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Abstract: Infrared-photoacoustic spectroscopy (IR-PAS) and partial least squares (PLS) were tested
as a rapid alternative to conventional methods to evaluate the proportion of coffee defects in roasted
and ground coffees. Multiproduct multivariate calibration models were obtained from spectra of
healthy beans of Coffea canephora and C. arabica (Arabica) and blends composed of defective and
healthy beans of Arabica in different proportions. The blends, named selections, contained sour,
black, broken, whole beans, skin, and coffee woods. Six models were built using roasted and
ground coffee samples. The model was optimized through outlier evaluation, and the parameters
of merit such as accuracy, sensitivity, limits of detection and quantification, the inverse of analytical
sensitivity, linearity, and adjustment were computed. The models presented predictive capacity
and high sensitivity in determining defects, all being predicted with suitable correlation coefficients
(ranging from 0.7176 to 0.8080) and presenting adequate performance. The parameters of merit
displayed promising results, and the prediction models developed for %defects can be safely used as
an alternative to the reference method. Furthermore, the new method is fast, efficient, and suitable
for in-line application in quality control industrial coffee processing.

Keywords: defective coffee beans; coffee quality; roasted coffee; PLS; parameters of merit

1. Introduction

Coffee quality is not an easy issue and depends on several factors, mainly biological,
geographical, and process criteria such as growing conditions (crop year, altitude, tempera-
ture, and other climate particularities), harvesting methods, physical parameters (bean size,
color, and shape), composition (species and varieties and occurrence of defects), storage
conditions, roasting characteristics, and further processing steps [1]. Among them, the
beverage’s overall quality, commonly referred to as the ‘cup profile’ or ‘cup quality’, is the
most relevant factor used globally in coffee trading [2–5]. Since coffee is one of the most
important agricultural products in the world and the presence of defective beans in coffee
products depreciates the beverage’s sensory quality and market value, investigating the
occurrence of coffee defects is understandable.

Green coffee defects can be divided into primary and secondary groups. Primary
defects include black and sour beans, while the second group is more comprehensive and
includes a diversity of terms. The most recurrent are green, partially sour, and partially
black beans; broken, damaged by insects, moldy, faded, silver skin, and bored beans; and
extraneous matter—e.g., husks, wood, skin, and stones [6]. Obtaining coffee beans from
the crop with the desired degree of maturation and a low rate of defects is not an easy task.
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Even with modern harvest methods, the proportion of coffee defects in a crop can reach
20% (around 2.6 million bags per year) [7–9], which is a substantial amount. Furthermore,
the demanding quality standards of new consumers have been rising increasingly. This
class of coffee lovers has sought a more refined product and exquisite sensory properties,
even though higher prices are charged for it [10,11]. These specialty coffees are the basis of
the “third wave of coffee era” [12].

Coffee processing includes mechanical, manual, and/or electronic sorting to separate
and count defective beans. However, after roasting and grinding, recognizing the presence
of coffee defects in a sample depends on chemical parameters and sensory assessments. It
is noteworthy that the presence of coffee defects in the raw material directly influences the
roasted and ground coffee composition and, generally, depreciates the quality of the coffee
beverage. For instance, immature beans are associated with bitterness, astringency, and
metallic tastes. Sour beans contribute to an overfermentation flavor caused by humidity
and temperature adversities during storage, transportation, and processing. Black beans
are usually experienced as having an ashy and heavy flavor. Black beans can be overripe
cherries, dead beans within the cherry, or beans damaged by pests [13]. Broken beans, wood,
stones, husks, twigs, and other fruit tissues also influence the flavor of a roasted coffee
due to its composition (different from that of whole and healthy beans) or by interfering
with the roasting process. It should be noted that even trained and certified tasters cannot
guarantee sufficient precision and sensibility in sensory determinations for identifying and
quantifying coffee defects [14].

Specific groups of compounds (e.g., chlorogenic acids, amino acids, diterpenes, car-
bohydrates, tocopherols, triglycerides, volatile metabolites, and other compounds) or
key substances (e.g., caffeine, 16-O-methyl-cafestol, trigonelline, and nicotinic acid) in
roasted coffee has been determined by classical techniques, such as chromatography-based
methods (high-performance liquid chromatography [15–17], gas chromatography [18–21]),
mass spectrometry [22], and UV-Vis spectroscopy after colorimetric reaction [23]. The
contents of these compounds are used as sample discriminating parameters since coffees of
varied quality and/or blended with different species and varieties may present different
compositions.

