
data

Article

Synthesizing High-Utility Patterns from Different
Data Sources

Abhinav Muley * ID and Manish Gudadhe

Department of Computer Engineering, St. Vincent Pallotti College of Engineering & Technology, Nagpur 441108,
India; mbgpatil@gmail.com
* Correspondence: abhi.muley27@gmail.com; Tel.: +91-735-023-3425

Received: 3 August 2018; Accepted: 30 August 2018; Published: 3 September 2018
����������
�������

Abstract: In large organizations, it is often required to collect data from the different geographic
branches spread over different locations. Extensive amounts of data may be gathered at the centralized
location in order to generate interesting patterns via mono-mining the amassed database. However,
it is feasible to mine the useful patterns at the data source itself and forward only these patterns to
the centralized company, rather than the entire original database. These patterns also exist in huge
numbers, and different sources calculate different utility values for each pattern. This paper proposes
a weighted model for aggregating the high-utility patterns from different data sources. The procedure
of pattern selection was also proposed to efficiently extract high-utility patterns in our weighted
model by discarding low-utility patterns. Meanwhile, the synthesizing model yielded high-utility
patterns, unlike association rule mining, in which frequent itemsets are generated by considering each
item with equal utility, which is not true in real life applications such as sales transactions. Extensive
experiments performed on the datasets with varied characteristics show that the proposed algorithm
will be effective for mining very sparse and sparse databases with a huge number of transactions.
Our proposed model also outperforms various state-of-the-art distributed models of mining in terms
of running time.

Keywords: data integration; data mining; high-utility patterns; knowledge discovery; weighted
model; multi-database mining; distributed data mining

1. Introduction

Large and small enterprises are facing the challenges of extracting useful information, since they
are becoming massively data rich and information poor [1]. Organizations are getting larger and
amassing continuously increasing amounts of data. Finding meaningful information plays a vital role
in cross-marketing strategies and decision making process of business organizations, especially those
who deal with big data.

The world’s biggest retailer, Walmart, has over 20,000 stores in 28 countries which process
2.5 petabytes of data every hour [2]. A few weeks of data contains 200 billion rows of transactional
data. Data is the key for them to keep the company at the top for generating revenues. The cost of
transferring the data at the central node can be cut-down if they focus on mining the data at the local
node itself and forwarding only retrieved patterns, rather than a complete database. Swiggy, one of
India’s successful start-ups, generates terabytes of data every week from 35,000 restaurants spread
across 15 cities to deliver the food to the consumer’s doorstep [3]. It relies on this data for the efficiency
of delivery and a hassle-free experience for consumers. If the data is mined at the city-based local
nodes and only the extracted patterns are forwarded, it would help them to deliver their services at
lightning fast speed.
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Traditional knowledge discovery techniques are capable of mining at a single source platform.
These techniques are insufficient for mining the data of large companies scattered across multiple
locations. While collecting all the data from multiple sources might gather a huge chunk of databases for
centralized processing, it is unrealistic to combine the data together from multiple data sources because
of the size of the data to be transported and privacy-related issues. Some sources of an organization may
send their extracted patterns but not their entire data set due to privacy concerns. Hence it is feasible to
mine the patterns at different data sources and send only the extracted patterns, rather than the original
database, to the central branch of the company. The pattern mining at each source is also important for
decision support at the local level. However, the number of patterns collected from different sources
may be too high, so that finding valid patterns from the pattern set can be difficult for the centralized
company. The proposed weighted model compresses the set of patterns and generates high voted
patterns. For convenience, the work presented in this paper focuses on post-mining, that is, gathering,
analyzing and synthesizing the patterns extracted from multiple databases.

There are existing parallel data mining algorithms which employ parallel machines to implement
data mining algorithms called Mining Association Rules on Paralleling (MARP) [4–8]. These algorithms
have proved to be effective in mining from very large databases. However, there are certain limitations
to these algorithms because they don’t generate local patterns at the local data source, which are very
useful in real-world applications. In addition, it requires massively parallel machines for computing
and dedicated software for processing of parallel machines. Some mining algorithms are sequential in
nature and cannot be tested on parallel machines.

Various techniques are developed for data mining from distributed data sources [9–16].
Wu et al. [17] have already proposed a synthesis model to extract high-frequency association rules from
different data sources using Frequent Itemset Mining (FIM) as their data mining technique. This model
cannot be applied to High-utility Itemset Mining (HUIM) for the following reasons:

• FIM assumes that every item can appear only once in each transaction and has the same utility in
terms of occurrences and unit profit.

