was reached, a slight asymp-
totical decrease in the scattered light signal was observed, which was more profound for
higher initial glycerol concentrations. This observation is in good agreement with studies
by Kottmeier et al. [59] and Kunze et al. [60]. These studies reported morphological changes
of H. polymorpha and K. lactis under carbon-starvation conditions as a reason for the change
in the scattered light signal. The GFP fluorescence signals at an excitation wavelength of
420 nm and an emission wavelength of 530 nm are shown in Figure 4C. An initial linear
increase was observed after 7 h (purple circles), 9 h (blue upwards triangles), or 11 h (light
blue pentagons, green rightwards triangles, yellow leftwards triangles, orange diamonds,
pink squares) of cultivation, depending on the initial CDW. When the OTR began to decline
and the scattered light entered a plateau, a sudden incline in GFP fluorescence intensity was
observed for cultures with initial glycerol concentrations above 2 g/L. This sudden increase
can be attributed to the de-repression of the formate dehydrogenase (FMD) promoter at
low residual glycerol concentrations [61–63]. The de-repression results in an increased
formation of GFP until the carbon source is fully depleted. Upon declining metabolic
activity, the GFP fluorescence signal showed a transition to a linearly increasing signal,
indicating residual GFP production. Alternatively, a change in the optical conditions within
the broth is also conceivable.

In Figure 4D–F, the residual glycerol concentration, CDW, and pH value are shown for
the cultures with an initial CDW of 0.07 g/L and an initial glycerol concentration of 9 g/L
(blue upward triangle) as well as for cultures with an initial CDW of 0.03 g/L and an initial
glycerol concentration of 2.0 g/L (red downward triangle). As indicated, samples were
taken every 1.5 h after the first 6 h (hollow symbols). The offline measurements follow the
measured metabolic activity in Figure 4A, describing an exponential decrease for glycerol
and an exponential increase for CDW. The pH value dropped during cultivation and rose
as soon as glycerol was depleted. The offline data of a more practical 6 h sampling interval
(filled symbols) were linearly interpolated and are indicated by a solid line. For the cultures
with a lower initial glycerol concentration (Figure 4D–F, red line) the progression of the
at-line parameters is reflected with only a slight deviation from the values of the 1.5 h
sampling interval. However, for the culture with a higher initial glycerol concentration
(Figure 4D–F, blue line), the linear interpolation of the 6 h sampling interval deviates
from the progression described by the 1.5 h sampling interval. Inaccuracies are evident
between 12 h and 24 h of cultivation. Here, the exponential course of the glycerol and CDW
during the time of metabolic activity is poorly described. The depletion of the glycerol
concentration is identified after 24 h instead of 19.5 h of cultivation. For the pH value, the
linear interpolation of the 6 h sampling interval does not reproduce the minimal value of
5.53 measured after 19.5 h. Consequently, the rise in the pH value after glycerol depletion
is also incompletely described. As demonstrated, the progression of the cultures can be
interpreted by extracting the intensities as a single wavelength combination. However,
this presupposes knowledge about the exact spectral area to be looked at. Further, it is
possible that spectral information, which may be included in other parts of the 2D spectra,
are not considered during this evaluation. Hence, in addition to evaluating individual
spectral signals, principal component analysis (PCA) was applied for fast data exploration
of the whole spectra. In Figure 5 the mean scores of the six replicates are plotted over the
cultivation time. The individual scores are shown in Figure S4C,D.



Bioengineering 2022, 9, 438 11 of 23

Bioengineering 2022, 9, x FOR PEER REVIEW 12 of 24 
 

 
Figure 5. Scores of (A) first (PC1) and (B) second principal components (PC2) based on 2D spectra 
of Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) cultivations in SYN6 medium at eight differ-
ent initial cell dry weights (CDWt0) and glycerol (Glyt0) concentrations. Signals show mean scores 
of six replicates. Standard deviation is shown as light shading. The individual scores are shown in 
Figures S4C,D. Spectroscopic measurement settings: excitation wavelength range = 280 nm–700 nm 
(step size = 10 nm), emission wavelength range = 278 nm–720 nm (step size = 0.45 nm), integration 
time = 30 ms. Cultivation conditions: 48-well microtiter plate with round geometry, liquid volume 
= 800 µL, shaking diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C. 