Considering a modern analytical approach, coffees with varying quality are evalu-
ated by direct, faster, and eco-friendly analytical methods, mainly including variations
of spectroscopic approaches, such as near-infrared (NIR) [5,24–26], mid-infrared [27,28],
Vis-NIR [29], and Raman [14,30] spectroscopies.

Infrared spectroscopy is an analytical technique based on the bond vibrations of
atoms in a molecule. The spectrum originates from the absorption of a particular fraction
of energy from the incidence of IR radiation. The signal generated is registered by a
detector [31]. A common detector of signal analysis is based on the reflectance of radiation.
A diversity of commercial reflectance sampling accessories is accessible to suit a variety
of sample types [32]. While the mid-infrared region (4000–400 cm−1) produces signals
from fundamental vibrations of bonds related to the compounds present in the sample, the
NIR spectrum (800–2500 nm) provides information regarding the molecular absorptions
of overtones and combinations of fundamental vibration bands in the mid-IR region [33].
The principle of the study that uses NIR spectra as a fingerprint for coffee samples lies
precisely in the differences in the spectra generated by variations in the composition of
the samples. Since the presence of coffee defects influences the final composition of the
roasted and ground product, variations in the spectra will also occur. A suitable way to
perceive these variations is through chemometric tools. Craig et al. (2014) [27] introduced
a comparative analysis of the performances of FTIR (Fourier transform infrared) and
NIR for the qualitative differentiation of roasted non-defective and defective coffees. The
elastic net models presented a high level of classification. The correct classification of
non-defective coffees was attributed to absorbance regions that are characteristic of lipids
(1722–1759 cm−1, 2810–2848 cm−1, 2908–2920 cm−1, 1680–1755 nm, and 2132–2166 nm)
and carbohydrates (1138–1165 cm−1 and 1760–1871 nm).
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Recently, Araújo et al. (2021) [34] used NIR spectroscopy and digital images (from
chemometrics-assisted color histogram-based analytical systems—CACHAS) for the non-
destructive authentication of roasted and ground coffees with different quality denomina-
tions (gourmet, traditional, and superior). One-class partial least squares and data-driven
soft independent modeling of class analogy (DD-SIMCA) were applied as one-class classi-
fiers and evaluated in terms of specificity and sensitivity. DD-SIMCA was applied using an
offset correction for NIR and an RGB histogram for CACHAS, recognizing all the 90 sam-
ples in both the training and test sets. In conclusion, the authors highlighted that NIR
spectra allow a definitive authentication due to the molecular character of the analytical
information contained in the relation between the sample composition and spectral data.

Proposing a real-time analysis for the industry quality control of coffee, Baqueta et al.
(2021) [5] used a handheld near-infrared spectrometer combined with partial least squares
with discriminant analysis (PLS-DA) to directly assess cup profiles in roasted and ground
coffee blends. The model presented sensitivity and specificity from 91 to 100%, 84–100%,
and 73–95% in the training, prediction, and internal cross-validation sets, respectively. With
the encouraging results presented, the new method will help coffee professionals in their
decisions during the evaluation of the cup in subsequent tests on an industrial scale. In
another report, NIR spectroscopy coupled with PLS was successfully used to assess the
color, granulometry, moisture percentage, and infusion time of roasted coffees [25].

In the meantime, it is worth highlighting the use of photoacoustic spectroscopy for
food analysis [35]. When intensity-modulated radiation is absorbed by a sample isolated
in an acoustic chamber and filled with inert gas, the photoacoustic effect is observed.
The sample generates heat due to a reabsorption process, and the absorbed energy is
released as heat, which causes temperature oscillation, generating periodic acoustic waves.
A very sensitive microphone detects the resulting pressure changes and converts them
into an electrical signal. Fourier transformation (FT) of the resulting signal generates a
characteristic infrared spectrum (the technique is abbreviated as FTIR-PAS) [31]. Thus, it
combines the utility of interferometry with the standard sample-gas microphone of the
photothermal technique for a depth-profile analysis of samples. Although the absorption
spectrum is retrieved from IR-PAS experiments, the thermal behavior of the sample rather
than the optical properties plays a major role in the generation of the PA signal [35].

