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Abstract: Monitoring of transportation system performance is a key element of any transportation
operation and planning strategy. Estimation of dependable performance measures relies on analysis of
large amounts of traffic data, which are often expensive and difficult to gather. National databases can
assist in this regard, but challenges still remain with respect to data management, accuracy, storage,
and use for performance monitoring. In an effort to address such challenges, this paper showcases
a process that utilizes the National Performance Management Research Data Set (NPMRDS) for
generating performance measures for congestion monitoring applications in the Birmingham region.
The capabilities of the relational database management system (RDBMS) are employed to manage the
large amounts of NPMRDS data. Powerful visual maps are developed using GIS software and used
to illustrate congestion location, extent and severity. Travel time reliability indices are calculated and
utilized to quantify congestion, and congestion intensity measures are developed and employed to
rank and prioritize congested segments in the study area. The process for managing and using big
traffic data described in the Birmingham case study is a great example that can be replicated by small
and mid-size Metropolitan Planning Organizations to generate performance-based measures and
monitor congestion in their jurisdictions.

Keywords: transportation data analytics; performance measurement; congestion management;
National Performance Management Research Data Set (NPMRDS)

1. Introduction

Growing traffic congestion on America’s roadways has negative impacts on mobility, the
environment, and the economy. According to a Texas A & M Transportation Institute report, the
total congestion cost for 471 U.S. urban areas in 2014 was $160 billion, and congestion caused travelers
to waste 6.9 billion hours and more than 3 billion gallons of fuel [1]. Congestion can result from
excessive traffic demand, the presence of physical bottlenecks, traffic incidents, work zones, adverse
weather conditions, and special events. In an effort to improve transportation network performance
it is important to understand the factors that contribute to congestion development and implement
strategies to alleviated congestion.

Practices for transportation data collection, management and governance vary from agency to
agency. A comprehensive synthesis of practice was published in 2017 which summarizes transportation
agency data management practices based on literature review, a two-phase online survey and follow-up
interviews with transportation agency representatives [2]. The study recommended the development
of a framework for integrating data within transportation agencies; case studies to assess the magnitude
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and complexity of data managed by transportation agencies; and the development of methods and
case studies for mining archived data at these agencies [2].

Systematic collection of traffic data is of great importance for congestion monitoring but has
proven to be a costly and challenging process. In the past, only a limited number of public agencies
had comprehensive data collection programs to generate reliable estimates of congestion performance
measures as the high costs associated with extensive data collection deterred many states from investing
in such programs [3]. Recognizing the value of traffic data availability, in 2013 the US federal government
acquired a national data set of average travel times called National Performance Management Research
Data Set (NPMRDS) and made it available to States and Metropolitan Planning Organizations (MPOs) to
use for their transportation performance management activities [4]. NPMRDS is a vehicle probe-based
travel time data set with data records being collected from a variety of sources. The database contains
hundreds of billions of records that cover the entire National Highway System (NHS) containing all
interstates and US highways.

While the benefits of gaining access to a comprehensive database such as NPMRDS are tremendous,
some challenges and difficulties have been reported by MPOs, practitioners, and researchers in their
efforts to utilize the NPMRDS data set to develop performance measures and generate reports for
congestion monitoring. Among them was the Wisconsin Traffic Operation and Safety Laboratory, one of
the first institutes that used probe for transportation performance monitoring. In 2014, they developed a
performance measurement process that describes the steps that should be taken for data processing and
developing mobility measures such as Travel Time Reliability and Vehicle Delay by integrating hourly
volume into NPMRDS [5]. Regarding data management, they declared that the data set required the
usage of database and scripting skills for this purpose. They also studied travel time data distributions
and confirmed the presence of outliers and data gaps in the data set.

The University of Minnesota and Minnesota DOT provided another valuable report focusing on
performance analysis of a total of 38 freight corridors using the NPMRDS database, and Structured
Query Language (SQL) scripts for data processing [6]. This work demonstrated the feasibility of travel
time data records obtained from freight trucks as a data source for the study of speed variation and
truck delay during peak hours.

In another study, the American Transportation Research Institute (ATRI) reported on the cost of
delay and congestion experienced by the freight industry [7]. The University of Maryland conducted a
validation analysis between NPMRDS and I-95 Corridor Coalition’s Vehicle Probe Project (VPP) data.
The researchers pointed out that the comparison between different data sources is complicated as it
requires careful consideration of the differences in segments given that every data collection source
uses different segmentations for collecting traffic data [8].

Another research institute that performed a validation analysis was the Upper Midwest Reliability
Resource. They reported that the travel time data records in the NMPRDS data set to display a higher
variation and a lower mean of travel time, compared to data records from the INRIX data set. PostSQL
and Psycopg were utilized to store the data set, and data analysis was performed by writing codes in
Python [9].