• FIM maintains the anti-monotonicity of the support which is not applicable to the problem of
High-utility Itemset Mining (HUIM) discussed in a later section.

T. Ramkumar et al. [18] have also proposed a synthesis model along similar lines to Wu’s model,
but the main drawback of this model is that the transaction population of a data source in terms of
the population of other data sources must be known beforehand, which is not possible due to privacy
concerns of data sharing. This paper emphasizes synthesizing local high-utility patterns rather than
frequent rules, to find the patterns valid throughout the organization. The model presented in this
paper doesn’t require an assumption of transaction population to be known in advance.

The problem statement for synthesizing the patterns from different data sources can be formulated
as: There are ‘n’ data sources present in a large organization: DS1, DS2, DS3, . . . , DSn. Each site
supports a set of local patterns. We are interested in: (1) mining every data source to find local patterns
supported by the source; and (2) developing an algorithm to synthesize these local patterns to find
only the useful patterns (with high-utility), which are valid for the whole organization and calculate
their synthesized/global utility. It is assumed that the cleaning and pre-processing of data has been
performed already. Patterns obtained from mono-mining the union of all data sources is our goal.

2. Related Work

Data mining is the process of semi-automated analysis on large databases to find significant
patterns and relationships which are novel, valid and previously unknown. Data mining is a
component of a process called Knowledge discovery from databases (KDD). The aim of data mining is
to seek out rules, patterns and trends in the data and infer the associations from these patterns. In a
transaction database, Frequent Itemset Mining (FIM) discovers frequent itemsets that are the collection
of itemsets appearing most frequently in a transaction database [19]. Market basket analysis is the
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most popular application of FIM. The retail managers use frequent itemsets mined from analyzing the
transactions to strategize store structure, offers, and classification of customers [20,21]. As discussed
earlier, the FIM has following limitations: (1) it assumes that every item can appear only once in
each transaction; and (2) it has the same utility in terms of occurrences and unit profit. In market
basket analysis, it may happen that customer buys multiple units of the same item, for example,
3 packets of almonds or 5 packets of bread, and so on. And every item doesn’t have the same unit
profit, for example, selling the packet of almonds yields more profit than selling a packet of bread.
FIM doesn’t take into account the number of items purchased in a transaction. Thus FIM only counts
the frequency of items rather than the utility or profit of items. As a consequence, the infrequent
patterns with high-utility are missed and frequent patterns with low-utility are generated. Frequent
items may contribute to only a minor portion of the total profit, whereas non-frequent items may
contribute to a major portion of the total profit of a business. The support and confidence framework of
FIM established by Agrawal et al. [22] are the measures to generate the high-frequency rules, but high
confidence may not always imply the high-profit correlation between the items. Another example is
click-stream data, where a stream of web pages visited can be defined as a transaction. The time spent
on a webpage contributes to its utility in contrast to the frequent visits counted in FIM.

To address this limitation of FIM, the concept of High-utility Itemset Mining (HUIM) [23–25]
was defined. Unlike FIM, the HUIM takes into account the quantity of an item in each transaction
and its corresponding weight (e.g., profit/unit). HUIM discovers itemsets with high-utility (profit).
This allows items to appear more than once in a transaction. The problem of HUIM is known to be more
difficult than the FIM, because the downward-closure property doesn’t hold true for utility mining,
that is, the utility of an itemset is not anti-monotonic or monotonic. Thus, the utility of an itemset
can be higher, equal or lower than the utility of any subset of that itemset. The target of high-utility
mining is to generate high-utility patterns which yield a major portion of the total profit. Interestingly,
FIM assumes the utility of every item to be 1, that is, the quantity of each item and weight/unit are
equal. Hence FIM is considered to be a special case of HUIM. Let’s consider the sample database in
Table 1. It has five transactions (T1, T2, T3, T4, and T5). Items p, r, and s appear in the transaction T1

having an internal utility (e.g., quantity of item) 2, 3 and 5 respectively.

Table 1. Sample transaction database.

TID Transaction (Item, Quantity)

T1 (p, 2), (r, 3), (s, 5)
T2 (p, 3), (r, 7), (t, 3), (v, 6)
T3 (p, 2), (q, 3), (r, 2), (s, 7), (t, 2), (u, 6)
T4 (q, 5), (r, 4), (s, 4), (t, 2)
T5 (q, 3), (r, 3), (t, 2), (v, 3)

Table 2 shows the external utility (e.g., profit/unit) of the items p, r and s are 6, 2 and 3 respectively.
The utility U(i, Ti) of any item i in a transaction Ti is calculated as e(i) × X(i, Ti) where e(i) denotes
external utility as per Table 2 and X(i, Ti) denotes internal utility as per Table 1. The utility U(i, Ti)
denotes the profit generated by selling an item i in the transaction Ti. For example, utility of the
transaction T1 is calculated as external utility of all items in T1 × internal utility of respective items in
T1 i.e., (2 × 6) + (3 × 2) + (5 × 3) = 33.