The applications of photoacoustic technique range from investigations on solids and
liquids to gases and life sciences. Agricultural and environmental sciences [36,37], processes
in surfaces and thin films and biofilms [38,39], air quality monitoring [40], and pollutants
in liquids [41] are some of the topics explored by the technique. In recent years, few
papers have been published using PAS spectroscopy for food analysis. FTIR-PAS was used
for the determination of total protein and wet gluten in wheat flour. The evaluation of
the prediction performance for both analytes was carried out by multivariate calibration
models. Root mean square errors of prediction (RMSEPs) of 0.362% and 0.229%, with
coefficients of determination of 0.84 and 0.96 for total protein and wet gluten were obtained,
respectively. External validation produced coefficients of determination higher than 0.82
for total protein and wet gluten models. The results presented a viable FTIR-PAS spectral
dataset that can predict the protein level in wheat flour [42]. Photoacoustic spectroscopy
was applied to assess the impact of moringa at different levels on the elaboration, texture,
sanity, and color of wheat bread. The plant moringa oleifera has been used for centuries for
its medicinal properties and health benefits; it presents a high content of antioxidant and
oily substance that nourishes the human skin. The most significant statistical differences
were observed in the spectrum region of 300–450 nm when comparing the control bread
and the moringa-added samples. Interesting results were verified. Among them, it is
highlighted that the photoacoustic signal amplitude of bread increases with the moringa
percentage, and a positive correlation was observed between the photoacoustic signal and
the number of fungal colonies in bread. The study showed that PAS spectroscopy can be
used to evaluate the quality of bread in different formulations [43].
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Reports using infrared-photoacoustic spectroscopy to investigate roasted and ground
coffee are still scarce in the literature. FTIR-PAS assessed adulterated coffee samples with
barley, corn, and coffee parchment with satisfactory discrimination results. Even though
the work was published almost three decades ago, the concern of coffee researchers and
regulatory agencies regarding the adulteration of roasted and ground coffee is notable.
The authors considered that adulteration was commonly accomplished by the addition
of roasted and ground cereal grains, or their equivalent, which was a relevant problem
for those engaged in quality control in the packaged coffee industry [44]. Another study
reported the possibility of discriminating organic from non-organic coffees by comparing
the respective PAS spectra [45]. Recently, this research group developed a method based
on infrared-photoacoustic spectroscopy measurements and chemometrics to differentiate
coffees containing genuine defects occurring in coffee crops [8,46]. PLS-DA allowed the
prediction of the amount and type of specific defects in blends, while a principal component
analysis revealed similarities between them. A successful predictive model was built using
six classes of blends. The model could classify all samples into four classes.

The main goal of the present study was to use Brazilian coffees to build and validate
multivariate calibration models for quantifying the percentage of sour, black, broken,
whole beans, skin, and wood using the FTIR-PAS coupled with multivariate calibration by
partial least squares. For this purpose, accuracy, sensitivity, analytical sensitivity, linearity,
adjustment, and limits of detection and quantification were estimated as parameters of
merit. The model results were compared with reference values to confirm the applicability
of the proposed method.

2. Materials and Methods

The experimental measurements and data acquisition were conducted at Zurich
University of Applied Sciences, in the Wädenswil campus, Switzerland. The statistical
experiment and data evaluation were conducted at the Federal Technological University of
Paraná, Campo Mourão campus, Brazil.

2.1. Coffee Samples

Instituto Agronômico do Paraná (IAPAR, Londrina, Paraná, Brazil; climate conditions:
humid subtropical, Latitude−23.29, Longitude−51.17; 23◦17′34′′ S, 51◦10′24′′ W) supplied
the samples of coffee. Healthy beans (whole beans without defects) of Coffea canephora (Ro-
busta) and C. arabica (Arabica) (named basis) and 25 blends (named selections) composed
of defective coffee and healthy Arabica beans were used in different proportions to build
the calibration models. The selections contained sour, black, broken, whole beans, skin,
and coffee woods. The samples (the bases, the selections, and the blends) are described in
detail by Dias et al. (2018) [46]. Bean by bean, professional specialists in coffee quality from
Instituto Agronômico do Paraná (Brazil) hand-picked the whole and healthy beans (sour,
black, and broken beans), wood, and skin of each selection. The visual and tactile character-
istics were considered. The counting was performed based on the weight expressed as a
percentage.

