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Abstract: Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface
processes on regional and global scales, combining the results of all surface-atmosphere interactions
and energy fluxes between the surface and the atmosphere. With the advent of the European Space
Agency (ESA) Sentinel 3 (S3) satellite, accurate LST retrieval methodologies are being developed by
exploiting the synergy between the Ocean and Land Colour Instrument (OLCI) and the Sea and Land
Surface Temperature Radiometer (SLSTR). In this paper we explain the implementation in the Basic
ENVISAT Toolbox for (A)ATSR and MERIS (BEAM) and the use of one LST algorithm developed in
the framework of the Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land
Surface Temperature (SEN4LST) project. The LST algorithm is based on the split-window technique
with an explicit dependence on the surface emissivity. Performance of the methodology is assessed
by using MEdium Resolution Imaging Spectrometer/Advanced Along-Track Scanning Radiometer
(MERIS/AATSR) pairs, instruments with similar characteristics than OLCI/ SLSTR, respectively.
The LST retrievals were properly validated against in situ data measured along one year (2011) in
three test sites, and inter-compared to the standard AATSR level-2 product with satisfactory results.
The algorithm is implemented in BEAM using as a basis the MERIS/AATSR Synergy Toolbox. Specific
details about the processor validation can be found in the validation report of the SEN4LST project.
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1. Introduction

The Sentinel satellite constellation series is developed by the European Space Agency (ESA) in
order to support European operational services and the policy needs of the Copernicus programme.
The first three Sentinel missions contribute to the understanding of the Earth System by detecting,
monitoring and assessing changes in ocean, cryosphere, and land components [1,2]. In particular,
the Sentinel 3 (S3) mission provides continuity to Environmental Satellite (ENVISAT) capabilities while
contributing to a number of services related to ocean and land products [3]. Main instruments on
board the S3 mission are the Ocean and Land Colour Imager (OLCI) and the Sea and Land Surface
Temperature Radiometer (SLSTR). OLCI is a push-broom imaging spectrometer instrument building
on the heritage of ENVISAT MERIS (MEdium Resolution Imaging Spectrometer), with 21 spectral
bands covering the 0.4–1 µm range at maximum 300 m spatial resolution [4]. SLSTR is a dual view
conical imaging radiometer building on the heritage of ENVISAT AATSR (Advanced Along-Track
Scanning Radiometer). It includes 9 spectral bands covering the 0.5–12 µm spectral range, with two
additional bands in the near infrared for clouds and aerosols retrieval and other two for active fire
detection. The SLSTR spatial resolution is 500 m for the visible and near-infrared (VNIR) bands
and 1km for the thermal infrared (TIR) and fire bands [5], while the swath is 1400 km for the single
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view and 740 km for the double view observation. One of the main objectives of the S3 mission is
to provide Europe with continuity of the ENVISAT type measurement capability to determine sea,
ice and land surface temperature. In this context, ESA funded the project “Synergistic Use of The
Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST)” [6,7], which
had the main objective to fully utilize the synergy between SLSTR and OLCI instruments to improve
atmospheric correction (including cloud screening) and land surface emissivity (LSE) characterization
for a better estimation of the land surface temperature (LST). As a result of the SEN4LST project,
a new land surface temperature processor plug-in has been implemented in the Basic ENVISAT
Toolbox for (A)ATSR and MERIS (BEAM). The synergistic algorithm in which is based is designed
and implemented for improving cloud screening, global aerosol and atmospheric correction using
the combined multi-spectral and multi-angle information from instrument pair measurements [8].
The implemented processor, the functionality of which is the main target of this paper, supports both
MERIS/AATSR and OLCI/SLSTR (Sentinel 3) data pairs. Because there are still not available pairs of
the OLCI/SLSTR, simulated data is used instead [9].

2. The BEAM Toolbox and the Land Surface Temperature Processor

The main target of this paper is to present to the scientific community the Land Surface
Temperature BEAM processor. This plug-in will offer interested researchers the possibility to generate
an LST product with MERIS and AATSR images (and future OLCI/SLSTR), comparable in quality to
the standard ESA’s Level 2 LST product. The LST algorithm used in the processor has been tested and
published by scientific teams; therefore, there is not an extensive explanation of the theory and physics
of the algorithm or its validation, but necessary references have been cited for the convenience of the
audience of the present work.

