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Abstract: Food fraud and adulteration is a major concern in terms of economic and public health.
Multivariate methods combined with spectroscopic techniques have shown promise as a novel
analytical strategy for addressing issues related to food fraud that cannot be solved by the analysis of
one variable, particularly in complex matrices such distilled beverages. This review describes and
discusses different aspects of whisky production, and recent developments of laboratory, in field
and high throughput analysis. In particular, recent applications detailing the use of vibrational
spectroscopy techniques combined with data analytical methods used to not only distinguish between
brand and origin of whisky but to also detect adulteration are presented.
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1. Introduction

Whisky is a distilled alcoholic beverage produced from fermented grain mash where various
grains are used for different varieties (e.g., barley, corn, rye, and wheat). This alcoholic beverage
is generally classified by their country of origin, the nature of the grain, storage conditions and the
type of blends. The production of this type of alcoholic beverages was first reported in Ireland in the
Annals of Clonmacnoise from 1405 whereas in Scotland the early records dates from 1494 [1,2]. Irish and
Scotch remain the two main European whiskies to this day. Other major producers include the United
States, Canada and Japan.

This review describes and discusses different aspects of whisky production, and the recent
development of laboratory, in field and high throughput analysis. In particular, recent applications
detailing the use of vibrational spectroscopy techniques combined with data analytical methods used
to distinguish between brand and origin of whisky as well as to detect adulteration are presented.

2. History, Origin and Economic Impact

Whisky is legally defined under European Community Council (ECC) regulation no. 1576/89 [3].
The regulation first defines a spirit drink (Article 2) as an alcoholic beverage that is (a) intended for
human consumption; (b) possessing particular organoleptic qualities; and (c) having a minimum
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alcoholic strength of 15% vol and contains a distillate of a naturally fermented agricultural product.
None of the alcohol contained in a spirit drink shall be of synthetic or non-agricultural origin
(Article 3(4)). The nature of the raw material that may be considered agricultural in origin is contained
in the Treaty on the Functioning of the European Union (TFEU) in Annex I [4].

Within this definition Scotch and Irish whiskeys are further circumscribed, as they are both
internationally recognised by Geographic Indication [2,3]. According to the European Union (EU)
definition (Article 4, Annex II) [4] (a) Whisky or whiskey is a spirit drink produced exclusively by (i)
distillation of a mash made from malted cereals with or without whole grains of other cereals, which
has been: Saccharified by the diastase of the malt contained therein, with or without other natural
enzymes, fermented by the action of yeast; (ii) one or more distillations at less than 94.8% vol., so that
the distillate has an aroma and taste derived from the raw materials used and (iii) maturation of the
final distillate for at least three years in wooden casks not exceeding 700 L capacity. The final distillate,
to which only water and plain caramel (for colouring) may be added, retains its colour, aroma and taste
derived from the production process referred to in points (i), (ii) and (iii). (b) The minimum alcoholic
strength by volume of whisky or whiskey shall be 40%. (c) No addition of alcohol as defined in Annex
I(5)4, diluted or not, shall take place. (d) Whisky or whiskey shall not be sweetened or flavoured,
nor contain any additives other than plain caramel used for colouring.

Thus “Scotch whisky” must be produced and matured in oak casks for a minimum of three years
in Scottish distilleries from one of five designated regions: Speyside, Highlands, Lowlands, Islay and
Campbeltown [5–7]. Since 2005, the Scotch whisky definition was refined to include five distinct
categories, determined by its production process in the whiskey industry; (I) Single Malt (SM) Scotch
Whisky-distilled at a single distillery (i) from water and malted barley without the addition of any
other cereals, and (ii) by batch distillation in pot stills; (II) Single Grain (SG) Scotch Whisky-distilled at
a single distillery (i) from water and malted barley with or without whole grains of other malted or
unmalted cereals, and (ii) which does not comply with the definition of SM.; (III) Blended, a blend
of one or more SMs with one or more SGs; (IV) Blended Malt (BM) Scotch Whisky, a blend of SMs
distilled at more than one distillery; and (V) Blended Grain (BG) Scotch Whisky a blend of SGs distilled
at more than one distillery [6–8]. The bulk of the Scotch whisky is blended from 60% to 70% grain
whisky and 30% to 40% malt whiskies. This blended whisky usually contains up to 40 individual
malts which are blended to produce a consistent brand flavour. Every component of the blend must be
matured for the minimum period or the specified date indicated on the bottle [5–8].