In May 2014, Iteris Inc. offered a training module called “MAP-21 Module” to help agencies meet
reliability and congestion mitigation reporting requirements established by MAP-21 [10]. To overcome
the issue of handling big data, this module stored NPMRDS into a series of databases which enabled
users to query the data through a web interface and to develop performance measures and maps for
visualization purposes [10].

To date, the majority of published research on the generation of transportation performance
measures using NPMRDS relied on the usage of complex programming languages and databases
and was performed by experts in such fields. However, employees of small and mid-size MPOs
and transportation agencies’ staff have encountered difficulties in utilizing the NMPRDS data set
for congestion monitoring purposes due to the lack of experience in database management and big
data analytics. To address this issue, this study developed an automated process to manage and
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store NPMRDS data for the Birmingham, AL region. Moreover, the study used traffic data analytics
and statistical analysis to extract travel time reliability and other congestion performance measures.
Such measures were used to determine the congestion extent and severity and guide optimization of
operations along the study corridors.

2. Data and Case Study Description

2.1. Site Location

The Birmingham region was used as a test-bed in the case study described herein. Four major
freeways were selected for data analysis, namely I-65, I-20, I-59, and I-20/I-59. The study corridors
extend over two counties, from the Jefferson/Blount County line on the North to the Shelby/Chilton
County line on the South and from the Tuscaloosa/Jefferson County line on the East to the Jefferson/St.
Clair County line on the West. Originally, the study corridors were divided into 182 Traffic Message
Channels (TMCs) but new segmentations were defined that combine consecutive TMCs to 14 major
segments in each direction based on the similarity in average annual daily traffic counts, as shown in
Figure 1. The primary attributes of the 28 study segments are illustrated in Table 1.
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Table 1. Study Segment Attributes.

Road Number Segment Name Travel Direction Segment Code TMC Count Length (mile)

I-20
I20/59 to I459

Eastbound 6 6 5.87
Westbound 7 6 5.96

I459 to St. Clair County Eastbound 11 3 6.65
Westbound 9 3 6.43

I-20/I-59

I459 to Valley Road Eastbound 25 6 12.09
Westbound 26 6 12.74

I65 to RME
Eastbound 2 3 1.39
Westbound 1 3 1.27

RME to I20/59 Split Eastbound 4 4 3.44
Westbound 3 4 3.34

Tuscaloosa Co. Line to
I459

Eastbound 8 2 5.98
Westbound 5 3 6.54

Valley Road to I65 Eastbound 10 8 7.04
Westbound 13 9 7.76

I-59
I20/59 to I459

Northbound 14 7 7.76
Southbound 12 6 7.47

I459 to St. Clair County Northbound 20 4 10.45
Southbound 22 5 10.85

I-65

Chilton County Line to
US31 in Alabaster

Northbound 18 3 9.99
Southbound 19 3 10.04

I20/59 to US31/Mary
Buckelew

Northbound 28 10 15.10
Southbound 27 9 14.42

I459 to I20/59
Northbound 17 10 9.44
Southbound 21 11 10.69

US31 (Exit 275) to Cullman
County Line

Northbound 15 8 13.96
Southbound 16 9 16.65

US31 in Alabaster to I459
Northbound 24 6 12.53
Southbound 23 6 11.83

2.2. Data Set Overview

This study utilized 2015 NPMRDS data sets obtained from the Federal Highway Administration
(FHWA) with the help of the Regional Planning Commission of Greater Birmingham (RPCGB). Multiple
observations on a TMC segment during any 5-min intervals (EPOCH) were aggregated to compute
average travel speeds; then travel times were computed by dividing the segment length by average
travel speeds. The data set provided average travel time in seconds for every 5 min, 24 h per day,
and seven days per week for the entire year. It also offered three different categories for travel time
estimates, namely one for freight trucks, one for passenger cars, and one for all vehicles. All vehicles
travel times were a weighted average determined by combining passenger cars and freight trucks
average travel speed based on a respective number of observations [11].

Travel time data were referenced to TMC codes that represented locations of collecting data. TMC
codes are a unique reference that breaks down NHS roads into unequal segments for each direction.
Moreover, the NHS shapefile was supplied to the data set that enabled mapping and spatial analysis
in ArcGIS. The NHS shapefile contained precise road geometry and attributes of each road section.