2.1. Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM)

The BEAM Earth Observation Toolbox and Development Platform [10] is a collection of executable
tools and Application Programming Interfaces (APIs) that have been developed to facilitate the
utilisation, viewing and processing of a variety of remotely sensed data. The purpose of the BEAM
is not to duplicate existing commercial packages, but to complement them with functions dedicated
to the handling of data products of Earth observing satellites, specifically focused on ocean colour
applications, but also used for other land surface processings. The main components of the BEAM are:

• VISAT: an intuitive desktop application used for Earth Observation (EO) data visualisation,
analysis and processing (Figure 1) (version 5, Brockmann Consult GmbH, Geesthacht, Germany).

• A set of scientific data processors running either from the command-line or invoked by VISAT.
• The command-line tool gpt (graph processing tool) is used to execute processing graphs made up

of operators nodes developed using the BEAM Graph Processing Framework (GPF, see Java API
below) (Brockmann Consult GmbH, Geesthacht, Germany).

• A data product converter tool pconvert (Brockmann Consult GmbH, Geesthacht, Germany)
allowing a user to convert raw data products to the BEAM-DIMAP standard format, to GeoTIFF,
to HDF-5 or to RGB images.

• A JavaTM API which provides ready-to-use components for remote sensing related application
development and plug-in points for new BEAM extension modules. Besides a number of extension
points such as product reader and writers, the BEAM API comprises the GPF, which is used to
rapidly create raster data processors. The VISAT Rich Client Platform is used to develop rich
Graphical User Interface (GUI) applications based on BEAM VISAT.

BEAM is programmed in pure JavaTM to allow a maximum portability. The BEAM software
(version 5, Brockmann Consult GmbH, Geesthacht, Germany) has been successfully tested under
MS WindowsTM XP R©, WindowsTM Vista, WindowsTM 7 and also Mac OS X and as well as under
Linux ("Linux" trademark is owned by Linus Torvalds and administered by the Linux Mark Institute)
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and Solaris R© (Sun Microsystems, ORACLE, San Francisco, USA) operating systems. Since end of
2015 BEAM is not further developed. It will remain under maintenance until at least end of 2016.
BEAM users are encourage using its evolutionary successor SNAP from now on (version 4, ESA).
When installing SNAP along with the Sentinel-3 Toolbox (version 4, ESA) the users will have the
same experience as with BEAM and they can even extend the number of features by installing other
toolboxes like those for Sentinel-1 or Sentinel-2 [11].

Figure 1. BEAM-VISAT overview.

2.2. The LST Processor as a BEAM Plug-In

The LST processor is a BEAM plug-in that allows the processing of MERIS/AATSR L1b pairs, and
simulated OLCI/SLSTR surface directional reflectance. The final objective of this plug-in is to provide
an LST product using the algorithms developed in the framework of the SEN4LST project to be applied
to MERIS/AATSR and potentially the forthcoming S3 OLCI/SLSTR instruments. Inputs needed
for application of the SEN4LST algorithms (e.g., the split-window algorithm given by Equation (1))
are surface directional reflectances (SDRs), which for MERIS/AATSR are retrieved in a foregoing
processing step applying the MERIS/AATSR synergistic approach [8]. This method is based on an
atmospheric correction scheme together with a cloud-screening procedure, both developed within the
frame of ESA’s MERIS/AATSR Synergy Toolbox project.

2.2.1. Theoretical Background of the LST Algorithm

A large number of land surface temperature (LST) and land surface emissivity (LSE) algorithms
have already been published ([12,13]). Many of these algorithms are based on the split-window (SW)
or the two-channel (TC) techniques. The SW is based on the differential absorption concept [14],
in which the atmospheric effect over the measured signal is corrected using the difference signal in
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two thermal (TIR) bands at two different wavelengths, or by one TIR band on two different view
angles, the dual-angle (DA) algorithms. The two types of algorithms depend on the surface emissivity.
The retrieval of the emssivity values can be done in many ways ([15–17]). The approach selected here
is based on vegetation indices (VIs) [18] and on classification-based approaches [19]. To allow for near
real-time retrievals and to avoid nighttime acquisitions, methods based on day/night pairs are not
considered. The proposed algorithm finally selected has the expression [20]:

TS = Ti + c1(Ti − Tj) + c2(Ti − Tj)
2 + c0 + (c3 + c4W)(1 − ε) + (c5 + c6W)∆ε, (1)

where Ts is the LST (in K), Ti and Tj are at-sensor brightness temperatures (in K), W is the atmospheric
water vapor content (in gcm−2), ε is the mean land surface emissivity, LSE: 0.5·(εi + ε j), and ∆ε is the
LSE difference (εi − ε j). Sub-indices “i” and “j” refer to two different thermal infrared (TIR) bands,
thus leading to the SW algorithm, or to one TIR band but two different view angles (e.g., nadir “n” and
oblique “o” views), thus leading to the DA algorithm. Coefficients c0 to c6 are obtained from statistical
regressions performed over simulated data. This algorithm is physically-based, and it explicitly
includes the atmospheric water vapor (W) content and surface emissivity (LSE). Furthermore, it can
easily incorporate external sources of W and LSE. Input of the emissivity value is calculated using the
normalized difference vegetation index (NDVI) thresholds method (THM) first established by [18]
(Equation (2)). The threshold method is applied on each thermal band (i) because it has a spectral base:

NDVI < NDVIs : εi = ai + biρred,

NDVIs ≤ NDVI ≤ NDVIv : εi = εis(1 − Pv) + εivPv + Ci,

NDVI > NDVIv : εi = 0.99,

(2)

where ρred is the reflectance at the red band, εs and εv are reference values of surface emissivity for soil
and vegetation, respectively, C is a cavity term for rough surfaces that depends on geometrical factors
(and it is neglected for operational purposes or assumed constant; in the present case is assumed to be
0.005 [21]), and Pv is the fractional vegetation cover, which can be obtained from the scaled NDVI [22]:

Pv =
NDVI − NDVIs

NDVIv − NDVIs
, (3)

where NDVI is the current value and NDVIs and NDVIv are reference values of NDVI for bare soil
and fully vegetated surfaces, respectively. Values of 0.15 for NDVIs and 0.99 for NDVIv are considered
representative of global conditions [23]. A simplified version of the NDVI-THM method is selected
because it requires reduced computing time and allows contemporary implementation. More details
ca be found in Section 2.2.2 and Equations (5) and (6). It has the advantage that whenever improved
products of W and LSE are available, the potential LST product generated with this algorithm can be
easily reprocessed to provide a new product version.

Atmospheric Correction and Cloud Screening

It is important to highlight again that the scope of this paper is not to provide a detailed description
of the atmospheric correction and the cloud screening methodologies. In the SEN4LST project
documentation, there is a review and adaptation of both approaches for potential application on
S3. The surface reflectances retrieved from the MERIS and AATSR sensors are necessary for a correct
estimation of the LSE using the NDVI-THM method introduced before [18]. The water vapour content
is also a required input (see Equation (1)). The effects of aerosols and absorbing gases are modelled
as well, scattering reflectance determination being a key issue for a good atmospheric correction.
The great variability of the aerosol scattering induces a high uncertainty in the derivation of surface
reflectance. The magnitude of the scattering increases with view angle, that is, the off-nadir view
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of AATSR and SLSTR—and in high latitudes the nadir view—constitutes a very important factor,
especially for S3 due to their wider swath width. The method employed in SEN4LST is based in
a modification of the synergy approach ([24,25]). The output is the aerosol optical depth at reference
wavelength, an estimate of the aerosol model and the Angstrom coefficient, and the atmospherically
corrected reflectance. Many of the ideas and approaches performed in the MERIS/AATSR Synergy
project are applied here ([26,27]). For instance, the cloud screening strategy is taken from the SYNERGY
and Globalbedo cloud masks, which generates a cloud probability from an ensemble of multilayer
perceptron artificial neural networks using inputs from both MERIS and AATSR. Other approaches
were also tested in the SEN4LST project [7], like the Bayesian approach by [28].