Irish whisky on the other hand is produced from either malted barley or a mixture of malted and
un-malted other cereals and barley of which a minimum of 25% must consist of malted barley.
The combination of the use of partially malted barley and a specialised processing approach.
This involves the drying of the malt in closed kilns rather than over open peat fires and the application
of a triple distillation process, the first of which produces “low wines” a pot still distillate, which is
re-distilled in another pot still to produce “feints”, before being placed in a Coffey still for the final
distillation. It is this production process that gives Irish whiskeys their smooth and natural flavour.
It is unique [2,6,9,10] particularly in comparison to whiskies from other regions.

American whisky developed under an alternative legislative framework [9,11,12], US whisky is
broadly defined as the distillate of a fermented grain mash at less than 95% alcohol. Consequently,
US whisky consist of a broader range of distinct products in comparison to the Irish and Scotch spirits.
There are six major types, rye, rye malt, pure malt, wheat, Bourbon and corn, all of which are produced
from a different type of cereal grain. The exact type of grain and its required percentage (not less than
51%) in the mash used to produce the whiskey product are governed by Title 27 of the U.S. Code of
Federal Regulations [11,12]. All US whisky must also conform to additional standards outlined by
title 27 of the U.S. Code of Federal Regulations, and so they must be distilled to not more than 80%
alcohol by volume, to ensure the proper flavour profile; producers are prohibited from adding any
colourings, caramel or flavour additives and finally, all of these whiskies (with the exception of corn
whisky) must be aged in charred new oak container. There is no minimum period of aging specified,
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which creates opportunities for distilleries to differentiate their product based on the aging process.
One such distinction is a “straight whisky”. For a given whisky to be designated thus, it should not
be blended with any other spirit, be no more than 80% alcohol by volume and aged for a minimum
of two years [2,11,12]. There are several other types of American whisky, which do not specify a
dominant grain. These include Blended Whisky, a Blend of Straight Whisky, Light Whisky (one which
has been distilled at greater than 80% alcohol by volume) and Spirit Whisky (where a “neutral spirit”,
a non-flavoured alcohol of 95% is mixed with at least five percent of a particular type of whisky).

Commercial distilleries began producing scotch in the late 18th century, despite its first being
recorded in the 1492 Exchequer Rolls of Scotland. As of 2018, the Scottish Parliament recognised 245
distilling related businesses. The Distillers Company (DCL) is a dominant player in the industry since
the “Big Amalgamation” the merger of the “Big Five” brewing houses Buchanan, Dewar, Walker,
Haig and Mackie in 1925 [6–8,12,13].

American Whisky was first produced in the states of Virginia, Maryland and Pennsylvania in
eastern United States around late 18th century and was originally a predominately rye-based spirit.
Early distillers were often farmers who produced and distributed whiskey as a supplementary income.
In 1791, Alexander Hamilton, the U.S. Secretary of the Treasury, in an effort to generate revenue,
established a 25% tax on whiskey distillers. The majority of distillers operated small production
facilities and the federal tax was greatly opposed. This opposition became known as “The Whisky
Rebellion” when it was necessary for the federal government to send troops to enforce the tax [14].
This resulted in a larger number of producers relocating West, most notably to Kentucky. Over time,
the number of states producing whiskey increased, including Tennessee which produced the famous
Jack Daniel’s brand. America’s whisky industry suffered repeated setbacks, including a 13-year
Prohibition on alcohol between 1922 and 1933, which barred production of all alcohol; the supporters
of prohibition saw alcohol as a major catalyst for the ills experienced in the society. By the 1933 it
became apparent that prohibition was going to remain a noble experiment. However, the popularity of
whiskey grew, reaching its heyday in the 1950s in the U.S. before falling out of favour. Today, whisky
popularity is resurging as established brands such as Jack Daniel’s and Jim Beam offer single-barrel
whisky aimed at connoisseurs and new distilleries are appearing annually [11,14,15].

