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Abstract:



This article aims to provide new results about the intraday degree sequence distribution considering phone call network graph evolution in time. More specifically, it tackles the following problem. Given a large amount of landline phone call data records, what is the best way to summarize the distinct number of calling partners per client per day? In order to answer this question, a series of undirected phone call network graphs is constructed based on data from a local telecommunication source in Albania. All network graphs of the series are simplified. Further, a longitudinal temporal study is made on this network graphs series related to the degree distributions. Power law and log-normal distribution fittings on the degree sequence are compared on each of the network graphs of the series. The maximum likelihood method is used to estimate the parameters of the distributions, and a Kolmogorov–Smirnov test associated with a p-value is used to define the plausible models. A direct distribution comparison is made through a Vuong test in the case that both distributions are plausible. Another goal was to describe the parameters’ distributions’ shape. A Shapiro-Wilk test is used to test the normality of the data, and measures of shape are used to define the distributions’ shape. Study findings suggested that log-normal distribution models better the intraday degree sequence data of the network graphs. It is not possible to say that the distributions of log-normal parameters are normal.
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1. Introduction


Most studies related to phone call network graphs are based on mobile call data [1,2,3,4,5,6,7] rather than on landline phone call data [8,9,10,11]. Network graphs are seen as static, and rarely [11,12] are they pursued in temporal studies. A local telecommunicating data set from Albania was used in [10] to construct a static network graph. The tails of the empirical distributions were analyzed on the greatest connected component related to: the number of phone calls per client, the total duration of calls per client in seconds, and the distinct number of calling partners per client. The network graph was considered in both cases, directed and not directed. A comparison between power law (PL) and log-normal (LN) fit was made in the tail of the distributions, but it could not be concluded which of them had a determinate dominance over the other. Tail analysis in vertex degree or vertex strength distribution in communication network graphs is important because it gives information about hubs and rare events. Hubs are highly connected vertices, which are hypothesized to act as focal points for the convergence or divergence of information.



Considering the network graph as static, and the concentration only at its greatest connected component may have influenced our findings in [10]. This study aims to provide new results about the intraday degree sequence distribution considering phone call network graph evolution in time.



Phone call communication relations have a survival time. Network graph evolution in time is related to the network graph’s topology state, which is in a continuous change. A day’s snapshot is used to show the topology state of the network graph in a time point.



This article tackles the following problem. Given a large amount of landline phone call data records, what is the best way to summarize the distinct number of calling partners per client per day? In order to answer this question, I construct an undirected phone call network graphs series, with all network graphs of the series simplified. Further, a longitudinal temporal study is made on this network graph series related to the degree distributions. PL and LN are compared on each of the degree sequences of the network graph series.



The vertex degree is related to the number of distinct callers and the number of distinct subjects that are called by an active phone client. This relation is conditioned by the fact that the network graphs are undirected and simplified. The analysis aimed to determine the distribution that yielded a better fit to model the data related to the degree sequence in each time step. It is shown that the LN model is better, mainly because it covers a large amount of data, and it was determined by the tests to be more reliable than the PL model. I also considered the distributions’ shape of the LN parameters and described them. The results show that the distributions of LN parameters were not normal.




2. Materials and Methods


2.1. Data Preparation


The data set is provided by a local telecommunicating operator positioned in the south of Albania, which covers approximately 4% of the landline market in the country. Clients’ identities were substituted with numbers to conserve privacy (see Supplementary Material). The study is based only on phone calls inside the operator’s client network, and not outside it. The reason for this restriction is based on the evidence that phone number data which did not belong to the operator would be incomplete.



Phone calls took place in November 2014. On 28 November, Albania celebrates Independence Day, and on the 29th, Liberation Day. From a total of 81,591 phone calls, 41, which were without call durations, and 7442, which lasted less than 10 s, were excluded from the study. The reason for this exclusion is that these calls were lost calls or wrong numbers and might have affected the accuracy of the results. Thus, the total data set used for the study was 90.83% of the initial data set. Active clients are considered only those that were engaged in at least in one phone call (made or received) that lasted at least 10 s, amounting to a total number of 3287. Multiple phone call relations between any two clients were treated as single phone call relations. This statistical technique, about filtering and extracting the best sample that would reflect the global calling patterns related to the number of calling partners per client, has been applied by other authors in telecommunication data [1,2].