As described before, the method is commonly used for reducing high-dimensional 
data to data with only a few principal components (PCs). The PCs are iteratively gener-
ated based on the maximum variance within the residing data. However, it is important 
to notice that data variance that has been described by a previous PC is no longer consid-
ered for a subsequent PC [29]. In practice, this approach helps to expose signal dynamics, 
which otherwise may be entangled with or covered by a more dominant signal. The scores 
of the first principal component (PC1) plotted over the cultivation time are shown in Fig-
ure 5A. The PC1 score accounts for 99.6% of the spectral information and is qualitatively 
identical to the scattered light signal at 600 nm (Figure 4B). The scores of PC2 in Figure 5B 
describe only 0.2% of the spectral variance. For the cultures with a high initial glycerol 
concentration (Figure 5B, purple, blue, light blue, green lines), the scores describe a linear 
increase during the first period of cultivation. Starting between 12 h and 17 h of cultiva-
tion, the scores increase non-linearly until metabolic activity ends, before finally dropping 
below the initial value. For the cultures with low initial glycerol concentration (Figure 5B, 
red, orange, yellow lines), the scores do not show the described change in the slope, but a 
transition into a plateau. Noticeably, for all individual cultures, the observed maximum 
PC2 score coincides with the sudden increase in the GFP fluorescence. This increase has 
previously been linked to the de-repression of the FMD promoter [62] and is more pro-
found for the cultures of higher initial glycerol concentrations. The scores of PC1 and PC2 
can be plotted against each other to allow the comparison of the cultivations without re-
ferring to the cultivation time. In Figure S5, the so-called score plot shows identical trajec-
tories for the cultures of different initial CDW but identical glycerol concentrations (Figure 

Figure 5. Scores of (A) first (PC1) and (B) second principal components (PC2) based on 2D
spectra of Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) cultivations in SYN6 medium at
eight different initial cell dry weights (CDWt0) and glycerol (Glyt0) concentrations. Signals
show mean scores of six replicates. Standard deviation is shown as light shading. The indi-
vidual scores are shown in Figure S4C,D. Spectroscopic measurement settings: excitation wave-
length range = 280 nm–700 nm (step size = 10 nm), emission wavelength range = 278 nm–720 nm
(step size = 0.45 nm), integration time = 30 ms. Cultivation conditions: 48-well microtiter plate with
round geometry, liquid volume = 800 µL, shaking diameter = 3 mm, shaking frequency = 1000 rpm,
temperature = 30 ◦C.

As described before, the method is commonly used for reducing high-dimensional
data to data with only a few principal components (PCs). The PCs are iteratively generated
based on the maximum variance within the residing data. However, it is important to
notice that data variance that has been described by a previous PC is no longer considered
for a subsequent PC [29]. In practice, this approach helps to expose signal dynamics, which
otherwise may be entangled with or covered by a more dominant signal. The scores of the
first principal component (PC1) plotted over the cultivation time are shown in Figure 5A.
The PC1 score accounts for 99.6% of the spectral information and is qualitatively identical
to the scattered light signal at 600 nm (Figure 4B). The scores of PC2 in Figure 5B describe
only 0.2% of the spectral variance. For the cultures with a high initial glycerol concentration
(Figure 5B, purple, blue, light blue, green lines), the scores describe a linear increase during
the first period of cultivation. Starting between 12 h and 17 h of cultivation, the scores
increase non-linearly until metabolic activity ends, before finally dropping below the initial
value. For the cultures with low initial glycerol concentration (Figure 5B, red, orange,
yellow lines), the scores do not show the described change in the slope, but a transition
into a plateau. Noticeably, for all individual cultures, the observed maximum PC2 score
coincides with the sudden increase in the GFP fluorescence. This increase has previously
been linked to the de-repression of the FMD promoter [62] and is more profound for the
cultures of higher initial glycerol concentrations. The scores of PC1 and PC2 can be plotted
against each other to allow the comparison of the cultivations without referring to the
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cultivation time. In Figure S5, the so-called score plot shows identical trajectories for the
cultures of different initial CDW but identical glycerol concentrations (Figure S5, purple,
dark blue, light blue lines). This indicates an identical growth pattern, which can also
be observed in Figure 4A–C. For the cultures of lower initial glycerol concentrations, a
comparable shape of trajectories is described. In general, the score plot confirms very good
reproducibility of the singular replicates for all cultures.

3.3. PLS Regression Modelling

With the available online and interpolated offline data for the residual glycerol con-
centration, CDW, and pH value, PLS regression models can be generated. The resulting
correlations can be used to calculate the respective offline values for the 2D spectra mea-
sured at non-sampled time points. This allows the shortening of the interval of available
offline measurements from 6 h for sampling to only 30 min for the spectral measurement.
Further, the model can be transferred to spectral data of cultivations, for which only the
initial cultivation conditions (i.e., initial CDW and glycerol concentration) are known. In
conclusion, this approach allows the description of the cultivation in more detail, while
also reducing the necessary sampling efforts.