Conversely, the number of Irish distilleries remains limited compared to the number producing
scotch and American whiskies. Prior to the 1900s Irish whisky led the world’s spirits trade until a perfect
storm of the newly formed Irish Republic’s national politics, the American prohibition, and technology
decimated the industries producers. At the turn of the last century the Irish whiskey industry was
at its pinnacle, with 88 licensed distilleries producing an estimated 12 million cases primarily for
export. This coupled with the impact of the Irish War of Independence and Civil War and the fledgling
Irish State’s economic policies debilitated the industry. However, arguably far more devastating was
the reluctance of Irish whisky producers to adopt and capitalise on the invention of the column still,
which allowed for the easier production of palatable spirits which Scottish distillers producing whisky
blends incorporated readily. This ultimately handed an overwhelming advantage to Scottish whisky
producers [16,17]. By the 1930s there were only five active Irish distilleries, Old Bushmills, Jameson,
John Powers, Cork (Paddy) and Tullamore Dew. In 1966, all bar Old Bushmills combined to constitute
the Middleton centre in Cork. In 2007 there were only four distilleries—Old Bushmills, Middleton,
Cooley and Kilbeggan in operation [1,9,10]. By the end of 2019 there were 56 revenue registered Irish
Whiskey Producers in Ireland.

The global whisky market size was valued at USD $57.96 billion in 2018 and it is projected to
reach USD $89.60 billion by 2025. This growth is driven by multiple factors, including, increasing
disposable income, consumer preferences and changing lifestyles [15,18–20]. Scotland’s brewing and
distilling sectors play a vital role in the Scottish economy, and in 2019 the spirits industry contributed
approximately 3% to total Scottish GDP. Moreover, since 2000 the spirits/distilling sector has contributed
an average of 2.8% with a high of 3.3% in 2013 to total GDP [19].
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In 2018, the US spirits industry gained market share over beer and wine, with sales rising
seven-tenths of a point to 37.4% of the total beverage alcohol market. This was the ninth straight year
of record spirits sales and volumes, reflecting continued market share gains. Supplier sales were up
over 5.1%, rising from USD $1.3 billion to a total of USD $27.5 billion [20].

In 2019, Ireland’s total agri-food sector exports amounted to €14.5 billon, with the food and
beverages sector accounting for 21% of all industrial turnover and 23% of all manufacturing industry
turnover. This represents a 67% increase in export values compared to 2010. International exports
account for 31% and makes Ireland’s Food and Drink industry the most global indigenous industry
exporting to 180 markets worldwide [18]. Growth in Irish alcohol exports grew 8% in 2019 (€1.45 bn)
with Irish Whisky accounting for 50% of the €137 m in beverage export growth. In 2019, Irish whisky
exports increased 11% from the previous year contributing to an overall value of €727 m, accounting
for an overall climb of 370% between 2010 and 2019. Domestically, this growth is underpinned by new
distillery openings and increased development of whisky heritage tourism [18].

Brand recognition is central to whisky’s global market growth, following a trend of “drink less but
better”. As imitations are often a response to increased demand, the growing global market for whisky
has sparked concerns within the Industry that counterfeit and adulterated products may infringe on
laws governing labelling and sales [12,21–24]. The International Chamber of Commerce’s 2017 report
titled ‘The Economic Impacts of Counterfeiting and Piracy’ estimates that the global economic value of
counterfeiting and piracy costs could hit USD $1.9 trillion by 2022. This, combined with the additional
negative impacts of counterfeiting and piracy such as displaced economic activity, investment and
public fiscal losses, the overall impact on the economy would be an estimated loss of USD $4.2 trillion
from the global economy, while also endangering 5.4 million legitimate jobs in the sector [25].

3. Adulteration, Fraud and Public Safety

The rebranding of lower quality commercial whiskeys as top-shelf products can significantly
damage a producer’s reputation and bottom line. In 2018 the BBC [26] and other media outlets [27,28]
reported that a third of commercial Scotch whiskies tested were fraudulent. Of greater concern is the
potential risk to consumers and their health [29–35]. Such incidences as the “Czech Republic methanol
poisonings” of September 2012, where 38 people in the Czech Republic and 4 people in Poland died as
a result of methanol tainted bootleg spirits [34]. Several poisoning incidents were reported in Iran
with the poisoning of 768 people (including 96 deaths) by illicit and non-standard alcoholic beverages;
62 people (11 fatalities) were poisoned with methanol laced counterfeit spirits in Shiraz in 2004 and 694
(6 deaths) and poisonings recorded in Rafsanjan, Iran in 2013 [31]. More recently toxic moonshine was
reported to have killed 154 people in India in two separate incidents in 2019 [36]. In March 2020, Iranian
media reported that nearly 300 people have been killed and more than 1000 sickened by drinking
methanol laced bootlegged spirits, in the mistaken belief that it was effective against Covid-19 [37].