Degree distribution in the communication system was studied by observing 30 network graphs, which were constructed by splitting the data set for each day of the month. The network graphs are denoted by [image: there is no content]. The vertex set (active phone clients) is [image: there is no content], and the edge set is [image: there is no content] ([image: there is no content] is the network graph of the first day of the month, [image: there is no content] for the second day, and so on). Each edge represents a communication relation between two phone clients. Thus, if [image: there is no content] and [image: there is no content] are vertices, then an undirected edge [image: there is no content] is between them only if [image: there is no content] has made or received at least one phone call from [image: there is no content] or the reverse. Multiple relations between two vertices are simplified as only one edge. In Table 1, the topology techniques various authors have used are mentioned. The table includes the following information: the type of telecommunication data, the time interval, the relation’s direction, the relation’s mutuality, the relation’s simplification, and the relation’s weight. There is no precise topology technique on how to treat mobile or landline data. Variability depends on the goal of the scientific research.



Table 1. A general overview of topology statistical techniques used to analyze phone call data. Abbreviations: m: months; w: weeks; d: days; -: not applicable.







	
Authors

	
Data

	
Time

	
Directed

	
Mutual

	
Simplified

	
Weighted






	
Nanavati et al. [1,2]

	
mobile

	
1 w, 1 m

	
yes

	
no

	
yes

	
no




	
Seshadri et al. [3]

	
mobile

	
2 m

	
no

	
yes

	
yes

	
yes




	
Dong et al. [4]

	
mobile

	
1 m

	
no

	
no

	
yes

	
no




	
Onnela et al. [6,7]

	
mobile

	
18 w

	
no

	
Both (yes, no)

	
-

	
yes




	
Ye et al. [12]

	
mobile

	
10 d

	
yes

	
no

	
no

	
no




	
Noka (Jani) & Hoxha [5]

	
mobile (calls, SMS)

	
1 m

	
no

	
yes

	
-

	
yes




	
Aiello et al. [8,9]

	
landline

	
1 d

	
yes

	
no

	
no

	
no




	
Gjermëni & Ramosaco [10]

	
landline

	
1 m

	
Both (yes, no)

	
no

	
yes

	
yes










[image: there is no content] is defined as the temporal network graph series. The network graph [image: there is no content] is constructed based only on the data of the i-th day. Vertex degree [13] in a network graph is defined as the number of edges incident on that vertex. Let [image: there is no content] denote the degree of the vertex [image: there is no content] and, with [image: there is no content], the vertex degree sequence of [image: there is no content]. The fraction of vertices [image: there is no content] that have [image: there is no content] is denoted by [image: there is no content]. This can also be interpreted as—the probability that a vertex chosen uniformly at random has a degree equal to [image: there is no content]. The set of [image: there is no content] defines the degree distribution of the network graph.




2.2. Temporal Statistical Analysis


At first, for each of the network graphs of the series [image: there is no content], the vertex degree sequence [image: there is no content] was computed. The normality of [image: there is no content] was controlled. Thus, a histogram and Q–Q plot were constructed. The Shapiro-Wilk test was performed on the degree sequence, and the basic statistics were calculated. If the [image: there is no content]-value of the test [14,15,16] was less than chosen alpha level 0.05, it was considered as evidence that the data did not come from a normally distributed population.



Skewness [17] and kurtosis were used to determine whether the empirical distribution was heavy-tailed. Increasing kurtosis was associated with the “movement of probability mass from the shoulders of a distribution into its centre and tails” [18]. Leptokurtic distributions (kurtosis values are greater than 3) partly comprise heavy-tailed distributions [19]. Probability distribution functions that decay slower than an exponential are called heavy-tailed distributions. According to [20], a distribution is heavy-tailed if and only if its tail function is a heavy-tailed function. A non-negative function is said to be heavy-tailed if it fails to be bound by a decreasing exponential function.



PL and LN distributions are heavy-tailed. These distributions are chosen to be fitted on data for [image: there is no content], because it is not always possible to get a good fitting for all the data. A random variable [image: there is no content] follows a PL distribution for [image: there is no content] if its probability mass function [image: there is no content] is


[image: there is no content]








where [image: there is no content] is the general [image: there is no content]Riemann function. [image: there is no content] is the scaling parameter of the distribution. A random variable [image: there is no content] follows a LN distribution for [image: there is no content] if


[image: there is no content]








[image: there is no content] and [image: there is no content] are parameters of the distribution. The estimation procedure is based on the maximum likelihood method [21,22]. This technique is also applied by other authors [23].