Table 2. External utility.

Item p q r s t u v
Profit 6 3 2 3 4 2 2

An itemset Z is labelled as a high-utility itemset when the utility calculated is more than the utility
threshold minutil set by the user otherwise it is called a low-utility itemset. The HUIM discovers all the
high-utility itemsets satisfying the minutil.
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3. Method: Proposed Synthesis Model

In this section, we propose a weighted model for synthesizing high-utility patterns forwarded
by different and known sources. Let P be the set of patterns forwarded by n different data sources
DS1, DS2, DS3, . . . , DSn. For a pattern XY, suppose W(DS1), W(DS2), W(DS3), . . . , W(DSn) are the
respective weights of DS1, DS2, DS3, . . . , DSn. The synthesized utility for pattern XY is calculated as:

util(XY) = W(DS1) × util1(XY) + W(DS2) × util2(XY) + W(DS3) × util3(XY) + . . . +
W(DSn) × utiln(XY)

(1)

where utili(XY) is the utility of pattern XY in DSi for i = 1, 2, 3, . . . , n.
We adopt the Good’s idea [26] based on the weight of evidence for allocating weights to our data

sources as the same was also adopted by Wu’s proposed model [17]. It establishes that the weight of
evidence is as important as the probability itself. For convenience, we normalize the weights in the
interval 0–1 and the weight of each pattern is important, based on its presence in the original database.
Therefore, we use the presence of patterns to evaluate the weight of the pattern. Figure 1 outlines the
proposed method. Our weighted model is designed in following sections with an example. Pattern
selection algorithm is constructed to deal with low-utility patterns.

1 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

DS 1 DS 2 DS n…………………… 

P1 P2 Pn …………………… 

SPS 

Local Pattern Analysis 

Synthesis model by weighting 

Figure 1. The proposed model of synthesizing patterns by weighting. DS i—ith data source;
P i—Pattern set mined from DS i; SPS—The synthesized pattern set with normalized utility.

3.1. Allocating Weights to Patterns

The weight of each data source needs to be calculated in order to synthesize the high-utility
patterns forwarded by different and known data sources. Let P be the set of patterns forwarded by
n different data sources DS1, DS2, DS3, . . . , DSn and P = P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pn where Pi is the set
of patterns forwarded by DSi. According to Good’s idea of allocating weight, we take the number of
occurrences of Pattern R in P to assign weight W(R) to R. High-utility patterns have higher chances of
becoming a valid pattern than low-utility patterns, in the combination of all the data sources. Thus,
the weight of a pattern depends upon the number of data sources that support/vote for it. In reality,
a business organization is interested in mining patterns voted by most of its branches for generating
maximum profit. The weight of data source also depends upon the number of high-utility patterns it
supports. The following example illustrates this idea:

• Let P1 be the set of patterns mined from DS1 having patterns: ABC, AD and BE where
util1(ABC) = 3,544,830; util1(AD) = 1,728,899; util1(BE) = 1,464,888

• Let P2 be the set of patterns mined from DS2 having patterns: ABC and AD where
util2(ABC) = 3,591,954; util2(AD) = 1,745,716

• Let P3 be the set of patterns mined from DS3 having patterns: BC, AD and BE where
util3(BC) = 1,252,220; util3(AD) = 1,749,528; util3(BE) = 1,461,862
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If there are 3 data sources viz., DS1, DS2, DS3 then P = P1 ∪ P2 ∪ P3 having four patterns in P:

• R1: ABC; Number of occurrences = 2
• R2: AD; Number of occurrences = 3
• R3: BE; Number of occurrences = 2
• R4: BC; Number of occurrences = 1

We assume that the minimum utility threshold (minutil) is set to 800,000 for running example and
the minimum voting degree, µ = 0.4 (Number of occurrences in P/Number of total data sources) in the
pattern selection algorithm. Hence, the patterns selected are:

• µ(R1) = 2/3 = 0.6 > µ (keep)
• µ(R2) = 3/3 = 1 > µ (keep)
• µ(R3) = 2/3 = 0.6 > µ (keep)
• µ(R4) = 1/3 = 0.3 < µ (wiped out)