Other dangers to public health from the illicit production of spirits include the addition of
industrial alcohol, the presence of chemicals used to denature industrial alcohol and the resultant
contamination (e.g., ethyl acetate, which can cause irritation of the digestive tract) [38]. Ingestion of
toxic concentrations of some of these chemicals can result in pronounced acidosis accompanied by
cardiovascular shock and cause central nervous depression. Lower volumes of such adulterants can
cause headache, nausea, fatigue, and dizziness.

High levels of chloroform are also often detected in illegally produced alcoholic products [39],
most likely as a result of counterfeiters adding hypochlorite to the fake spirits in an attempt to remove
denatonium benzoate, a widely used denaturant with a characteristic bitter taste, from denatured
alcohol, via the addition of hypochlorite [40]. Ingestion of chloroform can result in damage to the
central nervous system (brain), liver, and kidneys of unwitting consumers [41].

An additional danger to the public is the leaching of toxins from the improvised illegal distillation
tools utilised by counterfeiters, particularly as the illicit stills and other production materials are often
unfit to come into contact with food products. Genuine producers carry out testing to ensure that
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there is no unwanted contamination from beverage contact materials. Illegal producers are either
unaware or indifferent to the potential of harmful toxins may be present in their illegal product. This
was highlighted in a new report by Lachenmeier [42], which showed that a large number of fruit
spirits in the Slovak Republic and Hungary were contaminated with the heavy metal elements lead
and cadmium.

Consequently, fraud, particularly in the distilling sector is causing increasing levels of concern.
It is an incredibly lucrative business, with perpetrators profiteering at comparatively lower risk
as the legal repercussions are much more lenient than those for other illegal activities, such as
drug trafficking [21–23,30,35,43,44]. It is apparent that without a proper verification technique that
derives from the beverage itself rather than some externally affixed marker or associated paperwork
(e.g., blockchain), the system will always be vulnerable to the inclusion of illegal or otherwise
non-compliant material [45–48].

In order to assess the composition and identity of the beverage directly, the development of rapid
and non-destructive analysis methods are critical for the future of the whisky industry. In addition,
methods to verify the compliance of producer declarations regarding origin and source, as defined and
requested by quality assurance standards in the production value chain will be of benefit. The current
trend in analysis (as well as in all fields of research in food fraud) is towards fast, simple and reliable
analytical techniques with the potential to partly or fully replace the complex and expensive reference
methods that dominate the landscape [49–55]. The traditional chromatographic based techniques are
expensive, time consuming and require highly trained operators.

In order to preserve and protect the premium status of its merchandise the global whisky industry
must assure product safety and quality. This requires not only continuous monitoring but also
the development of analytical systems aimed at safeguarding consumer confidence in whisky and
related spirit drinks. Therefore, significant research on flavour and quality, consumer safety and
anti-counterfeiting/authenticity is now being carried out. Moreover, in recent years there has been an
observable effort by researchers and stakeholders within the industry to develop new technologies
and processes aimed at anti-counterfeiting and authenticity checking, supported by initiatives like the
pan-European food integrity project [56]. Key to this effort is the development of sensors and rapid
methods for the analysis of suspect products, particularly those that are field-portable and can be used
at point-of-sale or distribution [44,53,57].

4. Standard Methods of Analysis

The authentication of spirit and alcoholic beverages, and the detection of counterfeits is an
arduous task. Their chemical profiles are dominated by two major constituents, ethanol and water,
which can often mask adulterants or other constituents present in the liquid product. This has required
exhaustive method developments in the area of beverage analysis to date, to ensure that trace levels of
adulterant constituents can be well separated from the dominant ethanol and water to allow for their
characterisation and quantitation. Analysts rely on other flavour providing compounds, generally at
trace concentrations (ppm and ppb) to definitively identify and differentiate between samples. However,
the cost of such analysis is high, as state of the art, highly selective and sensitive instrumentation is
required. Moreover, exceptionally skilled staff are required to maintain the instrumentation, conduct
the analysis and develop and optimise testing protocols.