3. Methodology

3.1. Data Management

The NPMRDS is a well-structured data set that contains a significant amount of information.
In the state of Alabama alone, it covers 4727 TMC segments, each of which is generating 288 epochs
per day. This translates to approximately 1,361,376 records per day, or 495,540,864 records annually.
The amount of data records in NPMRDS inhibits the analyst’s ability of using typical desktop software
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(such as Excel) for processing the data. To address this challenge, the Microsoft Access database was
employed. Microsoft Access is a popular Relational Database Management System (RDBMS) that
allows analysts to structure the data into relational tables and permits for data to be encrypted and
analyzed through SQL.

Database Architecture

In order to downsize the Access database and avoid exceeding the 2 GB limit, the database
was split into two files, namely a back-end and a front-end one. The back-end database contained
only tables and relationships, and the front-end provided queries, forms, reports, and modules.
The advantages gained by splitting the Access database into front-end and a back-end include
performance improvements, reduction in data corruption, and improved ability to create a multi-user
database. In addition, deploying updates to the design of queries, forms, reports and modules was
made reasonably convenient by replacing the front-end database.

The back-end file contained a series of tables uploaded and then stored as an accessible, query-able
file that has relationships with a primary (foreign) key allowing manipulation and processing of data in
any order. In this research, in addition to the Travel Time table and Static file that came with NPMRD,
a series of tables were created to leverage usage of data. Figure 2 illustrates the relationships that were
defined between the multiple tables.

Data 2017, 2, 39  5 of 22 

 

(such as Excel) for processing the data. To address this challenge, the Microsoft Access database was 
employed. Microsoft Access is a popular Relational Database Management System (RDBMS) that 
allows analysts to structure the data into relational tables and permits for data to be encrypted and 
analyzed through SQL. 

Database Architecture 

In order to downsize the Access database and avoid exceeding the 2 GB limit, the database was 
split into two files, namely a back-end and a front-end one. The back-end database contained only 
tables and relationships, and the front-end provided queries, forms, reports, and modules. The 
advantages gained by splitting the Access database into front-end and a back-end include 
performance improvements, reduction in data corruption, and improved ability to create a multi-
user database. In addition, deploying updates to the design of queries, forms, reports and modules 
was made reasonably convenient by replacing the front-end database. 

The back-end file contained a series of tables uploaded and then stored as an accessible, query-
able file that has relationships with a primary (foreign) key allowing manipulation and processing of 
data in any order. In this research, in addition to the Travel Time table and Static file that came with 
NPMRD, a series of tables were created to leverage usage of data. Figure 2 illustrates the relationships 
that were defined between the multiple tables. 

 
Figure 2. Relationships and Primary Keys. 

More specifically, the “Calendar” table provides information for each data collection date 
whereas the “Epoch” table relates each epoch to different time periods and assigns a unique code to 
each 15-min period of 24 h. The “Segment data” defines new segmentation by combining TMCs. 
Ensuring that the data are logically stored and the same data have not been stored in more than one 
tables, is a worthy goal as it reduces the amount of required database space. The front-end database 
enables users to access the raw data stored in back-end data set and display data. 

The SQL was used for providing data summaries, queries, and performing analyses. Data were 
filtered to enable the analysis on TMCs on the selected study corridors during AM peak hours (6:00 
a.m. to 10:00 a.m.) and PM peak hours (3:00 p.m. to 7:00 p.m.) on weekdays from January 2015 to 

Figure 2. Relationships and Primary Keys.

More specifically, the “Calendar” table provides information for each data collection date whereas
the “Epoch” table relates each epoch to different time periods and assigns a unique code to each 15-min
period of 24 h. The “Segment data” defines new segmentation by combining TMCs. Ensuring that the
data are logically stored and the same data have not been stored in more than one tables, is a worthy
goal as it reduces the amount of required database space. The front-end database enables users to
access the raw data stored in back-end data set and display data.

The SQL was used for providing data summaries, queries, and performing analyses. Data were
filtered to enable the analysis on TMCs on the selected study corridors during AM peak hours
(6:00 a.m. to 10:00 a.m.) and PM peak hours (3:00 p.m. to 7:00 p.m.) on weekdays from January 2015 to
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December 2015. Public holidays were excluded from the analysis. Quantifying the congestion along
the study corridors was accomplished on the basis of some popular mobility performance measures.
Performance measures considered in this study include Travel Time Index, Congestion Duration,
Congestion Intensity, Speed-drop, and Impact Factor and are introduced next.