Pattern R1 is voted by 2 data sources, pattern R2 is voted by all 3 data sources, pattern R3 is
voted by 2 sources and pattern R4 is voted by only 1 data source so it is wiped out in pattern selection
procedure. To assign the weights to patterns, we use Good’s weighted model, that is, the number of
occurrences of a pattern in P is used to define the weight of the pattern. The weights of patterns are
assigned as:

• W(R1) = 2/(2 + 3 + 2) = 0.29
• W(R2) = 3/(2 + 3 + 2) = 0.42
• W(R3) = 2/(2 + 3 + 2) = 0.29

For n different data sources, we have P = P1 ∪ P2 ∪ P3 ∪, . . . , ∪ Pn and P contains R1, R2, R3, . . . ,
Rm patterns. Hence, the weight of any pattern Ri can be given as:

W(Ri) = Occurrence(Ri)/∑ Occurrence (Rj) (2)

where j = 1, 2, 3, . . . , n and Occurrence(Ri) = Number of occurrences of pattern Ri in P.

3.2. Allocating Weights to Data Sources

Here, it is clearly seen that weight of data source is directly proportional to the weight of patterns
mined by it. The weight of the data sources is assigned as:

• W(DS1) = (2 × 0.29) + (3 × 0.42) + (2 × 0.29) = 2.42
• W(DS2) = (2 × 0.29) + (3 × 0.42) = 1.84
• W(DS3) = (2 × 0.29) + (3 × 0.42) = 1.84

Since the values are exceeding beyond the range, we normalize and reassign the weights as:

• W(DS1) = 2.42/(2.42+1.84+1.84) = 0.396
• W(DS2) = 1.84/(2.42+1.84+1.84) = 0.302
• W(DS3) = 1.84/(2.42+1.84+1.84) = 0.302

Data source DS1 has the highest weight since it votes most patterns with high-utility and data
source DS2 has the lowest weight since it votes least patterns with high-utility. For n different data
sources, we have P = P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pn and P contains R1, R2, R3, . . . , Rm patterns. Hence,
the weight of any data source DSi can be given as:

W(DSi) = ∑ Occurrence(Rx) ×W(Rx)/∑ ∑ Occurrence(Ry) ×W(Ry) (3)

where, i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , n; Rx ∈ Pi; Ry ∈ Pj.
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3.3. Synthesizing the Utility of Patterns

We can synthesize the utility patterns after all the different data sources are assigned weights. The
synthesizing process of patterns is demonstrated below:

• Pattern R1: ABC

util(ABC) = [W(DS1) × util1(ABC)] + [W(DS2) × util2(ABC)] = [0.396 × 3,544,830] +
[0.302 × 3,591,954] = 2,488,523

(4)

• Pattern R2: AD

util(AD) = [W(DS1) × util1(AD)] + [W(DS2) × util2(AD)] + [W(DS3) × util3(AD)] =
[0.396 × 1,728,899] + [0.302 × 1,745,716] + [0.302 × 1,749,528] = 1,740,208

(5)

• Pattern R3: BE

util(BE) = [W(DS1) × util1(BE)] + [W(DS3) × util3(BE)] = [0.396 × 1,464,888] + [0.302 ×
1,461,862] = 1,021,578

(6)

All of the selected patterns satisfy the minimum threshold of utility, so they are forwarded as
it is for normalizing their utility, otherwise, they are wiped out again. For n different data sources,
we have P = P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pn and P contains R1, R2, R3, . . . , Rm patterns. Hence, the utility of
any pattern util(Ri) can be calculated as:

util(Ri) = ∑ W(DSi) × utili(Ri) (7)

3.4. Normalizing the Utility of Patterns

The synthesized utility obtained after allocating the weights can be in the larger range depending
upon the utilities specified for an item in the transaction database. According to Good’s idea,
this synthesized utility can be normalized in the interval 0–1 for our simplicity. To calculate the
normalized utility, the maximum profit generated in that transaction database and the number of
occurrences of the pattern are used. The maximum profit generated by any item(s) after mining
the union of DS1, DS2 and DS3, is 17,824,032. Hence, this value is used as Maximum_Profit while
normalizing the utility of patterns. The normalization of synthesized utility is demonstrated:

• Pattern R1: ABC
Nutil(ABC) = (2,488,523 × 2)/17,824,032 = 0.28 (8)

• Pattern R2: AD
Nutil(AD) = (1,740,208 × 3)/17,824,032 = 0.293 (9)

• Pattern R3: BE
Nutil(BE) = (1,021,578 × 2)/17,824,032 = 0.115 (10)