As can be seen from Figure 4A–C, spectral data were recorded for 32 h, although, for
all cultures, the stationary phase was reached within 25 h. Thus, to avoid the recorded
spectra of metabolically non-active cultures having a disproportional influence on the
generated PLS model, only the first 25 h of cultivation were included in the datasets (see
dashed vertical line in Figure 4). In total, the calibration datasets for generating the PLS
models comprised 212 2D spectra, recorded for duplicates of two cultivation conditions.
Arbitrarily, without further systematics, the culture with 0.03 g/L initial CDW and 2.0 g/L
initial glycerol (Figure 4, red downward triangles), as well as the culture with 0.07 g/L
initial CDW and 9.0 g/L initial glycerol (Figure 4, blue upward triangles) were chosen as
the PLS calibration dataset. These two conditions represent the highest and second lowest
initial glycerol concentrations tested, as well as two different initial CDWs. For the PLS
model generation, further, the offline values extracted from the linear interpolation of the
6 h sampling interval (Figure 4D–F, filled symbols) were used. In addition to the calibration
dataset, a prediction dataset was also generated to evaluate PLS model transferability. The
prediction dataset consisted of the spectral data from cultures with initial conditions (CDW
and glycerol concentration) that were not included in the calibration dataset (Figure 4A–C,
purple circles, light blue pentagons, green rightward triangles, yellow leftward triangles,
orange diamonds, pink squares). For each cultivation condition, two replicates were
added to the respective dataset. In Figure S4A,B, the individual cultures included in the
calibration and prediction dataset are highlighted in a dark colour. Following the high
spectral collinearity, which was indicated by the high cumulated explained variance for
PC1 and PC2 during the PCA (Figure 5), for all the offline parameters, PLS modelling was
conducted using only two latent variables (LVs). For the statistical evaluation of the PLS
models, the RMSE was calculated. For the calibration dataset, the RMSE was calculated
based on the interpolation of the 6 h sampling interval (RMSEcal,6-h). Additionally, for
model validation, the RMSE of the calibration dataset was also calculated using the linear
interpolated values of the 1.5 h sampling interval (RMSEcal,1.5-h) as a reference. For the
prediction dataset, the RMSE was calculated for the 1.5 h sampling interval (RMSEpred,1.5-h)
to verify the successful transfer of the PLS model. An overview of the resulting RMSEs
is given in Table S1A and Figure S6. The results of the final PLS models plotted over the
cultivation time are shown in Figure 6. The course of the glycerol concentration calculated
from the PLS model for the calibration and prediction datasets is described in Figure 6A,D,
respectively. The course of the calculated CDW for the two datasets is shown in Figure 6B,E,
while the pH value is described in Figure 6C,F. Comparable to Figure 4, the filled symbols
indicate values of the practical 6 h sampling interval, which was used for the PLS model
generation. The 1.5 h sampling interval, shown as hollow symbols, was only used for the
calculation of the RMSEcal,1.5-h, and RMSEpred,1.5-h and for validation.
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Figure 6. (A–C) Calibration and (D–F) prediction of the PLS model, generated by including two
latent variables and linear interpolation for a 6 h sampling interval for (A,D) glycerol, (B,E) CDW
and (C,F) pH value based on 2D spectra of duplicates. For calibration, a total of 212 2D spectra from
duplicates of H. polymorpha RB11 pC9-FMD (PFMD-GFP) cultivations for initial biomass (CDWt0) and
glycerol concentration (Glyt0) of 0.07 g/L and 9.0 g/L (blue) as well as of 0.03 g/L and 2.0 g/L (red)
were included. The offline values used for linear interpolation and subsequent PLS model calibration
are shown as filled symbols. The hollow symbols were used for model validation only. Solid and
dotted lines describe the calculated parameter progression of duplicates. Cultivation conditions:
48-well microtiter plate with round geometry, liquid volume = 800 µL, shaking diameter = 3 mm,
shaking frequency = 1000 rpm, temperature = 30 ◦C.

The results for the PLS model of glycerol on the calibration dataset (Figure 6A)
are in very good agreement with the offline measurements. In total, an RMSEcal,6-h of
0.53 g/L, and an RMSEcal,1.5-h of 0.31 g/L was obtained. This represents 5.9% and 3.5%
of the glycerol concentration range (Table S1B). One reason for the reduced RMSEcal,1.5-h
becomes particularly obvious for the culture of 9 g/L glycerol (blue upward triangles). For
this culture, the PLS model predicted glycerol depletion after 18 h, which aligns better with
the values of the 1.5 h sampling interval than with the 6 h sampling interval. Therefore,
with the PLS model being calibrated using the 6 h sampling interval, extensive overfitting of
the interpolated offline data can be ruled out. Inaccuracies between the calculated glycerol
concentration and offline sampling were observed during the first 6 h of cultivation. The
biologically non-plausible fluctuations are comparable to the initial fluctuations of the PC1
and PC2 scores (Figure 5) and may have resulted from optical effects during low culture-
broth turbidities [25]. In conclusion, they are an integral part of the spectral dynamics and
were, therefore, also included in the generated PLS model using two LVs.