The Kolmogorov–Smirnov statistic (KS) is used to determine goodness-of-fit, and the [image: there is no content]-value based on 2500 instances of bootstrapping is computed for each of the fittings. Small KS values, and [image: there is no content] suggest that the fitted distribution is a plausible one for the set of the data, such that [image: there is no content]. If [image: there is no content], then it is said that the data does not come from either a PL or an LN distribution. A reliable [image: there is no content]-value is obtained when the number of data in the tail of the distribution, [image: there is no content], is greater than 100 for PL and greater than 300 for LN [21,22].



When both PL and LN are plausible models for the data, a Vuong log likelihood test [24] between them is computed. The sign of the log likelihood ratio, [image: there is no content], can be reliably used to determine which of the models is better than the other if the [image: there is no content]-value is less than 0.1. Otherwise, both models are considered equally plausible.



After that, a box plot description of temporal change on the estimated parameters of the distributions [image: there is no content], [image: there is no content] and their estimated [image: there is no content] for [image: there is no content] is constructed. Three cases are considered:

	
Case 1: the fitting made from 1;



	
Case 2: the fitting made from the estimated [image: there is no content] of each distribution;



	
Case 3: the fitting made from the [image: there is no content] where both distributions are plausible.








Furthermore, a shape description of parameter distributions of the best-fitted degree distribution models is made. A visualization of the log–log plots of the complementary cumulative distribution function (CCDF) ([image: there is no content]) is provided for Case 1, 2, and 3 at [image: there is no content]



The statistical computation related to these distributions are made based on the following packages in the R statistical computation platform [25]: poweRlaw [26], fBasics [27], igraphdata [28], and igraph [29].





3. Results


After constructing the undirected landline phone call network graphs series, each of the network graphs of the series is simplified. Further, the data set I analyze here is the degree sequence [image: there is no content] of each [image: there is no content] where [image: there is no content]. In this section, the results of the study are presented. They are divided into two subsections.



3.1. Descriptive Analysis of Degree Values


In Figure 1 and Table 2, an illustration for the case of [image: there is no content] and [image: there is no content] related to the histogram and Q–Q plot and the basic statistics for the set of degree values are shown. For all [image: there is no content], based on the Q–Q plots, a strong deviation from the straight line can be seen. Moreover, after running the Shapiro-Wilk normality test in each of them, the [image: there is no content]-values were always less than [image: there is no content]. This means that the data did not come from a normal distribution.


Figure 1. These are the histograms and the Q–Q plots of degree values of [image: there is no content] and [image: there is no content]. Histogram axes are logarithmic.



[image: Data 02 00033 g001]






Table 2. A summary of some basic statistics for the set of degree values of [image: there is no content] and [image: there is no content].







	
Basic Stats

	
[image: there is no content]

	
[image: there is no content]






	
Minimum

	
1

	
1




	
First Quartile

	
1

	
1




	
Median

	
2

	
2




	
Third Quartile

	
3

	
3




	
Maximum

	
66

	
49




	
Mean

	
2.79

	
2.77




	
Skewness

	
7.25

	
5.77




	
Kurtosis

	
108.41

	
57.91




	
Mode

	
1

	
1










Furthermore, for all [image: there is no content],

	
the degree sequence is unimodal;



	
the mode is 1;



	
mean [image: there is no content] median [image: there is no content] mode;



	
the peak of the data is on the left and the right tail is longer;



	
skewness is greater than 1;



	
kurtosis is greater than 3.








This means that, in all degree sequences [image: there is no content], a highly right (positively) skewed distribution is present. They are leptokurtic and heavy-tailed.




3.2. Statistical Analysis of Fitted Distributions


The results of the estimated [image: there is no content] and [image: there is no content] for the PL distribution are given in Table 3. Information about the total number of data [image: there is no content] in [image: there is no content], as well as the quantity of the data that are in the tail of the distribution [image: there is no content], is also given. Based on [image: there is no content]-values where [image: there is no content], PL is rejected only once out of 30 ([image: there is no content]). The [image: there is no content]-value is not reliable in six cases ([image: there is no content]), since [image: there is no content].



Table 3. Parameter estimates and the goodness-of-fit (KS) for the power law (PL) distribution.