The final blends comprised one selection (20 or 40%) and one basis (80 or 60%). Three
such bases were used: 100% Arabica coffee and two blends of Arabica to Robusta in the
proportions of 80:20 and 50:50 (w/w). Thus, each selection was blended with the three types
of bases in two ratios, generating 150 samples plus 4 different samples: the three bases and
100% Robusta coffee. Considering the triplicate analysis, 462 spectra were recorded and
evaluated.

Coffee samples were roasted (Probat Emmerich am Rhein, Germany, model PRG1Z,
ERD Gas) to a medium degree (17% weight loss and 22 to 26 of luminosity, L* − Konica
Minolta portable colorimeter BC-10). The roasted coffee samples were ground (setting 2)
on a Ditting grinder/KR805 (Bachenbülach, Switzerland).



Beverages 2023, 9, 21 5 of 12

2.2. FTIR-PAS Spectroscopy Assays

The samples of roasted coffee blends were submitted to FTIR-PAS spectroscopy analy-
sis (16 scans; 4 cm−1 resolution; 600–4000 cm−1). An FTIR spectrometer (Bruker/Billerica,
MA, USA), model Tensor 37 coupled to a Gasera photoacoustic detector model PA 301
(Turku, Finland), interfaced with a DSP Module was used. The experimental conditions
were previously set up [8]. The normalized signal generated the PAS spectrum, whose
profile depended on the sample’s composition. FTIR-PAS spectra were used for the multi-
variate model development. The instrumental noise was estimated by recording FTIR-PAS
spectra without samples.

2.3. Multivariate Calibration

Partial least squares (PLS) have been discussed in detail in proper reports [47–49]. PLS
is a regression tool applied to first-order data for multivariate calibration. Here, we consider
that the method is also multicomponent due to the different species used in the sample
blends. Some advantages are more relevant to a multiproduct model, e.g., a restricted
number of computations are necessary for each prediction in routine analysis, saves time
on updates, and produces robust models [47].

The multivariate multicomponent calibration computes latent variables (LVs) by
targeting the highest possible covariance between X and y [48,49]. In this case, the data
matrix X was constituted by the FTIR-PAS spectra of the coffee blends, and the vector y
contained the reference values, i.e., the proportion of the different defects of coffee.

Data preprocessing and chemometric models were performed in Matlab (software
version R2007b) (The MathWorks Inc., Natick, MA, USA) and PLS-Toolbox computational
package version 5.2 (Eigenvector Technologies, Manson, WA, USA). The spectra had
the baseline corrected through the baseline algorithm from PLS Toolbox, and they were
smoothed by the Savitzkyl-Golay (savgol) algorithm (5 points window and first-order
polynomial) [50]. PLS regression models were built with mean center data preprocessing.

In the calibration step 100 samples were used, while in the external validation step
54 samples were used; all were pre-selected by the Kennard-Stone algorithm [51]. The
choice of the number of latent variables (LVs) was based on the lowest result for the
root mean square of the cross-validation error (RMSECV) [48] with contiguous blocks
of 10 samples. In addition, the percentage of explained variance in the y block was also
considered for choosing the number of LVs [26].

Outliers were evaluated to improve model accuracy, which is a result of eliminat-
ing samples with extreme leverage (as they exhibit high influence on the model) and
eradicating unmodeled residuals in X and y (the strategy is based on recommendations
from the Standard Practices for Analysis Quantitative Multivariate by Infrared—ASTM)
(E1655-00) [52].The multivariate analytical validation of PLS models was based on deter-
mining parameters of merit following previous multivariate calibration studies [24–26,53].
These parameters included accuracy, adjust, linearity, analytical sensitivity, and limits of
detection and quantification.

The regression coefficient vector was considered for each PLS model to find which
spectral regions were important to model and predict the proportion of defects in roast and
ground coffee.