A variety of these analytical methods that are currently employed to ensure the safety, quality
and authenticity of spirits are summarised in Table 1. These methods are utilised to ensure that a
given sample is consistent with the production requirements legislated by either the EU, Commission
Regulation (EC) No 2870/2000 [58,59], or the AOAC International Official Methods of Analysis [60]
mandated by the United States Alcohol and Tobacco Tax and Trade Bureau.
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Table 1. Standard analytical methods utilised and their application [58–60].

Analytical Technique Indicative Data or Analyte Authenticity Issue/Information

Densitometry
Alcohol Strength (not suitable for spirits
with significant levels of dissolved solids,
e.g., sugars)

Dilution

Distillation and Densitometry Alcohol Strength Dilution

Gas Chromatography with flame
ionisation detector (GC-FID) Volatile Compounds Category and brand discrimination

GC-FID Denaturants (Methanol, isopropanol,
methyl ethyl ketone etc.) Detection of non-potable alcohol

UV-Vis Spectroscopy (UV-Vis) Spectroscopic profile Brand discrimination

Ultra-High-Performance Liquid
Chromatography-UV-Vis (UHPLC-UV) Maturation Congeners Category discrimination, lack of maturation,

addition of flavouring

pH pH Lack of maturation

Atomic Absorption Spectroscopy (AAS) Trace Metals Brand Discrimination

Ion Chromatography (IC) Trace Metals Brand Discrimination

Inductively coupled plasma-optical
emission spectrometry (ICP-OES) Trace Metals Brand Discrimination

Inductively coupled plasma-Mass
Spectrometry (ICP-MS) Trace Metals Brand Discrimination

Ion Chromatography-Pulsed
Amperometry Detection (IC-PAD) Sugars Addition of sweetening

Ultra-High-Performance Liquid
Chromatography-Reflective Index
Detection (UHPLC-RI)

Sugars Addition of sweetening, brand discrimination

Gas Chromatography-Mass
Spectrometry (GC-MS) Flavourings, Denaturants, Fingerprinting Brand discrimination, addition of flavourings,

detection of non-potable alcohol

Liquid Chromatography-Mass
Spectrometry (LC-MS) Flavourings, Denaturants, Fingerprinting Brand discrimination, addition of flavourings,

detection of non-potable alcohol

Nuclear Magnetic Resonance
spectroscopy (NMR) Ethanol Botanical origin of ethanol, detection of

synthetic alcohol

14C dating by Liquid Scintillation
Counting or Accelerator
Mass Spectrometry

Ethanol Date of production

The alcohol content of a whisky is measured to ensure that quality standards are met and to
ensure product integrity. Its measurement is also necessary since there is a minimum alcohol strength
requirement in the legislation which genuine products must meet, which is consequently a strong
indication of counterfeit products. If the alcohol content of the sample falls below the minimum
alcohol strength limit and/or a definitive difference between the measured alcoholic strength and the
stated label value is often an indication of some manipulation of the original product. The accepted
reference methods associated with alcoholic strength exploit the liquids density. Gas chromatographic
(GC) methods coupled with a variety of detectors are utilised to monitor most of the major volatile
congeners and denaturants present in alcoholic beverages. These include but are not limited to
acetaldehyde and ethanal, 1-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol
and 3-methyl-1-butanol, ethyl acetate and methanol. Similarly, GC-MS and LC-MS are useful for the
detection and quantification of both volatile and non-volatile flavouring additive compounds.

Counterfeiters commonly add sugars to fraudulent products in an attempt to improve their
taste and mimic the natural sweetness of a genuine product. However, the sugar profile of a suspect
material will differ significantly to that of a genuine product. For example, genuine Scotch whisky
products contain considerably less sucrose than glucose and fructose. Chromatographic methods
such as UHPLC-RI, IC and IC-PAD are utilised to measure trace levels of individual sugars present
naturally in certain spirits in order to define appropriate sugar profiles which can be later utilised to
detect adulteration.

Current trends within the industry are focused on the potential of testing not only during the
production process but at multiple key points in the supply chain. This has prompted research in
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the application of alternative analysis approaches with an emphasis on field based rapid, portable,
user-friendly (i.e., for the non-specialist) options.