	
[image: there is no content]

	
n

	
PL




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
1597

	
5 (245)

	
3.27

	
0.02 (0.665)




	
2

	
1428

	
6 (153)

	
3.95

	
0.04 (0.274)




	
3

	
1561

	
5 (276)

	
3.07

	
0.03 (0.195)




	
4

	
1534

	
8 (108)

	
3.78

	
0.03 (0.813)




	
5

	
1522

	
7 (117)

	
3.64

	
0.03 (0.459)




	
6

	
1530

	
7 (132)

	
3.49

	
0.03 (0.509)




	
7

	
1531

	
9 (74)

	
3.66

	
0.02 (0.895)




	
8

	
1560

	
6 (199)

	
3.37

	
0.03 (0.388)




	
9

	
1487

	
7 (110)

	
3.64

	
0.03 (0.801)




	
10

	
1564

	
9 (76)

	
3.69

	
0.03 (0.846)




	
11

	
1545

	
7 (131)

	
3.67

	
0.03 (0.819)




	
12

	
1531

	
8 (97)

	
3.46

	
0.04 (0.274)




	
13

	
1547

	
7 (121)

	
3.58

	
0.04 (0.359)




	
14

	
1552

	
7 (133)

	
3.69

	
0.02 (0.988)




	
15

	
1555

	
9 (79)

	
3.88

	
0.04 (0.569)




	
16

	
1554

	
8 (90)

	
4.11

	
0.02 (0.992)




	
17

	
1555

	
6 (195)

	
3.43

	
0.03 (0.483)




	
18

	
1560

	
7 (126)

	
3.42

	
0.03 (0.653)




	
19

	
1494

	
5 (235)

	
3.24

	
0.03 (0.204)




	
20

	
1568

	
5 (257)

	
3.31

	
0.04 (0.062)




	
21

	
1523

	
7 (137)

	
3.61

	
0.04 (0.192)




	
22

	
1505

	
7 (130)

	
3.49

	
0.03 (0.489)




	
23

	
1479

	
7 (117)

	
3.87

	
0.04 (0.377)




	
24

	
1512

	
5 (247)

	
3.14

	
0.02 (0.682)




	
25

	
1559

	
5 (260)

	
3.15

	
0.03 (0.204)




	
26

	
1545

	
10 (60)

	
3.78

	
0.03 (0.702)




	
27

	
1530

	
6 (163)

	
3.35

	
0.04 (0.130)




	
28

	
1505

	
6 (176)

	
3.18

	
0.04 (0.253)




	
29

	
1524

	
7 (127)

	
3.49

	
0.03 (0.528)




	
30

	
1472

	
6 (151)

	
3.58

	
0.02 (0.819)










The results for the estimated parameters, [image: there is no content], and [image: there is no content] for the LN, information about the total number of data [image: there is no content] in [image: there is no content], and the quantity of data in the tail of the distribution [image: there is no content] is given in Table 4. Based on [image: there is no content]-values ([image: there is no content]), LN is rejected three times out of 30 ([image: there is no content]). The [image: there is no content]-value is always reliable, since[image: there is no content] in all the cases. For each[image: there is no content], the KS value of LN is always lower than the corresponding KS value of PL.



Table 4. Parameter estimates and the goodness-of-fit (KS) for the log-normal distribution.







	
[image: there is no content]

	
n

	
LN




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
1597

	
1 (1597)

	
0.48

	
0.93

	
0.01 (0.196)




	
2

	
1428

	
1 (1428)

	
0.52

	
0.88

	
0.01 (0.016)




	
3

	
1561

	
3 (619)

	
0.38

	
0.99

	
0.01 (0.793)




	
4

	
1534

	
2 (906)

	
0.83

	
0.84

	
0.01 (0.239)




	
5

	
1522

	
2 (913)

	
0.79

	
0.81

	
0.01 (0.426)




	
6

	
1530

	
1 (1530)

	
0.54

	
0.93

	
0.01 (0.184)




	
7

	
1531

	
4 (400)

	
0.12

	
1.03

	
0.01 (0.703)




	
8

	
1560

	
1 (1560)

	
0.56

	
0.95

	
0.01 (0.251)




	
9

	
1487

	
1 (1487)

	
0.52

	
0.90

	
0.00 (0.948)




	
10

	
1564

	
1 (1564)

	
0.50

	
0.95

	
0.00 (0.876)




	
11

	
1545

	
2 (932)

	
0.71

	
0.86

	
0.01 (0.424)




	
12

	
1531

	
1 (1531)

	
0.49

	
0.96

	
0.01 (0.037)




	
13

	
1547

	
1 (1547)