The application of the PLS model for the glycerol concentration on the prediction
dataset is shown in Figure 6D. For the cultures with the highest glycerol concentration
(Figure 6D, purple circles, light blue pentagons), the concentrations were slightly under-
estimated between 6 and 10 h of cultivation. Further, inaccuracies were observed for the
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depletion of glycerol. Here, the final glycerol concentration of the culture with an initial
CDW of 0.13 g/L and 9.0 g/L glycerol (Figure 6D, purple circles) was calculated to a
value of 0.5 g/L. For cultures with lower initial glycerol concentrations, even negative final
glycerol concentrations of −0.7 g/L were calculated (Figure 6D, green rightward triangles).
In total, applying the PLS model to the prediction dataset resulted in an RMSEpred,1.5-h of
0.34 g/L. With a relative value of 3.8% of the glycerol concentration range, this represents
an increase in the RMSE of only 0.3% compared to the RMSEcal,1.5-h. This result supports
very good model transferability (Table S1B).

In addition, for the PLS model of CDW, which is depicted in Figure 6B, good pre-
dictability and limited overfitting were indicated. The RMSEcal,6-h of 0.19 g/L, and the
RMSEcal,1.5-h of 0.12 g/L describe a relative RMSE of 5.1% and 3.2% of the measured CDW
range. This is well within the range of the expected error for gravimetric CDW deter-
mination [64,65]. The reduced value for the RMSEcal,1.5-h can be explained by the very
accurate alignment of the calculated values and the offline samples of the 1.5 h sampling
interval for the cultures of higher glycerol concentration (Figure 6B, blue upward triangles).
Slight deviations between the measured offline samples and the calculated values were
again observed during the first 6 h of cultivation. Noticeably, at the end of the cultivation,
the PLS model calculated a stagnant CDW, while the scattered light intensity at 600 nm
(Figure 4B) decreased after glycerol depletion. This deviation resulted from the ability
of the PLS regression algorithm to vary the importance for a single input variable, i.e.,
wavelength combination [66]. Thereby, the contribution of a spectral signal with strong
deviation from the measured offline values, such as a non-stagnant signal progression after
glycerol depletion, can be reduced.

Applying the generated PLS regression model to the prediction dataset resulted in
an RMSEpred,1.5-h of 0.14 g/L, constituting 3.9% of the CDW range. One reason for the
increased RMSEpred,1.5-h can be found in the systematic underestimation of the CDW,
which was especially observed for the cultures with the highest initial CDW concentration
(Figure 6E, purple circles). The increase of 0.7% in comparison to the RMSEcal,1.5-h, again
indicates good transferability (Table S1B).

In comparison to the other offline parameters, the pH value did not describe monotonous
behaviour. Nevertheless, the results of the PLS model (Figure 6C) are in very good agree-
ment with the determined trajectory of the offline measured values. Strikingly, even though
the overall minimum pH value of 5.53, which was measured after 19.5 h of cultivation
(Figure 6C, blue hollow upward triangle), was not part of the practical 6 h sampling cal-
ibration dataset, the generated PLS model predicted the respective pH value correctly.
In total, the PLS model resulted in an RMSEcal,6-h of 0.032, and an RMSEcal,1.5-h of 0.023.
Thus, with 6.0% and 4.3% of the offline parameter range, the relative RMSEcal,1.5-h of the
pH value was slightly higher than for the glycerol and CDW concentration (Table S1B).
The highest deviations between the calculated and the offline measured pH values of the
1.5 h sampling interval were observed between 12 h and 18 h of cultivation for the culture
with 9 g/L glycerol (Figure 6C, blue upward triangle). Additionally, for the culture with
2 g/L initial glycerol (Figure 6C, red downward triangle) a systematic offset was calculated
for the pH value after 18 h of cultivation. Here, differences of up to 0.04 pH units were
determined. The application of the PLS model to the prediction dataset (Figure 6F) resulted
in an RMSEpred,1.5-h of 0.029, accounting for 5.3% of the pH value range. Comparable to the
culture with 2 g/L glycerol used for calibration (Figure 6C, red downward triangles), as
well as for the prediction dataset, a systematic overestimation of the pH value was observed
for the cultures with initial glycerol concentrations below 9 g/L (Figure 6F, green rightward
triangles, yellow leftward triangles, orange diamonds) during the phase of increasing pH
value. Nevertheless, considering the increase of 1% of the parameter range in comparison
to the RMSEcal,1.5-h, good model transferability can be assessed (Table S1B).