2.2.2. Description of the LST Processor in BEAM

The LST processor is configured in BEAM using a two-step procedure, composed of several
sub-processors. First, the surface directional reflectance (SDR) are retrieved using the synergy
derivation approach mentioned in Section 2.2.1. Second, the land surface temperatures are calculated
applying the LST algorithms available in the software, derived from the SEN4LST project.

Surface Directional Reflectance: The Synergy Derivation Approach

Figure 2 shows a screen-shot of the SDR process to extract the reflectances used as input in the
LST algorithm.

Figure 2. Screen-shot of the SDR module in the BEAM LST plug-in.

The first sub-process consists of the collocation of the MERIS and AATSR images (Figure 3).
As input for the cloud screening and atmospheric correction steps within the Surface Directional
Reflectance (SDR) retrieval, a collocated MERIS/AATSR product is generated from a MERIS L1b
product and a corresponding—overlapping in time and space—AATSR L1b product. This new
collocation product contains a copy of all components of the master product, i.e., band data, tie-point
grids, flag coding, bitmask definitions, and metadata. The MERIS L1b is treated as the “master”
product, the AATSR L1b as the “slave” product. The non-overlapping areas of the master and slave
products are cropped, the band data of the slave product are then re-sampled into the geographical
raster of the master product, applying a nearest-neighbour re-sampling. Consequently, the collocation
algorithm requires accurate geo-positioning information for both master and slave products. Since the
MERIS L1b contains radiances, but the AATSR L1b contains Top Of Atmosphere (TOA) reflectances,
a radiance-to-reflectance conversion is applied to the MERIS data.
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Figure 3. Logical flow of the L1b product collocation.

This correction is done using the MERIS Radiometric Correction Tool available in BEAM, which
uses a simple equation:

ρ0 =
πL0

F0 cos(θs)
, (4)

Table 1 shows the variables of Equation (4):

Table 1. Variables of Equation (4).

Variable Name Unit

F0 Solar irradiance at TOA Wm−2nm−1

L0 Radiance at TOA Wm−2sr−1nm−1

ρ0 Reflectance at TOA dl
θs Solar zenith angle rad

Both radiances and converted reflectances are stored in the collocated product. The tie points are
taken from the MERIS (master) product as they are, whereas the AATSR tie points are resampled onto
the MERIS grid and stored as regular bands. In the SEN4LST processor realization, the collocation
product serves as an intermediate result, and it is not written to disk. After the collocation follows
the cloud screening, whose main objective is to accurately detect pixels contaminated by clouds and
exclude these from LST retrieval. In summary, the cloud screening algorithm follows [26,27]: first,
a feature extraction and selection based on meaningful physical features is carried out (clouds are
bright, white, high, etc.). Then, a supervised pixel-based feature classification, based on simulated
TOA radiances and corresponding cloud optical thickness from radiative transfer models (RTMs) and
on the real MERIS and AATSR data from a manually labeled training set, is applied to these features
providing the pixel label (cloud or cloud free) and the cloud abundance. Finally, an image-based
post-processing (such as removal of coastline artifacts) is applied to the classified image to refine the
cloud products. The resulting product contains all bands and tie points copied from the collocated
product, and an additional flag band indicating cloudy pixels. In the SEN4LST processor realization,
the cloud screening product serves as an intermediate result, and it is not written to disk.

The atmospheric correction aims at making use of the angular and spectral sampling available
from MERIS and AATSR in order to develop an improved algorithm for atmospheric correction
(including aerosol retrieval) over land. Basically, the problem of land aerosol and SDR retrieval
represents an optimization subject to multiple constraints. Therefore, the underlying algorithm is
recursive and takes as input TOA reflectance data for the solar reflective AATSR bands at both nadir and
backward views (resulting in a total of eight channels), and the 14 MERIS bands at all non-absorbing
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channels (excluding O2 absorption band). All of these bands are available from the cloud screening
output product described in the previous paragraph. SDRs for all input channels are calculated using
look-up tables (LUTs). The SDRs depend on initial aerosol parameters, sun-sensor geometry, and
surface pressure. This atmospheric correction retrieval scheme is illustrated in Figure 4.