	
0.53

	
0.92

	
0.01 (0.653)




	
14

	
1552

	
2 (949)

	
0.84

	
0.81

	
0.01 (0.247)




	
15

	
1555

	
1 (1555)

	
0.47

	
0.97

	
0.00 (0.969)




	
16

	
1554

	
2 (910)

	
0.78

	
0.81

	
0.01 (0.556)




	
17

	
1555

	
2 (926)

	
0.72

	
0.88

	
0.01 (0.413)




	
18

	
1560

	
4 (397)

	
−0.52

	
1.16

	
0.01 (0.895)




	
19

	
1494

	
1 (1494)

	
0.51

	
0.92

	
0.00 (0.898)




	
20

	
1568

	
1 (1568)

	
0.56

	
0.90

	
0.01 (0.162)




	
21

	
1523

	
1 (1523)

	
0.57

	
0.93

	
0.02 (0.009)




	
22

	
1505

	
2 (894)

	
0.74

	
0.87

	
0.01 (0.464)




	
23

	
1479

	
2 (859)

	
0.81

	
0.80

	
0.01 (0.223)




	
24

	
1512

	
1 (1512)

	
0.5

	
0.95

	
0.01 (0.622)




	
25

	
1559

	
1 (1559)

	
0.48

	
0.96

	
0.01 (0.379)




	
26

	
1545

	
1 (1545)

	
0.47

	
0.99

	
0.01 (0.467)




	
27

	
1530

	
3 (577)

	
0.10

	
1.03

	
0.01 (0.871)




	
28

	
1505

	
1 (1505)

	
0.52

	
0.95

	
0.01 (0.590)




	
29

	
1524

	
2 (917)

	
0.66

	
0.89

	
0.01 (0.740)




	
30

	
1472

	
2 (882)

	
0.74

	
0.80

	
0.01 (0.488)










Information about the LN and PL distribution, for cases where both are plausible, is shown in Table 5. Since [image: there is no content], it can be said that LN is conditioned by PL. The sign of the log likelihood ratio,[image: there is no content] does not reliably determine which of the models is better than the other, because [image: there is no content]-value is not less than 0.1. In this way, both models are considered equally plausible. “-” denotes cases where no comparison between LN and PL can be made, because they are defined as not plausible when [image: there is no content] ([image: there is no content],[image: there is no content]).



Table 5. Results of the Vuong log likelihood ratio test [image: there is no content] for LN and PL.







	
[image: there is no content]

	
LN Conditioned by PL

	
LN vs. PL




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
5 (245)

	
−3.36

	
1.59

	
0.516

	
0.606




	
2

	
-

	
-

	
-

	
-

	
-




	
3

	
5 (276)

	
−0.02

	
1.08

	
1.232

	
0.218




	
4

	
8 (108)

	
−490.96

	
13.36

	
0.268

	
0.788




	
5

	
7 (117)

	
−48.44

	
4.40

	
0.087

	
0.931




	
6

	
7 (132)

	
−5.14

	
1.77

	
0.328

	
0.743




	
7

	
9 (74)

	
−10.23

	
2.22

	
0.114

	
0.909




	
8

	
6 (199)

	
−7.20

	
2.03

	
0.253

	
0.8




	
9

	
7 (110)

	
−505.22

	
13.89

	
-0.007

	
0.994




	
10

	
9 (76)

	
−512.04

	
13.85

	
0.424

	
0.671




	
11

	
7 (131)

	
−519.53

	
14.02

	
0.459

	
0.647




	
12

	
-

	
-

	
-

	
-

	
-




	
13

	
7 (121)

	
−123.13

	
7.00

	
0.342

	
0.732




	
14

	
7 (133)

	
−266.38

	
10.02

	
0.052

	
0.958




	
15

	
9 (79)

	
−20.99

	
2.88

	
0.063

	
0.95




	
16

	
8 (90)

	
−440.36

	
11.97

	
−0.032

	
0.975




	
17

	
6 (195)

	
−2.79

	
1.48

	
0.447

	
0.655




	
18

	
7 (126)

	
−1.35

	
1.29

	
0.458

	
0.647




	
19

	
5 (235)

	
−0.21

	
1.07

	
0.928

	
0.353




	
20

	
-

	
-

	
-

	
-

	
-




	
21

	
-

	
-

	
-

	
-

	
-




	
22

	
7 (130)