5. Spectroscopic Methods and the Use of Chemometrics

Spectroscopy techniques have shown considerable promise in the fight against counterfeit
and fraud, as they are non-destructive, non-invasive and possess unique analytical capabilities,
the development of a materials chemical “fingerprint”. Their usefulness is further enhanced
by the development of chemometric or multivariate analysis methodologies which allow the
rapid identification and classification of similar samples using their molecular properties
(e.g., fingerprint) [61–64].

Spectroscopy methods and techniques are often the preferred analytical approach for the qualitative
and quantitative characterisation of chemical mixtures, as a large amount of data can be generated
in a rapid and non-invasive manner. However, interpreting the data to form a clear and concise
conclusion from such analysis is not always straightforward. The use of certain techniques, like UV-VIS
spectroscopy can lead to spectral response overlaps with overlaps with other components in the whisky,
which has very many trace components that can carry over from the malts/grains in the distillation
process. These can inhibit the determination of an individual component (or adulterant) concentrations
in the sample being tested. Therefore, the precision and accuracy of identification can be challenging
because of the similarity of many spectral responses [65]. Consequently, analysts will often apply a
work around, which might include the addition of a component to interact with the adulterant you
wish to identify so that its response can be well separated out and measured. However, the majority of
spectroscopic “fixes” or sample pre-treatments, to aid in the extraction of results from the spectral data
work less well than is ideal. That being said, there is a considerable wealth of “information” gathered
in a spectral scan that is not used for identification or measurement. Scientists have begun to look at
this unused data to determine if some data points can be used to elicit different patterns that could
be used to verify the measurements of similar species better and without the need for a second type
of confirmation test to be conducted. This type of forensic investigation of all of the spectral data is
commonly referred to as a chemometric study. It relies heavily on the use of mathematics and statistics
in interpreting the data to provide definitive results. While chemometrics was first mooted back in
1995, it took almost twenty years for spectroscopic instrumentation to be fitted with effective and
reproducible software tools to allow researchers to incorporate chemometrics into the processing of
their spectral data to give absolute verifiable identification and quantitation of chemical components
that would otherwise have been missed [66–68].

The combination of scientific analysis with software tools underpinned by mathematical systems
is of enormous use to those companies trying to track fraudulent products. It is timely now that as the
number of whisky producers is on the increase that adulterant measurement and analysis has become
more robust. The integration of chemometrics with spectroscopy allows the analyst to better mine the
data and extract relevant information for the generation of more confidence in a specific result. While
chemometric software can certainly add more certainty to analysis results it is still challenging where
one is trying to measure whether a single or small amount of an adulterant is present or not in a sample
that already has many components present natural. Food and beverages are examples of such complex
samples, and the data may have to be analysed at different spectral wavelengths or channels to be of
use. The data generated often has a high number of correlations from one measurement channel to the
next and from one chemical species to the next over those same channels. This high serial correlation
decreases the use of much of the data and this can be a limiting factor. However, all is not lost, as
the data results can be refined using chemometric software to allow for such redundancy of data.
Nowadays, spectroscopic instruments have inbuilt chemometric methods which are extremely efficient
at extracting unique and redundant information from multichannel data such as spectra [61–64].

The field of chemometrics is still evolving and consequently it by definition requires continued
modification to allow for its development, the international chemometrics society defines chemometrics
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as the chemical discipline that exploits mathematical and statistical methods to design or select optimal
measurement procedures and experiments to provide maximum chemical information by analysing
chemical data [62].

6. Recent Innovations in Adulterant Analysis

The recent literature presents a number of spectroscopic techniques for the rapid and more reliable
identification of adulterants in whisky (Table 2). A variety of spectroscopic techniques have been
combined with multivariate analysis software tools to (I) characterise whisky from different geographical
origin; (II) provide key information to indicate differing maturation process (e.g., maturation time);
and (III) to detect fraud or the presence of an adulterant. Some highlights from the literature are
described in more detail below.

Table 2. Application of spectroscopy and chemometrics.