3.2. Mobility Performance Measures

Traditionally, assessing transportation system performance was based on the average travel
times. However, travel time alone is not capable of representing adequately the quality of service that
commuters experienced every day and may lead to underestimation of the level of congestion by not
measuring the effect of unexpected congestion. In 1997, Lomax recommended focusing on congestion
duration, extent, intensity, and reliability measures [3]. Travel Time Reliability is an example of a
reliability measure increasingly utilized by transportation agencies, and regional planning organizations
to assess variability in travel time [12]. In 1999, Lida defined Travel Time Reliability as the probability
of on-time arrival [13]. In addition, Lodex et al. in 2003 described Travel Time Reliability as a measure
that accounts for the variability of travel time experienced by commuters and as an indicator of the
consistency of a certain mode during a time period [14]. Consideration of other measures that account
for the intensity of traffic congestion helps rank and prioritized congested segments, and provides
a more comprehensive understanding of the extent and severity of congestion over space and time.
The literature confirms that Congestion Intensity and Speed Drop measures are effective performance
metrics that benefit policy makers to better assign resources for improving network function to the
area needs the most [15].

3.2.1. Travel Time Index (TTI)

The Travel Time Index (TTI) is a measure that indicates congestion and reliability of roadway
segments. The TTI index is defined as a ratio of average travel time to free-flow travel time for a given
roadway segment [16] as shown in Equation (1):

Travel Time Index = TTI =
Average Travel Time

Travel Time Based on Free Flow Speed
(1)

The TTI is simply a comparison of the time it takes to travel a given segment during the peak
period to the time it takes to travel that same segment under free-flow conditions. According to the
literature review, threshold values were chosen to reflect whether congestion was moderate, significant,
or severe as summarized below. These threshold values were selected to reflect user perceptions of
congestion and its impact on their travel times and are summarized as follows.

� 1.10 < TTI < 1.50 moderate congestion
� 1.50 < TTI < 2.00 significant congestion
� TTI > 2.00 severe congestion

The calculation of TTI required Free Flow Speed data that were provided by the RPCGB.

3.2.2. Duration of Congestion (DOC)

To study the frequency of congestion during peak periods, congestion duration was also computed
for each segment. Congestion duration was captured by summing all 15-min intervals during peak
periods that contained TTI values greater than 1.1 [17]. In this study, threshold values were chosen in a
similar fashion as with the TTI as follows:

� 0 < DOC < 30 min moderate congestion persistency
� 30 < DOC < 60 min significant congestion persistency
� DOC > 60 min severe congestion persistency
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3.2.3. Congestion Intensity

Congestion Intensity is a two-dimensional measure which accounts for the percentage of congested
area in the time–space map [18]. Any time–space map includes two dimensions, i.e., the temporal
dimension which is the study period (i.e., 6:00 a.m. to 10:00 a.m. and 3:00 p.m. to 7:00 p.m.), and the
spatial dimension which is the length of TMCs along with selected segment. For illustration purposes,
Figure 3 shows a sample of a time–space map developed for study segment 1. Each cell depicted on the
map represents the TTI value. The associated range of color that reflects the level of congestion is set by
defining different threshold values for TTI as shown on the left-hand side of Figure 3.
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Figure 3. Sample Time-Space Map.

Figure 4 shows an example of the congested area (over space and time) which encompasses all
cells with the TTI value of greater than 1.1.

Data 2017, 2, 39  7 of 22 

 

3.2.3. Congestion Intensity 

Congestion Intensity is a two-dimensional measure which accounts for the percentage of 
congested area in the time–space map [18]. Any time–space map includes two dimensions, i.e., the 
temporal dimension which is the study period (i.e., 6:00 a.m. to 10:00 a.m. and 3:00 p.m. to 7:00 p.m.), 
and the spatial dimension which is the length of TMCs along with selected segment. For illustration 
purposes, Figure 3 shows a sample of a time–space map developed for study segment 1. Each cell 
depicted on the map represents the TTI value. The associated range of color that reflects the level of 
congestion is set by defining different threshold values for TTI as shown on the left-hand side of 
Figure 3. 

 
Figure 3. Sample Time-Space Map. 

Figure 4 shows an example of the congested area (over space and time) which encompasses all 
cells with the TTI value of greater than 1.1. 

 
Figure 4. Congested Area. 

Generating time–space maps in this study provided the information needed to calculate the 
daily percentage of Congestion Intensity. As shown in Equation (2), Congestion Intensity is the ratio 
between the congested area over the total area. The congested area represents the sum of the daily 
duration of congestion during AM and PM peak for each TMC multiplied to the length of the 
corresponding TMC. It is: Congestion	Intensity % = CongestedAreaTotalArea = ∑ DOC × LengthTime × Length  (2) 

Figure 4. Congested Area.