For all the offline parameters, the parity plots in Figure 7 further summarise the PLS
results for the prediction dataset. Data points are only shown for the spectral measurement
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time points, which are closest to the offline sampling time point of the 1.5 h interval
(Figure 6D–F, hollow symbols).
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(B) cell dry weight (CDW) and (C) pH value, using two latent variables on 2D spectra of duplicates
of H. polymorpha RB11 pC9-FMD (PFMD-GFP) cultivations in SYN6 medium at six different initial
cell dry weights (CDWt0) and glycerol concentrations (Glyt0). Only data points with corresponding
offline sampling data, indicated by a hollow symbol in Figure 6, are plotted. Red line shows resulting
linear correlation between predicted values and reference offline values.

For the determination of the reference offline value, the linear interpolation of the
1.5 h sampling interval was used. In parallel to Figure 6D, in Figure 7A, an overestimation
is indicated for low glycerol concentrations, while for the time point of the depletion of
glycerol, an underestimation is observed. For high concentrations representing the earlier
part of the cultivation, the data are evenly scattered around the diagonal line. Overall, an
R2 value of 0.982 is calculated. For the prediction of CDW (Figure 7B), the R2 is determined
to be 0.988. Here, the slight underestimation at high CDWs and the overestimation at low
CDWs can be identified as a small systematic error. The pH value (Figure 7C) is the only
offline parameter showing an inflection over the cultivation time. This leads to a lower
number of data points for lower pH values, while more data points for higher pH values
are available. In consequence, this displaced distribution leads to the lowest R2 of 0.972.

3.4. Impact of Numbers of Latent Variables

The ability to transfer the generated PLS models to an unknown prediction dataset is
critical for high-throughput experiments in MTPs. One parameter with a high impact on the
transferability is the number of latent variables (LVs). With increasing LVs, the independent
(spectral) and dependent (offline) data of the calibration dataset are fitted more closely to



Bioengineering 2022, 9, 438 16 of 23

one another as the amount of included covariance increases. However, PLS models with a
high number of LVs are prone to overfitting, leading to the inclusion of non-representative
signal variations, such as spectral noise [66–68]. The optimal number of LVs is usually
identified using external validation datasets or internal cross-validation methods. For the
latter, PLS models are repeatedly generated from a random or systematically chosen subset
of the calibration dataset, before being applied to the remaining subset. The number of LVs
is then chosen according to a minimum RMSE of the cross-validation subset [69–71]. In
this study, the appropriate number of LVs was identified using the 1.5 h sampling interval
for validation. In theory, a decrease in the RMSEcal,6-h together with an increase in the
RMSEcal,1.5-h hints at overfitting of the calibration data, as the 1.5 h sampling interval is
expected to describe the data more accurately.

The direct comparison of the RMSEcal,6-h and the RMSEcal,1.5-h for increasing LVs is
shown in Figure S6. Additionally, the RMSEpred,1.5-h is shown for external validation. As
expected, for all the offline parameters, the RMSEcal,6-h (Figure S6, green circles) decreased
with increasing LVs. The RMSEcal,1.5-h (Figure S6, black squares) and the RMSEpred,1.5-h
(Figure S6, red upward triangles) showed a non-monotonous pattern with a local minimum
value. For the glycerol concentration and the CDW, the previously chosen number of
two LVs represented the lowest values for both the RMSEcal,1.5-h and the RMSEpred,1.5-h.
For the pH value, the minimum RMSEcal,1.5-h was observed for three LVs. For all the
offline parameters, the RMSEpred,1.5-h obtained for six LVs was higher than the respective
minimum value.