Technique Application Number of Samples Validation Method Reported Classification Ref

UV-Vis (PCA) Authentication of Scotch Whiskies Ref set 50
Test set 35

Complimentary gas
chromatographic
authentication

100% 69

UV-Vis (PLS-DA) Discrimination and identification
of Scotch whiskies

Ref set 164
Test set 73

Two independent data sets
not part of the reference set

Ref 98.6%
Test 93.1% 70

UV-Vis (PLS-DA) Discrimination of whiskies 27 N/A N/A 71

NIR (PCA/SIMCA) Authentication and provenance
of whiskies

Ref set 40
Test set 69 Cross Validation 100% 72

FT-IR (PLS-DA) Discrimination and authentication
of whiskies 200 Validation set containing

25% of samples 96.3% 73

NIR (Machine Learning) Determination of ethanol and
methanol concentration 44 Leave one out

Cross Validation 100% 74

Raman (Machine Learning) Discrimination and identification
of Scotch whiskies 6 classes (400 samples) 5-fold cross validation 70–90% 75

ATR-IR (PLS-DA) Discrimination and identification
of whiskies and other spirits Ref set 85 Test set 23 Validation set 43 ≥96% 76

FT-IR (PCA) Authentication of whiskies and
detection of methanol. 150 Cross Validation ≥97% 77

FT-IR/UV-Vis (PLS-DA) Authentication and provenance
of whiskies 11 Cross Validation 100% 78

Raman/NIR (PLS-DA) Discrimination and authentication
of whiskies 114 N/A 100% 79

Raman (PC-DFA) Discrimination and authentication
of whiskies 144 N/A 100% 80

MacKenzie and Aylot [69], reported the development of a novel spectroscopic method for Scotch
whisky brand authentication. The UV-Vis based technique clearly distinguished between genuine
Scotch samples and counterfeits, the majority of which were a combination of cheap local alcohol
flavoured with a smaller proportion of the genuine whisky and colour. The authors also reported the
method’s ability to classify various Scotch whisky brands. It was illustrated that the UV-Vis technique
combined with chemometric analysis could be used as complimentary method to the traditional GC
authentication methodology. This study highlighted some distinct advantages of the spectroscopy
approach, including, the portability of the handheld spectrophotometer which enabled field-testing.
The spectroscopic method was also quicker (i.e., sample could be analysed in less than a minute
compared to a GC analysis time of approximately 20 min), was more cost and resource effective when
in compared to the standard methods [69].

Martins and co-workers [70], determined that UV-Vis spectroscopy combined with partial least
squares discriminant analysis (PLS-DA) modelling was an efficient method for discriminating between
seven brands of whisky. The method proposed by the authors was also very useful for the detection of
adulterants in other spirits. The method was able to differentiate between all genuine samples and
detected the counterfeit samples with correct identification rates of between 93–100% (depending on
the brand).

Similarly, Joshi et al. [71], also reported the successful application of UV-Vis combined with
chemometrics to classify whisky samples from several geographical regions. The authors reported that
PLS-DA models correctly classified 100% of the whisky samples belonging to the USA and Canada
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and 98% of those belonging to Scotland and Ireland respectively. Moreover, Joshi and co-workers also
determined that the scanning temperature of the whiskey samples did not impact the UV-Vis spectra
of the sample and therefore the classification rates. However, they do recommend that if an analytical
protocol to analyse this type of alcoholic beverages will be developed to target authenticity, integrity,
or country of origin in a consistent manner it would be appropriate to define an appropriate scanning
temperature for quality assurance and certification purposes [71].

Infrared spectroscopy both near (NIR) and mid (MIR) combined with chemometrics has proven to
be a popular technique for determining whisky quality either solely or in unison with other spectroscopy
methods. Pontes et al. [72], developed a classification method for distilled alcoholic beverages and
verification of adulteration, with water, methanol and industrial ethanol, using NIR spectroscopy and
chemometric methods such as principal component analysis (PCA) and soft independent modelling of
class analogy (SIMCA). The authors reported that their strategy was an effective tool in the classification
and verification of adulteration in whisky, brandies, rums and vodkas. Pure and adulterated samples
were successfully classified (100% at the level of 95% of confidence). Other benefits of the approach
include, direct sample analysis, and pre-treatment required; use of small volumes allowing for high
sample analysis throughput; and no additional use of reagents thereby reducing costs; can be carried
out by untrained personnel to name a few, thereby, making this strategy suitable for screening analysis
to verify adulteration of alcoholic beverages [72].