Generating time–space maps in this study provided the information needed to calculate the daily
percentage of Congestion Intensity. As shown in Equation (2), Congestion Intensity is the ratio between
the congested area over the total area. The congested area represents the sum of the daily duration of
congestion during AM and PM peak for each TMC multiplied to the length of the corresponding TMC.
It is:

Congestion Intensityij(%) =
CongestedAreaij

TotalAreai
=

∑n
1 (DOCn × Lengthn)ij

Time × Lengthi
(2)

where:
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i: segment code
j: work day
n: TMC number along with segment i
DOC: Duration of Congestion in minutes
Time: Study period (6:00 a.m. to 10:00 a.m. and 3:00 p.m. to 7:00 p.m.) in minutes

The Congestion Intensity values for all workdays in 2015 ranged between 0% to 100%. These
values can be utilized to calculate the 85th Percentile Congestion Intensity that adequately reflects the
extent of congestion for the entire year. The 85th Percentile Congestion Intensity is a valuable metric
that takes into account both the annual variability and reliability of congestion. The 85th Percentile of
Congestion Intensity simply means that the Congestion Intensity has a lower value 85% of days.

3.2.4. Speed-Drop

Similar to Congestion Intensity, the Speed-drop is also a two-dimensional measure which accounts
for the percentage of deviation from a Cutoff Speed in time-space map [18]. In the case of Speed-drop,
each cell in the time–space map represents a reported speed, and when the speed value falls below
the Cutoff Speed threshold, the cell is considered as a congested section. Cutoff Speed is the point
where the TTI value equals to 1.1 and can be calculated from dividing the Free Flow Speed (FFS) by 1.1.
The daily Speed-drop for each segment can be computed by utilizing Equation (3). This equation
first calculates the percentage of deviation from Cutoff Speed (meaning the difference between the
congested speed and the Cutoff speed as a percentage) for each cell. Then, the weighting factor is
applied to each cell to obtain a weighted mean among all congested cells.

SpeedDropij =
m
∑
1

 Percentage of deviation from Cutoff Speedm
×

Weighting Factorm


ij

=
m
∑
1

(
(CutoffSPm−Cng SPm)×100

CutoffSPm
× VMTm

VMT of CongestedAreai

)
ij

(3)

where:

i: segment code
j: work day
m: cell inside the space-time map
Cng SP: Congested Speed
Cutoff SP: Cutoff Speed
VMTm: Vehicle Mile Traveled for cell m, and
VMT of Congested Area: Total Vehicle Mile Traveled in the congested area

In this study, instead of using VMT that requires having volume data, the weighting factor was
calculated by applying the formula shown in Equation (4):

Weighting factor =
CellAream

CongestedAreai
(4)

where:

CellArea: Area for cell m that is equal to EPOCH x Length of TMC, and
CongestedArea: Total congested area calculated according to the nominator in Equation (2).

In the Birmingham case study, calculating the Speed-drop for all workdays in 2015 provided a
better understanding of the severity of congestion throughout the year. The resulting values werealso
utilized to calculate the 85th Percentile of Speed-drop, which is another valuable metric related to
congestion severity.
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3.2.5. Impact Factor (IF)

Impact factor (IF) is a metric introduced in this study in order to capture the combined effect
of both severity and extent of congestion throughout the year. It combines two measures, namely
Congestion Intensity and Speed-drop, by multiplying their values for the corresponding day of the
year and then computing the 85th percentile for the resulting values (Equation (5)). Developing Impact
Factor is a robust method to identify segments that experience long-lasting and severe congestion
throughout the year.

IFi = 85th Percentile of
{

Congestion Intensityj × Speed Dropj

}
(5)

where:

i: Segment code
j: work day

4. Analysis and Results

4.1. Travel Time Index (TTI)

Based on the analysis of 2015 NPMRDS records for the 28 segments of the four Birmingham study
corridors, TTI values were calculated and summarized in Table 2. Using the TTI threshold values as
introduced in Section 3.2.1, Table 2 reveals the variability of travel time experienced by commuters
using a color-coded scheme with the range of colors associated with the value of Travel Time Index.
Green represents best and red represents worst conditions. The lower that the value of TTI is, the
closer the travel condition is to free flow travel time.

Table 2. Max Time Travel Index (TTI) Values during AM Peak by Month in 2015.
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6 353.41 1.00 1.14 1.00 1.00 1.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.40 1.00

7 374.04 1.00 1.09 1.12 1.00 1.03 1.04 1.00 1.03 1.00 1.08 1.33 1.00 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.00

8 307.44 1.12 1.13 1.11 1.11 1.08 1.12 1.06 1.08 1.09 1.09 1.09 1.09 1.10 1.12 1.10 1.08 1.15 1.11 1.06 1.09 1.06 1.08 1.10 1.11

9 330.75 1.10 1.10 3.58 1.10 1.07 1.08 1.06 1.08 1.07 1.46 1.08 1.48 1.13 1.13 1.13 1.18 1.09 1.09 1.08 1.12 1.10 1.10 1.25 1.10