	
−2.56

	
1.45

	
0.361

	
0.718




	
23

	
7 (117)

	
−5.83

	
1.71

	
0.243

	
0.808




	
24

	
5 (247)

	
−6.89

	
2.09

	
0.399

	
0.69




	
25

	
5 (260)

	
−0.66

	
1.19

	
0.855

	
0.393




	
26

	
10 (60)

	
−490.04

	
13.32

	
0.081

	
0.936




	
27

	
6 (163)

	
−3.12

	
1.55

	
0.0378

	
0.705




	
28

	
6 (176)

	
−0.26

	
1.14

	
0.772

	
0.44




	
29

	
7 (127)

	
−6.08

	
1.88

	
0.185

	
0.85




	
30

	
6 (151)

	
−2.60

	
1.40

	
0.411

	
0.68










Box plots of the temporal change on the estimated parameters of the distributions [image: there is no content], [image: there is no content] and their estimated [image: there is no content] for [image: there is no content] are shown in Figure 2. Case 1 is based on box plots [image: there is no content] and [image: there is no content] Case 2 is based on box plots [image: there is no content] and [image: there is no content]; Case 3 is based on box plots [image: there is no content].


Figure 2. Box plots of temporal changes of [image: there is no content] and parameters [image: there is no content] of the distributions.



[image: Data 02 00033 g002]






It was found that between weekdays, weekends, and holidays, there was no substantial change related to the degree sequence of the network graph. The PL was not rejected in either of the weekends or holidays, but it was not reliable for one of the weekends ([image: there is no content], [image: there is no content]). LN was rejected for one of the weekend days ([image: there is no content]) but was otherwise always reliable. For weekdays, PL and LN models were both rejected and accepted.



Some statistics about the temporal change of LN parameters are given in Table 6. A shape description of the LN parameter distribution is given as follows:

	
[image: there is no content]: In all three cases, [image: there is no content] does not come from a normal distribution, and its shape is described as follows:

	
Case 1: approximately symmetric and platykurtic;



	
Case 2: highly negative skewed and leptokurtic;



	
Case 3: highly negative skewed and platykurtic.








	
[image: there is no content]: In Cases 1 and 2, based on the Shapiro-Wilk test, the normal distribution was not rejected, but it was in Case 3. The shape of the [image: there is no content] distribution is described as follows:

	
Case 1: approximately symmetric and platykurtic;



	
Case 2: moderately skewed and platykurtic;



	
Case 3: moderately skewed and platykurtic.













Table 6. A summary of statistics related on the temporal change of LN parameters.







	
Statistics

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Minimum

	
0.47

	
−0.52

	
−519.53

	
0.88

	
0.80

	
1.07




	
First Quartile

	
0.48

	
0.48

	
−230.57

	
0.93

	
0.87

	
1.46
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Figure 3 shows a visualization of the log–log plots of the CCDF ([image: there is no content]) of the three cases at [image: there is no content] In Case 1, the PL model, when it is fitted from [image: there is no content], is a bad fit for the data; in Case 2, the range of LN fitting is greater than the range of PL fitting; in Case 3, there is no significance difference between the two models.


Figure 3. Visualization of the log–log plots of the complementary cumulative distribution function (CCDF). The dashed lines refer to the CCDF distributions of the LN model and the solid line refers to the PL model.
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4. Discussion


The best way to summarize the distinct number of calling partners per client per day, when considering the evolution of the network graph in time, is via an LN model, even though it was rejected 2 more times than the PL model was. This is based on the evidence that [image: there is no content]-values, which are used to define the LN model as plausible or not, were always reliable. In the PL model fittings, six times out of 30, the [image: there is no content]-values were not reliable. Furthermore, the range of data that is modeled via LN was always greater than that modeled via PL; furthermore, when the tails of each distribution were compared, no significance differences were found. Therefore, it cannot be said that the distributions of the LN parameters are normal. It would be interesting to define a distribution that models the parameters of LN as the best-fitted degree sequence distribution of the network graphs series.








Supplementary Materials


Data records used for this study are available at DOI: 10.13140/RG.2.2.29159.55208/1.





Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Nanavati, A.-A.; Singh, R.; Chakraborty, D.; Dasgupta, K.; Mukherjea, S.; Das, G.; Gurumurthy, S.; Joshi, A. Analyzing the Structure and Evolution of Massive Telecom Graphs. IEEE Trans. Knowl. Data Eng. 2008, 20, 703–718. [Google Scholar] [CrossRef]

	2. 
Nanavati, A.-A.; Gurumurthy, G.-D.; Das, G.; Chakraborty, D.; Dasgupta, K.; Mukherjea, S.; Joshi, A. On the Structural Properties of Massive Telecom Call Graphs: Finding and Implications. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM’06, Arlington, VA, USA, 6–11 November 2006. [Google Scholar]

	3. 
Seshadri, M.; Machiraju, S.; Sridharan, A.; Bolot, J.; Faloutsos, Ch.; Leskovec, J. Mobile Call Graphs: Beyond Power-Law and Lognormal Distributions. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’08, Las Vegas, NV, USA, 24–27 August 2008. [Google Scholar]

	4. 
Dong, Z.-B.; Song, G.-J.; Xie, K.-Q.; Wang, J.-Y. An Experimental Study of Large-Scale Mobile Social Network. In Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, 20–24 April 2009. [Google Scholar]

	5. 
Noka (Jani), E.; Hoxha, F. Comparative Analysis of the Structural and Weighted Properties in Albanian Social Networks. J. Multidiscip. Eng. Sci. Technol. 2016, 3, 4505–4509. [Google Scholar]

	6. 
Onnela, J.-P.; Saramäki, J.; Hyvӧven, J.; Szabó, G.; Lazer, D.; Kaski, K.; Kertész, J.; Barabási, A.-L. Structure and Tie Strengths in Mobile Communication Networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7332–7336. [Google Scholar] [CrossRef] [PubMed]

	7. 
Onnela, J.-P.; Saramäki, J.; Hyvӧnen, J.; Szabó, G.; Argollo de Mendez, M.; Kaski, K.; Barabási, A.-L.; Kertész, J. Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 2007, 9, 179. [Google Scholar] [CrossRef]

	8. 
Aiello, W.; Chung, F.; Lu, L. A random graph model for massive graphs. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, New York, NY, USA, 21–23 May 2000. [Google Scholar]

	9. 
Aiello, W.; Chung, F.; Lu, L. A random graph model for power law graphs. Exp. Math. 2001, 10, 53–66. [Google Scholar] [CrossRef]

	10. 
Gjermëni, O.; Ramosaço, M.; Zotaj, D. Power-Law versus Lognormal Distribution in a Phone Call Network Graph. In Proceedings of the International Conference on Application of Information and Communication Technology and Statistics in Economy and Education (ICAICTSEE), Sofia, Bulgaria, 13–14 November 2015. [Google Scholar]

	11. 
Cortes, C.; Pregibon, D.; Volinsky, C. Communities of Interest. In Advances in Intelligent Data Analysis; Springer: Berlin, Germany, 2001; pp. 105–114. [Google Scholar]

	12. 
Ye, Q.; Zhu, T.; Hu, D.; Wu, B.; Du, N.; Wang, B. Cell Phone Mini Challenge Award: Social Network Accuracy—Exploring Temporal Communication in Mobile Call Graphs. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, Columbus, OH, USA, 19–24 October 2008. [Google Scholar]

	13. 
Newman, M.-E.-J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef]

	14. 
Royston, P. An extension of Shapiro and Wilk’s W test for normality to large samples. Appl. Stat. 1982, 31, 115–124. [Google Scholar] [CrossRef]

	15. 
Royston, P. Algorithm AS 181: The W test for Normality. Appl. Stat. 1982, 31, 176–180. [Google Scholar] [CrossRef]

	16. 
Royston, P. Remark AS R94: A remark on Algorithm AS 181: The W test for normality. Appl. Stat. 1995, 44, 547–551. [Google Scholar] [CrossRef]

	17. 
Bulmer, M.-G. Principles of Statistics; Dover Publications: New York, NY, USA, 1979. [Google Scholar]

	18. 
Balanda, K.-P.; MacGillivray, H.-L. Kurtosis: A Critical Review. Am. Stat. 1988, 42, 111–119. [Google Scholar]

	19. 
Hanusz, Z.; Tarasińska, J. Impact of Alternative Distributions on Quantile–Quantile Normality Plot. Colloq. Biom. 2015, 45, 67–78. [Google Scholar]

	20. 
Foss, S.; Korshunov, D.; Zachary, S. An Introduction to Heavy-Tailed and Subexponential Distributions; Springer Science+Business Media: New York, NY, USA, 2013. [Google Scholar]

	21. 
Clauset, A.; Shalizi, C.-R.; Newman, M.-E.-J. Power-Law Distributions in Empirical Data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]

	22. 
Clauset, A.; Shalizi, C.-R.; Newman, M.-E.-J. Power-Law Distribution in Empirical Data. Available online: http://tuvalu.santafe.edu/~aaronc/powerlaws/ (accessed on 7 June 2007).