Figure 4. Logical flow of the retrieval of surface reflectances and aerosol properties.

The output of the algorithm are aerosol optical depth (AOD) at a reference waveband (550 nm)
Angstrom exponent (an exponent that expresses the spectral dependence of aerosol optical thickness
(τ) with the wavelength of incident light (λ). The spectral dependence of aerosol optical thickness
can be approximated (depending on size distribution) by τa = βλα, where α is Angstrom exponent
(β = aerosol optical thickness at 1 µm)), an estimate of the aerosol model, and atmospherically corrected
surface reflectances (SDRs) for all bands used. Moreover, an error metric is provided where a low value
of this metric corresponds to a set of surface reflectances (and hence atmospheric profile) that is realistic.
Consequently, the algorithm needs to be applied recursively until an optimal aerosol/SDR solution is
retrieved. However, although aerosol parameters and SDRs are available as output at the same time,
the retrieval is in practice split into an aerosol and SDR part for performance reasons. As the spatial
variation of aerosol in the atmosphere is generally much lower than the variation of the reflectances,
the iterative retrieval scheme is first applied on a coarser grid, keeping just the optimal aerosol result.
In return, this result is downscaled to the original resolution, and the algorithm is applied just one
more time to derive the corresponding SDR result. For the final LST retrieval, only these SDRs will
be used, and the aerosol quantities are not explicitly needed. The SDR result product contains all the
flag bands, the “latitude” and “longitude” tie point grids, and the AATSR brightness temperatures
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copied from the input product, and as additional bands the SDRs for MERIS wavelengths 620 nm
and 753 nm, and the SDRs for AATSR nadir/forward at wavelengths 555 nm and 659 nm (Table 2).
In the SEN4LST processor realization, the SDR product serves as final result of the first major processor
module (“SEN4LST SDR Synergy Processor”), and it is written to disk.

Table 2. SDR product dataset overview.

Dataset Band Name Unit Dimension #Bytes

All flag bands l1_flags_MERIS dl 5*NL*NC*4
from MERIS/AATSR confid_flags_nadir_AATSR
collocation product confid_flags_fward_AATSR

cloud_flags_nadir_AATSR
cloud_flags_fward_AATSR

Cloud flag cloud_flags_synergy dl NL*NC*4
Latitude and longitude latitude deg 2*NL*NC*4

tie point grids longitude deg 2*NL*NC*4
from MERIS L1 dl
AATSR nadir btemp_nadir_1200_AATSR K 3*NL*NC*4

brightness btemp_nadir_1100_AATSR K 3*NL*NC*4
temperature btemp_nadir_0370_AATSR K 3*NL*NC*4

AATSR forward btemp_fward_1200_AATSR K 3*NL*NC*4
brightness btemp_fward_1100_AATSR K 3*NL*NC*4

temperature btemp_fward_0370_AATSR K 3*NL*NC*4
MERIS surface SynergySDR_620_MERIS dl 2*NL*NC*4

reflectance SynergySDR_753_MERIS dl 2*NL*NC*4
at 620 nm and 753 nm

AATSR nadir SynergySDR_nadir_555_AATSR dl 2*NL*NC*4
surface reflectance SynergySDR_nadir_659_AATSR dl 2*NL*NC*4

at 555 nm and 659 nm
AATSR forward SynergySDR_fward_555_AATSR dl 2*NL*NC*4

surface reflectance SynergySDR_fward_AATRS dl 2*NL*NC*4
at 555 nm and 659 nm

Note: confid = confidence, btemp = brightness temperature, fward = forward, SDR= surface
directional reflectance, dl = dimensioless, NL = number of columns in a scan line, NC = number of
scan lines in a dataset.

Land Surface Temperature Retrieval

Necessary input variables for the LST retrieval are the atmospheric water vapour, the surface
emissivity, and regression coefficients (Figure 5).

The atmospheric water vapour W is obtained from the MERIS Level 2 product corresponding
to the given L1b input. This product gives the total column water vapour per pixel in gcm−2. If such
a product is not available, the water vapour is set to a constant value of W = 2.0 gcm−2 within
the retrieval.