10 404.67 1.96 1.24 1.57 1.48 1.38 1.87 1.21 1.44 1.65 1.51 1.19 1.79 1.33 1.20 1.53 1.08 1.08 1.00 1.18 1.10 1.19 1.08 1.70 1.49

11 362.52 1.06 1.04 1.12 1.03 1.03 1.01 1.01 1.02 1.02 1.03 1.03 1.02 1.42 1.08 1.02 1.32 1.01 1.01 1.10 1.07 1.06 1.05 1.08 1.06

12 396.83 1.85 1.69 1.30 1.28 1.32 1.21 1.03 1.29 1.26 1.74 1.26 1.36 1.06 1.82 1.25 1.10 1.05 1.04 1.08 1.07 1.05 1.03 1.19 1.08

13 438.00 1.00 1.08 1.12 1.01 1.00 1.01 1.06 1.00 1.06 1.00 1.03 1.01 1.27 1.23 1.15 1.12 1.07 1.31 1.08 1.21 1.75 1.93 1.31 1.53

14 422.20 1.54 1.67 1.33 1.74 1.69 1.26 1.55 1.19 1.26 1.13 1.29 1.05 1.64 1.34 2.28 1.48 1.35 1.48 1.31 1.49 1.35 1.67 2.16 2.62

15 429.53 1.34 1.09 1.08 1.07 1.07 1.06 1.07 1.07 1.08 1.09 1.09 1.09 1.08 1.95 1.06 1.05 1.05 1.39 1.04 1.04 1.05 1.06 1.07 1.07

16 457.25 1.31 1.09 1.07 1.07 1.06 1.05 1.04 1.05 1.06 1.06 1.08 1.07 1.09 1.43 1.13 1.07 1.08 1.27 1.16 1.06 1.06 1.06 1.09 1.12

17 578.57 2.14 1.86 1.98 1.88 1.66 1.76 1.63 1.89 2.09 2.22 1.98 1.88 1.28 1.85 1.92 1.77 1.60 1.39 1.50 1.71 1.47 1.40 1.85 2.34

18 513.90 1.86 1.45 1.72 2.00 1.92 1.36 1.24 2.09 2.41 2.18 2.81 2.35 1.09 1.10 1.23 1.37 1.26 1.68 1.49 1.28 1.21 1.34 1.28 1.18

19 516.34 1.08 1.30 1.08 1.06 1.06 1.06 1.10 1.06 1.06 1.07 1.12 1.06 1.12 1.22 1.82 1.41 1.21 1.13 1.86 1.15 1.07 1.15 1.23 1.15

20 537.81 1.11 1.10 1.11 1.35 1.08 1.07 1.08 1.09 1.23 1.26 1.11 1.09 1.39 1.32 1.42 1.33 1.55 1.37 1.32 1.29 1.31 1.43 1.60 1.53

21 648.61 1.12 1.11 1.10 1.06 1.19 1.03 1.10 1.03 1.09 1.11 1.05 1.19 2.23 1.83 2.12 2.23 2.41 1.99 2.06 2.02 2.05 2.14 2.48 2.47

22 560.52 1.77 1.42 1.47 1.74 1.39 1.34 1.17 1.48 1.74 1.75 1.84 1.66 1.12 1.12 1.10 1.10 1.06 1.08 1.61 1.08 1.52 1.81 1.54 1.20

23 595.62 1.07 1.08 1.07 1.06 1.06 1.05 1.04 1.06 1.06 1.06 1.17 1.06 1.71 1.70 1.89 1.62 2.11 1.90 2.05 1.76 1.96 2.11 2.45 1.88

24 636.38 1.62 1.51 1.74 1.66 1.47 1.29 1.17 1.67 1.92 2.07 1.83 2.03 1.14 1.08 1.20 1.39 1.13 1.10 1.29 1.07 1.43 1.18 1.12 1.29

25 622.01 1.40 1.15 1.14 1.20 1.17 1.11 1.08 1.20 1.38 1.28 1.24 1.31 2.36 1.14 1.19 1.10 1.18 1.17 1.11 1.15 1.10 1.10 1.17 1.20

26 655.23 1.12 1.19 1.11 1.12 1.09 1.11 1.09 1.22 1.11 1.20 1.12 1.21 1.27 1.19 1.19 1.35 1.25 1.20 1.12 1.43 1.25 1.15 1.45 1.29

27 790.33 1.30 1.28 1.42 1.42 1.17 1.27 1.28 1.24 1.36 1.42 1.68 1.43 1.57 1.40 1.25 1.15 1.19 1.65 1.27 1.08 1.14 1.10 1.13 1.15

28 836.01 1.35 1.45 1.14 1.33 1.18 1.30 1.15 1.28 1.22 1.21 1.44 1.24 1.19 1.54 1.39 1.28 1.21 1.12 1.18 1.38 1.20 1.21 1.31 1.57

Segment 
Code

Maximum Travel Time Index in AM Peak Maximum Travel Time Index in PM PeakFree 
Flow 

Travel 
Time
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The standard deviation also was computed to help understand the variability of values during
AM and PM peak periods (Figure 5). By considering the TTI values and associated standard deviations
for each segment, conclusions can be drawn regarding the reliability of study segments. Given the
results obtained for the Birmingham case study, it can be concluded that segment 8 is the most reliable
segment in the study area as it displays the lowest values for TTI and standard deviation.