The impact of overfitting due to an excessive number of LVs was exemplarily illus-
trated by the PLS models of the CDW. When increasing the number of LVs from two to
six, the RMSEcal,6-h decreased from 0.19 g/L to 0.12 g/L. This represents a reduction of
1.8% of the CDW range (Table S1B). In parallel, the RMSEpred,1.5-h increased by 1.8% as
the value increased from 0.14 g/L to 0.21 g/L. The resulting trajectories of the models
are shown in Figure S7. As expected, the noise of the calculated offline values increased
for the PLS model including six LVs (Figure S7B) in comparison to two LVs (Figure S7A).
Additionally, the calculated trajectory of the calibration dataset showed a slight yet sys-
tematic overestimation between 12 and 18 h of cultivation. This overestimation led to a
closer approximation of the interpolated 6 h sampling interval, which in turn decreased
the RMSEcal,6-h, but also increased the RMSEcal,1.5-h. Transferring the model of six LVs
to the prediction dataset (Figure S6C,D) led to poor model performance. Especially, the
calculated values of the culture with an increased initial CDW (Figure S7D, purple circles)
strongly deviated from the offline measurement during the last phase of the cultivation.
Additionally, the values for the replicates were less reproducible. This decrease in model
performance underlines the necessity for an appropriate way to choose the number of LVs.
Here, the approach of using two sampling intervals was shown to be effective, as it led to
very comparable RMSEcal,1.5-h and RMSEpred,1.5-h.

3.5. Impact of Averaging Spectral Data of Technical Duplicates

As presented above, successful PLS modelling was achieved using only two technical
replicates. However, the available spectral data of six replicates can be used to evaluate
the impact of signal noise on the PLS results. To do so, new spectral datasets for both the
calibration and the prediction dataset are generated by averaging the 2D spectra of six
replicates per measurement time. Subsequently, PLS models are again generated based
on the 6 h sampling interval using two LVs (Figures S8 and S9). As expected, due to the
averaging step, less noise is observed for the trajectories of the revised models. Additionally,
for all the offline parameters, the RMSEs of the six-replicate-average-based model are
improved between 2.7% and 0.1% of the respective offline parameter range, compared to
the previous duplicate-based model (Table S1B). The evaluation of the number of LVs is
shown in Figure S6D–F. For the CDW and the pH value, again, the minimum RMSEcal,1.5-h,
and RMSEpred,1.5-h were calculated for two and three LVs, respectively. Whereas, for the
glycerol concentration, the minimum was determined for four LVs. Comparable to the
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duplicate-based modelling, the optimal number of LVs can be identified according to the
minimum of the RMSEcal,1.5-h as well as by a strongly decreasing RMSEcal,6-h.

Finally, the RMSEpred,1.5-h resulting from the optimal number of LVs for the respective
spectral dataset can be compared. For the glycerol concentration, the relative RMSEpred,1.5-h
decreased by 1.0% when using the six-replicate-average-based PLS model including four
LVs instead of the duplicate-based PLS model including two LVs. For the PLS model of
CDW, the RMSEpred,1.5-h of the six-replicate-average-based dataset improved by 0.8%. For
both spectral datasets, the optimum was observed for two LVs. Finally, for the pH value, an
improvement of only 0.17% was achieved by using three LVs for the six-replicate-average-
based model instead of six LVs for the duplicate-based model. In conclusion, these limited
improvements do not outweigh the added value of an increased experimental throughput
if only two parallel cultures are performed per cultivation condition.

4. Discussion

This study clearly presents that the PLS modelling performance for the H. polymorpha
cultivations is dependent on the experimental strategy, dataset composition, and data
processing. This dependency becomes even more striking with regard to the modelling
results by Ladner et al. [45] and Paquet-Durand et al. [46]. Although the reported abso-
lute RMSE of calibration and prediction for these studies are mostly of the same order
(Table S2), the individual experimental approaches differ significantly.

For example, the study by Ladner et al. [45] used the same MTP for online monitoring
and offline sampling. This reduced the experimental throughput to only two different initial
cultivation conditions (Figure 2A). For the PLS modelling, the calibration dataset contained
spectral data from a single culture replicate of the first initial cultivation condition. The
prediction dataset consisted of spectral data of the second initial cultivation condition
and was used for model validation. For PLS model generation, the number of LVs was
chosen according to a minimised RMSE for the prediction dataset. Thereby, the PLS
model solely relied on the covariance between the 2D spectra of a single culture and the
determined offline values. This in turn increased the risk of including replicate-specific
spectral fluctuations into the PLS models. As a result, model transferability is expected to
be decreased, as indicated by a high difference between the RMSE of the calibration and
the prediction dataset (Table S2, [45]). By varying the sampling intervals instead of splitting
the calibration and validation datasets by batches, in the present study, model calibration
and validation could be conducted with 2D spectra of two cultivation conditions. Thereby,
identical states of cultivation (e.g., a specific pH value) were described by multiple cultures
at different metabolic states (e.g., biomass concentration). In combination with the increased
number of replicates, this redundancy prevented the final PLS model from including
unrelated signal features, such as the declining scattered light signal observed after the
depletion of glycerol. Consequently, this approach led to a better model transferability as
indicated by the more comparable RMSEcal,1.5-h, and RMSEpred,1.5-h.