3. Results and Discussions

The FTIR-PAS spectra (600–4000 cm−1) of 154 samples of ground and roasted coffee
blends with different proportions of defects and species were obtained and displayed, after
preprocessing, as shown in Figure 1.
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Undesired random or systematic variations can be minimized by mathematical correc-
tions named preprocess, a preliminary step when applying chemometrics. The analytical
signals are rarely submitted in their raw form to chemometric modeling [54]. Among
the most common systematic signal variations, baseline shifts (offsets) and noise are very
common and can be addressed by a given mathematical transformation. The smoothing is
applied to reduce the aleatory component of a data set and increase the signal-to-noise ratio.
Here the smoothing was done through a savgol algorithm. An instrumental or sampling
problem can shift the spectra on the ordinate axis [55]. The shift is not related to the sample
content and can compromise the result of a chemometric approach.

The bands between 3000 and 3600 cm−1 influenced the blends differentiation, while
bands located in 1067 cm−1 (pyruvic acid, pyridine, and quinic acid), 3356 cm−1 (chloro-
genic acids), and between 1000 and 1750 cm−1 (trigonelline and caffeine alkaloids) were
correlated to specific compounds [8].

PLS models were constructed for each considered defect (PLS1 models) by using 8 LVs
for sour, skin, and broken; 9 LVs for black and whole; and 11 LVs for woods (Table 1). The
number of LVs were chosen considering RMSECV and the percentage of variance explained
in the y block.

The outlier samples were evaluated to optimize the PLS models. A total of 21, 17, 22,
15, and 16 outliers were identified for the models in the sour, for both black and skin, whole,
broken, and wood, respectively. According to the ASTM (E1655-17) [56] and previous
works [25,57], the outliers can be removed from up to 22.2% of the total number of samples
in the dataset. In the present research, all the models agree with these recommendations.

Considering a reliable application for routine analysis, adequate validation is manda-
tory to certify the predictive capacity of the model, which is based on the determination of
parameters of merit [39]. Parameters of merit for first-order multivariate calibration were
described in previous reports [53,58–63]. The results for the parameters of merit obtained
from PLS models (after outliers’ elimination) are presented in Table 1.

Root mean square error of calibration (RMSEC) and prediction (RMSEP) represent
the accuracy for the PLS models (Table 1). These parameters report the closeness of
agreement between the reference value and the value found by the calibration model. For
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the modeled parameters, sour achieved higher accuracy, which is directly related to the
modeled reference values for that parameter, being larger than the others.

Furthermore, regarding the RMSEC and RMSEP results, it is possible to affirm that
the models’ dimensions were properly chosen, and the models were not overfitted since
the RMSEC and RMSEP results for all models were close [64]. The number of LVs affects
the parameters of merit, especially accuracy and, consequently, the others. Moreover,
depending on the application of a suitable preprocess, the correct number of LVs allows for
the RMSEC and RMSEP closeness results, i.e., the most appropriate model.

Adjustments can also certify the accuracy by plotting the percentage of the specific
defects (%D) determined by the reference method (selection and counting of the different
defects made by a trained professional) against %D determined by the PLS model (Figure 2).
The coefficient (R-squared) is presented in Table 1. The model for the sour defect presented
the highest correlation coefficients, around 0.8, whereas for the other defects, the correlation
coefficients are in the range of 0.71 to 0.78. A correlation coefficient of up to 0.7 can be
considered satisfactory for multivariate calibration models elaborated from results obtained
with high variability (as in this case) [26].

Table 1. Analytical parameters of merit for the multiproduct PLS model.

Parameters of Merit Equation Sour
(8 LVs a)

Black
(9 LVs)

Skin
(8 LVs)

Whole
(9 LVs)

Broken
(8 LVs)

Woods
(11 LVs)

Modeled range - 0–29.49% 0–17.06% 0–6.28% 0–11.43% 0–11.27% 0–1.02%

Accuracy (%) RMSEC b =√
∑nc

i=1
(yi−yi)

2

nc−nVL+1
2.8074 1.9244 0.7642 1.2318 1.4005 0.0609

RMSEP c =√
∑nν

i=1
(yi−yi)

2

nν
2.7979 1.6406 0.7364 1.2471 1.3855 0.0574

Sensitivity (%) d = 1
||b|| 0.0022 0.0021 0.0079 0.0034 0.0053 0.0503

Analytical sensitivity−1 (%) e
=
(

Sensitivity
||δx ||

)−1 0.4072 0.3563 0.1170 0.2240 0.1748 0.0128

Limit of detection (%) e = 3.3δx
Sensitivity 1.3438 1.1756 0.3862 0.7394 0.5769 0.0421