	23. 
Shim, J. Toward a more nuanced understanding of long-tail. J. Bus. Ventur. Insights 2016, 6, 21–27. [Google Scholar] [CrossRef]

	24. 
Vuong, Q.-H. Likelihood ratio tests for model selection and non-nested hypothesis. Econometrica 1989, 57, 307–333. [Google Scholar] [CrossRef]

	25. 
Rmetrics Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 21 April 2017).

	26. 
Gillespie, C.-S. Fitting Heavy Tailed Distributions: The powerRlaw Package. J. Stat. Softw. 2015, 64, 1–16. [Google Scholar] [CrossRef]

	27. 
Rmetrics Core Team; Wuertz, D.; Setz, T.; Chalabi, Y. fBasics: Rmetrics-Markets and Basic Statistics; R package 3011.87. Available online: https://CRAN.R-project.org/package=fBasics (accessed on 29 October 2014).

	28. 
Csardi, G. Igraphdata: A Collection of Network Data Sets for the ‘igraph’ Package. Available online: https://CRAN.R-project.org/package=igraphdata (accessed on 13 July 2015).

	29. 
Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJournal 2006, 1695, 1–9. [Google Scholar]

























© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).







media/file4.png
/I ﬂ
: 1
a .n.vV — H
[ D N D B 1T T 1T 1T 1771 I _ _ _ _
00L- 0CE- 00 PloOL 9 Z b 8 9 ¥ €
1 o i
—l —l
b e I
90 20 O 0L S6'0 080 0f 9€ €
m O g
Sy = B = = .
- —
I T r Tl _ _ _ _ _
95’0 250 8r0 96'0 Z60 880 98’k vaL  Z8'l

e 0 0

LM

FL;





nav.xhtml


  data-02-00033


  
    		
      data-02-00033
    


  




  





media/file2.png
Frequency

500

50

Normal Q-Q Plot of G1

Frequency

500

50

— 3 Q -
_ € B}
o _|
— C:; <t
® -
— o o
- S N ]
© -
n
— o O
[ [ [ [ [ [ 1T T 1
1 2 5 10 20 50 3 2 1 0 1 2 3
degree G1 Theoretical Quantiles
Normal Q-Q Plot of G30
Q _
— Yo}
1 (%]
[0) o _
= <
N 5
— 3 Q
| @ g
— g o
n
= o

I I I I I
1 2 5 10 20

degree G30

I
50

-3

2 -1 0 1 2

Theoretical Quantiles






media/file5.jpg
e

G

G

i

Az .
®
B s
& 8 o
- g X §
. 3 L« B 3
wow s e e who moo w00 10
a0 0
94 P
f
B 3
" N p
v 8 ° #
/ 3 . 3
/
wow s e % w0 00 10
a0 000
e 3
ralil b
K 2
sl be
L[
0w s e e who w0 w00 100

e

)

B

om ow

B





media/file7.png





media/file3.jpg
o 00 s wooe oz wsorz
" B s
500 ro o) %0 o o se e
%0 %0 a0 %0 %0 w0 @ e @

A





media/file1.jpg
Frequency

Frequency

500

50

500

50

Normal Q-Q Plot of G1

40 60

20

3

240123

‘Theoretical Quantiles

Normal Q-Q Plot of G30

Sample Quantiles

10 20 30 40 50

4

o

= e B s
1.2 5 10 20 50

degree G30

T
3

T T T T
2401 2 3

“Theoretical Quantiles





media/file0.png





media/file6.png
G

Gy

G

?
50

10 20

CASE 3
|
5

f—

10-89

ol ro o
¢0-9G €0-9g ¥0-8G

4d090

50

10 20

5

f—

10-89

1 1 1
¢0-99 €099 v0-9g

4d090

50

10 20

5

10-89

¢0-9G €0-9g ¥0-8G

4d090

Gao

Gao

Gao

o o o I
0090 0500 G000 1000

4d00

o,
CASE 2

1 | | | | |
0090 0500 G000 1000

4d00

CASE 1

1 | | | | |
0090 0500 G000 1000

4d00

50

20

10

20 50

10