In addition to the dataset composition, the interpolation of the offline values also
differs between the studies. The linear interpolation used in this study represents the
least sophisticated interpolation method and was chosen for simplicity reasons. Yet, es-
pecially for the 6 h sampling interval, which led to an acceptable effort in the labora-
tory, the exponential growth dynamics were described inaccurately. During PLS model
calibration, these inaccuracies could be avoided by using a low number of LVs, which
limited the extent of overfitting the interpolated values. While this resulted in a com-
parably high RMSEcal,6-h, very good model performance was indicated by a comparable
RMSEcal,1.5-h, and RMSEpred,1.5-h. In the study of Ladner et al. [45], splines were used for
the interpolation of the offline values. This provided the ability to approximate non-linear
signal dynamics without the need for additional process knowledge. For the 3 h sam-
pling interval this method is not expected to significantly change the overall PLS model
outcome, but rather locally reduces the residuals. For longer offline sampling intervals,
however, this approach may hold a significant advantage over linear interpolation. Finally,
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Paquet-Durand et al. [46] used mechanistic modelling for calculating the trajectories of
the offline values over the cultivation time. By using a priori process knowledge about
the interconnection of biomass and substrate concentration, the overall growth dynamics
were summarised in form of parameters such as the growth rate and the biomass yield.
The parameters were then calculated based on the sampling values using a least-square
fit. In contrast to the interpolation methods of the other studies, this fitting approach can
overcome a certain degree of inaccuracy of the singular sample values. Therefore, it is
expected to approximate microbial growth more accurately in comparison to the other
interpolation approaches.

Following these considerations and the results of the presented study, the initial ex-
perimental layout (Figure 2B–D) can be revised. Most importantly, the monitoring of
six replicates, leading to a strong reduction in experimental throughput, becomes unnec-
essary. For the spectral averaging, only a limited improvement of the resulting RMSE
(Figure S6D–F) and the calculated trajectories (Figure S8D–F) was found. Thus, for a
revised experimental layout, a maximum of three replicates is expected to be sufficient.
Additionally, only a fraction of offline samples needs to be taken, as the approach of using
two sampling intervals was found to result in well-transferable PLS models. Consequently,
the previous experimental setup can be reduced to a single MTP that is used for spectral
online monitoring and offline sampling, as shown in Figure 8.
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Figure 8. Visualisation of the revised experimental layout providing an increased throughput
including two calibration (I–II) and twelve prediction conditions (III–XIV). Diagonal-hatched wells
(t1–t4) indicate wells monitored online until time of sampling. Cross-hatched wells show wells
being monitored online by 2D fluorescence over the whole cultivation time. Coloured wells describe
cultivation conditions used for calibration. Grey- to white-shaded wells indicate conditions included
in the prediction dataset.

In the revised experimental layout, for each initial cultivation condition of the cali-
bration dataset, two wells are reserved for complete spectral monitoring (Figure 8, cross-
hatched wells). Additionally, four wells are monitored until being sampled during the
cultivation (Figure 8, diagonal-hatched wells). By taking an initial sample from the master
mix and a final sample from one of the completely online-monitored wells, the total number
of samples per calibration condition is increased to six. With these six samples, the previ-
ously implemented 6 h sampling interval can be reproduced. Comparable to this study for
PLS model calibration, the offline values of the two cultivation conditions can be linearly
interpolated. To provide an accurate description of the offline parameters for validation,
spline interpolation or mechanistic modelling can alternatively be used. Following this
approach, the experimental throughput of the prediction dataset can be increased to up
to twelve different cultivation conditions in triplicates (Figure 8, conditions III–XIV). For
external PLS model validation, samples of the culture conditions of the prediction dataset
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could be taken at the beginning and the end of the experiment. Furthermore, as triplicates
are used for each cultivation condition, an additional validation sample could be taken
throughout the cultivation. In conclusion, the extensive manual sampling effort, which
was conducted in this study, can be averted, while the PLS model can still be validated.
In detail, the revised experimental layout reduces the number of manual samples from
120 to 48. This represents a 2.5-fold reduction, while still providing sampling for exter-
nal validation. In parallel, the experimental throughput is increased 1.75-fold from 8 to
14 cultivation conditions.