Limit of quantification (%) e = 10δx
Sensitivity 4.0721 3.5626 1.1702 2.2405 1.7482 0.1276

Fit (R-squared) 0.8080 0.7416 0.7675 0.7863 0.7176 0.7430

Linearity
Jarque-Bera

test f,g
A = 1.874
B = 4.774

A = 0.866
B = 4.8467

A = 0.955
B = 4.847

A = 1.420
B = 4.692

A = 2.114
B = 4.869

A = 0.896
B = 4.799

a LVs = Latent Variables; b RMSEC: root mean square error of calibration, where nc is the number of the samples
in the calibration set, yi is the reference value of the sample i, and ŷ is the predicted value of the sample i (“+1” is
added when the data are mean center); c RMSEP: root mean square error of prediction, where nν is the number of
samples in the validation set, yi is the reference value of the sample i, and ŷ is the predicted value of the sample i.
d b = regression coefficients vector; e δx = estimate for the instrumental noise. Parameters of the Jarque-Bera test:
f A = JBSTAT, g B = CRITVAL.
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Figure 2. Adjustment (after the elimination of outliers). Reference values against values predicted by
the PLS models: (A) sour; (B) black; (C) skin; (D) whole; (E) broken; and (F) woods. (o) Calibration
samples and (∗) validation samples.

Sensitivity corresponds to the fraction of the analytical signal due to increasing the
level of a particular analyte by a unit concentration. Considering inverse multivariate
calibration models, such as PLS, it is usually determined by the inverse of the regression
coefficients vector. The sensitivity parameter generates complex results that are difficult to
judge due to the preprocessing used in the PLS. On the other hand, analytical sensitivity is
more elementary and informative for comparing and evaluating the sensitivity of an inverse
multivariate calibration method [64]. The analytical sensitivity−1 allows the establishment
of a minimum percentage of defects that is discernible by the PLS model. Thus, it is possible
to discriminate samples with defects of 0.4072% for sour, 0.3563% for black, 0.1170% for
skin, 0.2240% for whole, 0.1748% for broken, and 0.0128% for woods.

The limit of detection shows the lowest percentage of defects that can be detected but
not necessarily accurately quantified. The limit of quantification is the lowest percentage
of defects that can be quantified with accuracy. Limits of detection and quantification for
the models presented coherent results with the measured quantities and considering the
modeled range. Then, the quantification limits obtained showed that samples with sour,
black, skin, whole, broken, and woods lower than 4.0721%, 3.5626%, 1.1702%, 2.2405%,
1.7482%, and 0.1276%, respectively, are not quantified with accuracy.

Residual plots from calibration and validation samples (Figure 3) were used to check
the linearity of the PLS model. The residual distribution has a random behavior, which
reinforces that the data fit into a linear model. To confirm the random distribution of
residuals, an appropriate statistical test (Jarque-Bera test [65]; 95% confidence) was per-
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formed. This is a goodness-of-fit test of departure from normality, based on the sample
skewness and kurtosis. The results (Table 1) indicated the randomness of the residuals.
When the Jarque-Bera test (JBSTAT) < CRITVAL, the null hypothesis (residuals are normally
distributed with unspecified mean and standard deviation) can be accepted at a significance
level of 95%.
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The new analytical method developed based on IR-PAS spectroscopy and multiprod-
uct and multivariate calibration is promising. The concept of assessment of different species
of healthy coffee and coffee defects in blends in the same model reinforces the heterogene-
ity of samples, which makes the model more comprehensive, reliable, and realistic. The
method merits attention both for its analytical efficiency and for its practicality, cleanliness,
and fastness, and does not require large investments.

4. Conclusions

A new method for coffee analysis was developed based on IR-PAS and chemometric
regression PLS. The percentage of defects from roasted and ground Brazilian coffee was
predicted. The models were validated by the parameters of merit, evidencing that the PLS
models are sensitive to discriminate, detect, quantify, and predict the percentage of defects
sour, black, skin, broken, wood, and whole beans on the coffee samples. When compared
to the selection and counting of the different defects made by a trained professional, the
proposed method is a promising alternative for the coffee industry to evaluate coffee defects
without the high dependence on the analyst’s perception.
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