Input surface emissivities into the LST algorithms are retrieved using the NDVI Thresholds
Method described in Section 2.2.1. The MERIS/OLCI bands selected for the calculation of the NDVI
are 560 nm and 665 nm. The NDVI Thresholds Method uses certain NDVI values (minimum/maximum
thresholds) to identify the range between pure soil pixels (NDVImin) and pixels of full vegetation
(NDVImax). For NDVImin and NDVImax fixed values might be assumed (e.g., 0.2 and 0.5, as suggested
by [6]. However, the current processor uses a more dynamic approach by taking the minimum and
maximum NDVI from the given scene. Then, a fractional vegetation cover (FVC or Pv) can be computed
(Equation (3)) and used in the derivation of the emissivity:

εB1 = 0.982Pv + 0.97(1.0 − Pv) + CB1, (5)
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εB2 = 0.984Pv + 0.977(1.0 − Pv) + CB2, (6)

with the cavity terms CB1 and CB2 both set to 0.005. B1 makes reference to the thermal band at 11 µm
and B2 to the band at 12 µm. The arithmetic mean of the emissivities for the two bands is taken as
final emissivity:

ε = 0.5(εB1 + εB2). (7)

Both split-window and dual-angle algorithms use a set of regression coefficients ci, i = 0, .., 6,
for LST retrieval, as explained in [7] and mentioned in Section 2.2.1. These coefficients are obtained
from simulated data using 61 atmospheric profiles representative of different atmospheric conditions.
The values of these coefficients are shown in Table 3.

Figure 5. Screen-shot of the LST retrieval module in the BEAM LST plug-in.

Table 3. Algorithm coefficients for the DA and the SW approaches for AATSR.

Algorithm Coefficient Name Coefficient Value

Dual-Angle

C0 −0.441

(11 µm)

C1 1.790
C2 0.221
C3 64.26
C4 −7.60
C5 −30.18
C6 3.14

Split-Window

C0 −0.268

(11 & 12 µm)

C1 1.084
C2 0.277
C3 45.11
C4 −0.73
C5 −125.0
C6 16.70
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The OLCI/SLSTR Simulation Mode

The SEN4LST processor provides as a second synergetic approach the combination of the OLCI
and SLSTR instruments on-board Sentinel-3. Although this option must be regarded as experimental
and has space for improvements, it allows a full LST retrieval from OLCI/SLSTR surface reflectance
simulation datasets. With respect to the project frame, this is an “add-on” feature of the processor,
but this extension is regarded as very useful toward possible Sentinel-3 applications in the future.
The geolocated simulation dataset tested consisted of OLCI and SLSTR products given in ENVI format.
This dataset was generated from SEN3EXP input data ([9,29]). There are separate files for OLCI
(radiances, 300 m resolution), SLSTR (radiances and brightness temperatures, nadir and oblique, 500 m
and 1 km resolution). For each of these products, a corresponding “coordinated” product is available,
providing the geo-information as latitude/longitude bands. Four sub-scenes were simulated with
a different geometry, indicated by a file suffix. There was a second type of simulation input data, and
the products are given in ENVI format and are based on MODTRAN simulations with SEN3EXP input
data being resampled to 500 m [30]. The products provide SLSTR nadir radiances and nadir/oblique
brightness temperatures from given LST and emissivity. For more detail on the contents of these
products, refer to [31]; and for the validation results, please refer to [32].

2.2.3. Application to Sample Images

As a demonstration of the potential of the SEN4LST product for climate studies, a monthly LST
composite over the Iberian Peninsula for July 2009 is shown in Figure 6. The LST is generated with
the SW algorithm using MERIS/AATSR imagery. This figure clearly shows the different LST patterns
over Northern and Southern Spain, with lower temperatures in the North and higher temperatures in
the South.

Figure 6. Monthly LST for July 2009 over the Iberian Peninsula.
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Figure 7 shows an image showing the LST (derived from the SW algorithm) for all of Europe over
a period of one month (July 2003). The spatial resolution is 3 km. The colour bar and histogram are in
the lower left corner. During that summer month, many cloud-free samples for almost of Europe were
available, except for Ireland and a few small areas over Eastern Europe.