5. Conclusions

This study presents a thorough evaluation of the 2D fluorescence online monitoring
of H. polymorpha batch cultures in microtiter plates. In addition to the online monitoring,
an extensive sampling effort with a total of 120 single samples was conducted and subse-
quently evaluated using multivariate data analysis (MVDA) methods. For the recorded
spectral data, PCA was used to expose the dynamics, which were otherwise covered by
biomass-related effects. Further, by plotting the scores of PC1 against PC2, cultivations
could be compared regardless of the cultivation time. PLS models for the offline parame-
ters of glycerol, CDW, and pH value were generated for a practical 6 h sampling interval
and subsequently validated based on a 1.5 h sampling interval. This led to an excellent
transferability of the PLS models to the prediction datasets. The RMSEpred,1.5-h of 0.34 g/L
for glycerol, 0.14 g/L for CDW, and 0.029 for the pH value were very comparable to the
RMSEcal,1.5-h. Furthermore, the variation of LVs was presented to describe the balance
between over- and underfitting. A procedure for choosing a feasible number of LVs by
using the two different sampling intervals for model validation was suggested. Finally,
using average spectral data from six replicates was shown to only marginally improve the
PLS model performance. Therefore, the initial experimental setup was revised, allowing
the assessment of up to 14 different cultivation conditions within a single MTP experiment,
while additionally reducing the number of offline samples.

In conclusion, this study represents a comprehensive benchmark dataset that can be
used for comparison with future experiments using MVDA for the evaluation of online-
monitored cultures in MTPs. Especially for cultivation conditions that are less related
to one another, such as during media or strain screening experiments, the PLS model
performance is expected to decrease. In addition, with the fluorescence and scattered light
signals becoming more convoluted for more complex experimental setups, a systematic
approach for determining the ideal conditions of the calibration dataset must be developed.
Finally, for the confident minimisation of sampling efforts, the different model validation
approaches must be evaluated.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering9090438/s1, Table S1: Absolute and relative RMSE resulting
for the PLS model for the glycerol concentration, CDW and pH value based on batch cultures of
Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) at different initial CDW and glycerol using a
variable number of LVs.; Table S2: Overview of the absolute and relative RMSE reported for the PLS
models generated for batch cultures of Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) at different
initial CDW and glycerol concentrations. Figure S1: Linear correlation between cell dry weight (CDW)
and optical density at 600 nm (OD600); Figure S2: Exemplary 2D spectra of Hansenula polymorpha
RB11 pC10-FMD (PFMD-GFP) cultures in SYN6 medium after 0.1 h (A–E) and 30.2 h (G–J) for different
initial cell dry weights (CDWt0) and glycerol (Glyt0) concentrations.; Figure S3: Time-resolved oxygen
transfer rate signals of Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) cultivations in SYN6
medium at eight different initial cell dry weights (CDWt0) and glycerol (Glyt0) concentrations in
triplicates.; Figure S4: Individual time-resolved online-monitoring signals of (A) scattered light, (B)
GFP fluorescence, (C) score of first (PC1) and (D) second principal component (PC2) based on 2D
spectra of Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) cultivations in SYN6 medium at eight
different initial cell dry weights (CDWt0) and glycerol (Glyt0) concentrations.; Figure S5: Score plot
of first (PC1) and second (PC2) principal component, based on 2D spectra of Hansenula polymorpha
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RB11 pC10-FMD (PFMD-GFP) cultivations in SYN6 medium at eight different initial cell dry weights
(CDWt0) and glycerol (Glyt0) concentrations in sixfold replicates.; Figure S6: Root-mean-square error
for (A,D) glycerol, (B,E) cell dry weight and (C,F) pH value for PLS models with one to six LVs,
based on 2D spectra of Hansenula polymorpha RB11 pC10- FMD (PFMD-GFP) cultivations in SYN 6
medium at different initial cell dry weights and glycerol concentrations.; Figure S7: Results for (A,B)
calibration and (C,D) prediction of the duplicate-based PLS models generated for cell dry weight
(CDW) including (A,C) two and (B,D) six latent variables and linear interpolation for a 6 h sampling
interval, based on 2D spectra of Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) cultivations
in SYN6 medium at different initial cell dry weights (CDWt0) and glycerol (Glyt0) concentrations.;
Figure S8: (A–C) Calibration and (D–F) prediction of the PLS model generated by including two
latent variables and linear interpolation for a 6 h sampling interval for (A,D) residual glycerol, (B,E)
CDW and (C,F) pH value based on averaged 2D spectra.; Figure S9: Parity plots for the average-based
PLS prediction of offline parameters (A) glycerol, (B) cell dry weight (CDW) and (C) pH value using
two latent variables on averaged 2D spectra from six replicates of Hansenula polymorpha RB11 pC10-
FMD (PFMD-GFP) cultivations in SYN6 medium at different initial cell dry weights (CDWt0) and
glycerol (Glyt0) concentrations.
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