However, the highest values of TTI and standard deviation were obtained for segments 2 and 9.
More specifically, the worst TTI value obtained was 4.91 for segment 2 under PM peak conditions in
December. A TTI value of 4.91 means that the maximum average travel time during PM in the month
of December in this segment was almost five times greater than the free flow travel time.
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Figure 5. Standard Deviation of TTI by Segment in 2015.

Furthermore, visual maps were developed by GIS software and used to display the congestion
location, and severity along the study corridors. For demonstration purposes, Figures 6 and 7 show the
TTI values for January 2015 during AM peak and PM peak periods where segments shown as green,
orange, red, and purple indicate “Little/None”, “Moderate”, “Significant”, and “Severe” congestion
levels, respectively.

Close inspection of the results of the analysis shows that the level of congestion on study segments
that provide primary access to the Birmingham downtown area highly depends on the time of day.
For instance, I65 segments 17 and 21 carry travelers to/from the Birmingham downtown area during
their commute. Segment 17 represents the northbound and segment 21 the southbound direction.
As shown in Figure 6, during the AM peak, severe congestion occurred on segment 17 that carries
commuters toward the downtown whereas segment 21 showed the moderate congestion. During the
PM peak, the most significant congestion occurred in the opposite direction along segment 21 that
travels from the downtown and outwards (Figure 7).
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4.2. Duration of Congestion (DOC)

TTI values were used to calculate the Duration of Congestion (DOC) as defined in Section 3.2.2.
The results for all study segments and for all 12 months considered were summarized in Table 3. Also,
Figures 8 and 9 were developed to help visualize the DOC on the study corridors during the AM and
PM peak periods in January 2015.

It can be seen that congestion is persistent, continuing for more than 1 h during the peak periods.
It should be noted that a high value for TTI does not necessary accompany a high value for congestion
duration, since the DOC represents the persistence of congestion during peak hours and TTI shows
the worst congested 15 min during peak hours. For instance, as shown in Table 3, segment 20 with TTI
around 1.2 is moderately congested during AM peak in September and October 2015 but the duration
of congestion is 240 min. This implies that commuters using segment 20 any time from 6:00 a.m. to
10:00 a.m. should adjust their travel plans as travel is expected to take almost twice the amount of
travel time compared to the ideal condition. However, segment 2 with TTI equal to 2.08 experienced
severe congestion in January 2015 but with duration of 90 min.

Table 3. Congestion Duration during Peak Periods in 2015.
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4.3. 85th Percentile of Congestion Intensity and Speed-Drop

Congestion Intensity and Speed-drop represent annual measures that reflect the extent and
severity of all circumstances occurring over the year respectively. Such performance measures are an
effective way to represent both expected and unexpected circumstances over the year.

Table 4 shows the comparison among the 28 study segments based on their 85th Percentile
Congestion Intensity and Speed-drop values, and Figures 10 and 11 display their location in the study
area. Inspection of the results displayed in Table 4 shows that segment 26 has the highest value in
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the 85th Percentile Congestion Intensity. This implies that during the AM and PM peak hours more
than 50 percent of this segment is congested. However, segment 26 has a value of 6.31 percent for 85th
Percentile Speed-drop which reveals that most of the area along this segment should be moderately
congested. Though, segment 3 shows the highest value for 85th Percentile Speed-drop which suggests
that a high level of delay occurs on this segment over the year. It can clearly be seen that a high
value for 85th Percentile Congestion Intensity is not necessarily accompanied by a high value for 85th
Percentile Speed-drop. Therefore, neither of these measures alone can be considered as an appropriate
metric for ranking and prioritizing segments with respect to congestion mitigation needs.Data 2017, 2, 39  17 of 22 
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Table 4. Segments 85th Percentile Congestion Intensity and Speed-drop.