Figure 7. Monthly LST for July 2003 over the Europe, screen-shot of VISAT.

3. Discussion

The main objective of the SEN4LST project has been to exploit the synergy between S3/OLCI and
S3/SLSTR data to improve LST retrievals by proposing new methodologies, but also taking advantage
of the heritage of the AATSR LST standard product and the combination of MERIS/AATSR (Synergy
Project). Despite several candidate methodologies having been identified, it has been concluded
that the split-window method stands out for its simplicity and good performance and it has been
selected to be part of the processor. The SW has the input emissivity estimated from a simple approach
based on the NDVI (NDVI-THM). This algorithm provided better results in the validation made using
simulated and in situ data than the standard AATSR L2 product ([7,32]). A complete database of
in situ measurements, satellite imagery and simulated data was compiled. The SEN4LST Processor
was also developed and implemented in BEAM, which allows the processing of the simulated data
and the processing of MERIS/AATSR imagery to derive the new LST products. The results of the
project have demonstrated that the LST candidate algorithm developed in the framework of the
SEN4LST project can be applied in an operational processing chain to generate LST products, with
potential improvements to the existing AATSR Operational product. A second synergistic approach
in the processor allows for the combination of the OLCI and SLSTR instruments on-board Sentinel-3.
Although this option must be regarded as experimental and has room for improvements, it allows a full
LST retrieval from OLCI/SLSTR surface reflectance simulation datasets. One point under discussion
in the scientific community that has not been faced here is the angular dependence of the proposed
algorithm from the observation zenith angle. This is a complex matter over land and so far there is not
an operational solution. Some solutions like the one in [33] are still to be quantified in absolute and
relative terms. Maybe to follow some of the normalisation approaches made over ocean (BRDF) could
be the path to follow.
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3.1. Potential Improvements and Updates to the Algorithm

During the processing of the SEN4LST product and analysis of results, some potential
improvements to the algorithm have been identified:

1. SW coefficients were obtained from simulated data using 61 atmospheric profiles representative
of different atmospheric conditions. A new more completed atmospheric database has been
recently constructed with around 5000 atmospheric profiles, which could be used to compute
a new set of algorithm coefficients. It would be also possible to separate between daytime and
nighttime atmospheric profiles, thus providing a set of SW coefficients for daytime acquisitions
and another set of SW coefficients for nighttime acquisitions.

2. Extension of the SEN4LST product to nighttime acquisitions: the SEN4LST product was generated
only for daytime acquisitions because the inputs to the algorithm, emissivity and water vapour,
are generated from visible and near-infrared (VNIR) data acquired by the MERIS sensor (and
VNIR data is only available for daytime acquisitions). SEN4LST product for nighttime acquisitions
could be generated by using the same emissivity maps obtained from the daytime acquisitions,
since it could be a good approximation. In the case of the atmospheric water vapour, whose
variability is higher during the daily cycle, it would be preferable to use some external auxiliary
data (i.e., re-analysis). LST methods based on day/night pairs, using the 3.7 µm of SLSTR
observations could also be taken into account in future research.

3. Synergy between high resolution and low resolution data for surface emissivity retrieval: in
the framework of the SEN4LST project a synergy between S2/MSI and S3/OLCI+SLSTR was
proposed. However, during the realization of the project it was accorded that “operational and
near-real-time processing” should be a main driver to select the best candidate algorithm [34].
For this reason, synergy was focused on OLCI and SLSTR, since both sensors are on board the
same platform.

3.2. Potential Improvements and Updates to the Processor

The main action concerning the potential improvement of the processor would be its transference
to the SNAP platform and its inclusion as a plug-in in the Sentinel-3 Toolbox. This could be
accompanied by its total adaptation to Sentinel-3 OLCI and SLSTR instruments and the possibility
of using it in an operational mode. In terms of adaptability, it would be convenient to be able to use
the nighttime SLSTR data, merged with daylight visible data for the NDVI retrieval. This simple add
would extend the analysis of the results to a complete daily cycle and make the observations more
accurate and coherent.

Supplementary Materials: Access to the processor and the OLIC/SLTSR simulation can be provided by the
authors if there is an expression of interest.
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