Sujka and Koczon [73] have reported the development of a rapid, simple, and non-destructive
analytical procedure for the discrimination and authentication of whisky samples originating from
Scotland, Ireland and USA using MIR spectroscopy combined with multivariate analysis models.
The procedure was also found to be useful for identifying the whiskies time of maturation (two, three,
six and twelve years). The authors describe the construction of eight discriminant models which
allowed analysts to distinguish Scottish, Irish and American whisky samples. As well as completely
differentiating between beverages matured for 2- and 3-years from those aged for between 6- and
12- years. The authors also reported 100% accuracy when discriminating between American and
Scottish whiskies.

Large and co-workers [74] demonstrated the ability to determine the alcohol concentration
non-invasively in arbitrary bottles using NIR spectroscopy in combination with machine learning.
While the authors reported that the determination of ethanol concentration was possible with high
accuracy the determination of methanol concentrations within a consistent overall alcohol level was
more difficult. Backhaus et al. [75] combined chemometrics with NIR spectroscopy to classify the age,
maturing cask, distillery and product variety of Scotch with very high accuracy. The authors also
highlight that the technique reduced overall cost and processing time of analysis.

Mid-infrared spectroscopy was also reported by Picque et al. [76], to analyse and discriminate
between Cognacs and other distilled drinks including whisky, bourbons and counterfeit products.
Chemometrics was applied by the authors to the spectral data with good levels of accuracy, and 96% of
samples in the test set were correctly assigned to Cognacs and non-Cognacs by PLS-DA. The authors
also have come up with a means of applying a sequence of combined analytical techniques to provide
enhanced accuracy for the discrimination between Cognacs. They propose that a single chemometric
process could be used to the combined data outputs of IR, UV-vis, NMR and GC analysis, coupled
with neural network information could further enhance the determinations of counterfeit products
from Cognac and other products [76].

Chen et al. [77] have employed chemometrics and IR spectroscopy integrated with information
from digital labelling to develop a means of rapidly detecting fraudulent liquors, for the presence of
methanol, which is the most important and difficult adulterant to detect with accuracy. The spectral
bands of methanol were labelled using iterative discrete wavelet transform for classification, and PCA
and PLS analysis were then applied to discriminate problematic samples using the iterative discrete
wavelet transform filtered signals. By using digital pre-processing methods, the authors could
extract spectral features of methanol from the alcoholic drinks in the presence of a diverse array
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of uncontrolled matrix effects. The technique boasted a recognition accuracy of higher than 97.0%,
with each measurement taking 3 min, illustrating the promise of the tool. The authors also indicated that
the method could be extended to detect of other targeted volatile substance in complex matrixes. In a
2017 study Wiśniewska and colleagues [78] utilised headspace mass-spectrometry (HS-MS), MIR an
UV-Vis to authenticate whisky samples from multiple origins and ways of production (Irish, Spanish,
Bourbon, Tennessee whisky and Scotch). The authors used PLS-DA to build classification models
which fully classified the five groups of whisky samples. The authors also reported that it was also
possible to differentiate samples within this product class, demonstrating that production processes
were impactful on the quality of the spirits [78].

Recently work by Ellis et al. [79,80], has investigated the use of Raman spectroscopy combined with
chemometrics as a means for rapid in situ through-container analysis of whisky samples; the authors
report detection of multiple chemical markers known for their use in the adulteration and counterfeiting
of Scotch whisky, and other spirit drinks without any physical contact with the sample; with the ability
to discriminate between and within multiple well-known Scotch whisky brands, and the detection of
methanol concentrations well below the maximum human tolerable level of 2% v/v.

7. Conclusions

The implementation and adoption of spectroscopy techniques combined with chemometrics allows
for the rapid and non-destructive analysis, characterisation and detection of fraud in whiskies. The most
promising and significant developments point to the use of NIR, MIR and Raman spectroscopies
combined with data mining tools as the means for analysis of fraudulent whisky and related beverages,
giving greater confidence in quality evaluation and adulterant analysis. It has been also demonstrated
by several authors that both the accuracy and robustness of the methods described are comparable to
those obtained by traditional analytical tools such as GC-MS techniques. The field of study however
is still in its early stages and it should be noted that the application of calibration models requires
continuous validation and as it is the critical step to ensure the robustness of the method.
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