Segment Code 85 Percentile of intensity 85 Percentile of Speed Drop

26 52.67% 6.31%
25 50.44% 6.62%
23 48.40% 30.70%
17 45.15% 31.99%
20 42.92% 13.86%
8 41.30% 3.66%
22 41.15% 17.96%
9 40.88% 5.04%
18 39.43% 26.10%
24 38.74% 22.28%
27 37.84% 15.02%
1 36.12% 34.17%
28 36.06% 13.73%
14 35.87% 17.67%
2 34.43% 34.51%
21 34.36% 34.52%
5 34.26% 3.74%
19 31.33% 8.73%
16 30.19% 4.74%
3 27.88% 40.67%
15 24.71% 4.00%
12 23.84% 16.42%
11 21.12% 4.99%
10 16.68% 37.35%
4 16.56% 21.65%
6 13.97% 25.17%
13 12.04% 21.31%
7 7.00% 23.63%

4.4. Impact Factor

To compare and rank segments in a comprehensive way that captures the effect of both Congestion
Intensity and Speed-drop, the Impact Factor was determined as defined in Section 3.2.5. The Impact
Factor metric accounts for both reliability and variability of congestion throughout the year. Table 5
shows the Impact Factor for all study segments, ranked from the highest to the lowest value.

According to Table 5, study segments 17 and 23 with the highest values of Impact Factor are the
least reliable segments and segments 15 and 11 with the lowest values are the most reliable study
segments throughout the year 2015.

Figure 12 displays the Impact Factor values from highest to the lowest accompanied by the
85th Percentile of Congestion Intensity and Speed-drop for corresponding segments. It reveals that
segments with the relatively high value for both 85th Percentile Congestion Intensity and Speed-drop
result in a high Impact Factor as well.

Figure 13 displays the location of study segments and their corresponding Impact Factor value
and can help transportation officials and decision makers to determine high priority corridors for
implementing strategies to address congestion. Review of Figure 13 indicates that part of I-65
located in the Southside of Birmingham (segments 17, 23, and 21) shows an impact factor higher
than 10% and thus should be considered as of highest priority for receiving investment toward
operational improvements.
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Table 5. Segments Impact Factors in 2015.

Segment Code

23 14.85%
17 14.44%
1 12.34%
2 11.88%

21 11.86%
3 11.34%

18 10.29%
24 8.63%
22 7.39%
14 6.34%
10 6.23%
20 5.95%
27 5.68%
28 4.95%
12 3.92%
4 3.59%
6 3.51%

25 3.34%
26 3.32%
19 2.74%
13 2.57%
9 2.06%
7 1.65%
8 1.51%

16 1.43%
5 1.28%

11 1.05%
15 0.99%
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Figure 12. Impact Factor along with 85th Percentile of Congestion Intensity and Speed-drop for all
Study Segments in 2015.
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Figure 13. Impact Factor for all Study Segments in 2015.

5. Conclusions and Recommendations

This study was undertaken to (a) showcase the development of an automated process to facilitate
the management, storage, and processing of big transportation data sets such as NPMRDS for
congestion monitoring applications, (b) use traffic data analytics and statistical analysis to extract travel
time reliability performance measures in a Birmingham case study, and (c) use reliability performance
measures to determine the congestion extent and severity and guide optimization of traffic operations
in the Birmingham region.

The case study utilized the NPMRDS data set in order to quantify congestion in the Birmingham
region over an one-year period (2015) along four major freeways namely I-65, I-20, I-59, and I-20/I-59.
RDBMS was employed as an efficient and economical tool for data management and SQL was used to
extract data and perform the analysis. A range of performance measures was calculated for quantifying
the congestion location, level, and extent, and used to prioritize freeway segments needs with respect
to congestion. The performance measures calculated were the Travel Time Index (TTI), the Duration of
Congestion (DOC), the 85th Percentile Congestion Intensity, and the 85th Speed-drop. In addition,
calculation of an Impact Factor was proposed and used for ranking the congested segments. Such
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rankings can be used as a systematic and data-driven method for prioritizing resource allocations for
operational improvements. The analysis revealed that the segments 17 and 23, with relatively high
values for 85th Percentile Congestion Intensity and Speed-drop are the most unreliable segments in
the study area and thus require close attention.

Overall, the study findings can be valuable in guiding transportation professionals and agencies
on how to use big transportation databases such as NPMRDS to quantify the level and extent of
congestion, and generate performance-based measures. Such performance measures can, in turn,
be used as an initial screening process for congestion management purposes and help to identify
locations where implementation of congestion mitigation initiatives have the best potential return for
the investment.

Future work can consist of validating the proposed approach using a larger sample size.
In addition, it is recommended that further studies be conducted that investigate in greater depth the
effect of outliers on Travel Time Reliability measures. It is also desirable to extend the work to include
consideration of additional data sources such as volume data, incident data, weather events and work
zone presence information in order to improve the understanding of the causes of uncertainty in travel
time and more accurately quantify recurrent and non-recurrent congestion in the future.
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