From the above results, the ranking of patterns is R2 (nutil = 0.293), R1(nutil = 0.28) and R3

(nutil = 0.115). For n different data sources, we have P = P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pn and P contains R1, R2,
R3, . . . , Rm patterns. Hence the normalized utility for any pattern Ri Can be given as:

Nutil(Ri) = [util(Ri) × Occurrence(Ri)]/Maximum_Profit (11)
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4. Algorithm Design

When we combine all of the high-utility patterns from different data sources, it can amass a huge
number of patterns overall. To deal with this problem, we first design a pattern selection algorithm for
selecting only those patterns occurring more than the number of times specified by the user, that is,
by specifying a minimum voting degree, µ. The minimum voting degree, µ is a user-specified value
in the range 0–1. For example, if we want only those patterns whose occurrence is in more than 60%
of data sources then µ is set to be 0.6. This algorithm only enhances our synthesis model by wiping
out patterns whose occurrences is below the threshold µ. The patterns having a smaller number of
occurrences are seen as noise and considered to be irrelevant in the set of all patterns. These irrelevant
patterns are removed before assigning weights to data sources. The output of this algorithm will be a
set of filtered patterns. We design a pattern selection algorithm as Algorithm 1 below:

Algorithm 1: Pattern_Selection (P):

Input: P-Set of ‘N’ patterns forwarded by different data sources; n—Number of different sources;
µ—Minimum voting degree.
Output: The filtered set of patterns P.

1. for i = 1 to N do
a. Occurrence(Ri) = Number of occurrences of Ri in P;
b. if (Occurrence(Ri)/n < µ)

i. P = P − {Ri};
2. end for;
3. return P;

Let DS1, DS2, DS3, . . . , DSn be n different data sources, generating the universal set of patterns
P = P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pn where P is the set of patterns forwarded by DSi (i = 1, 2, 3, . . . , n). utili(Rj) is
the utility of pattern Rj in DSi. minutil and Maximum_Profit are the thresholds set by the user. We design
the following Algorithm 2 for synthesizing patterns from different data sources:

Algorithm 2: Pattern_Synthesis ():

Input: Pattern sets P1, P2, P3, . . . , Pn; minimum utility threshold-minutil; Maximum_Profit.
Output: Synthesized patterns with their utility.

1. Combine all sets P1, P2, P3, . . . , Pn into P by assigning Pattern ID to each distinguished pattern.
2. call Pattern_Selection(P);
3. for ∀ Ri ∈ P do

a. Occurrence(Ri) = Number of occurrences of Ri in P;
b. W(Ri) = Occurrence(Ri)/∑Occurrence(Rj ∈ P);

4. for i = 1 to n do
a. W(DSi) = ∑ Occurrence(Rx ∈ Pi) ×W(Rx)/∑ ∑ Occurrence(Ry ∈ Pj) ×W(Ry); j = 1, 2, 3, . . . , n.

5. for ∀ Ri ∈ P do
a. util(Ri) = ∑ W(DSi) × utili(Ri);
b. if(util(Ri) < minutil)

i. P = P − {Ri};
c. else

i. Nutil(Ri) = [util(Ri) × Occurrence(Ri)]/Maximum_Profit;
6. sort all the patterns in P by their normalized utility i.e., Nutil(Ri);
7. return all the rules ranked by their Nutil(Ri);

end.

The above pattern synthesis algorithm synthesizes high-utility patterns ranked by their
normalized utility. Step 1 combines all the sets of patterns forwarded by different data sources
and assigns a unique pattern ID. Step 2 calls the algorithm Pattern_Selection (Algorithm 1) for removing
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the patterns occurring below the threshold µ. Step 3 assigns the weights to all patterns. Step 4 assigns
the weight to all data sources. Step 5 calculates the synthesized utility and normalized utility of
selected patterns. Steps 6 and 7 returns the synthesized patterns with their rank wise utility.

5. Data Description

The mining algorithms were used from SPMF Open-Source Data Mining Library [27] for
performing mining through various datasets. We used Microsoft Excel for calculations and data
visualization. All of the datasets used were taken from the same SPMF library. The transactions in the
datasets are already having the internal utility and profit per item, hence there is no need to assign any
kind of utility factor to any item. We evaluate the effectiveness of the proposed synthesis model by
extensively experimenting with the datasets with varied characteristics.

6. Experimental Evaluation

The pattern ID denotes the number given to each itemset in the transaction database. The itemset
shows the items appearing together in a pattern. The deviation measure between the proposed method
and mono-mining is calculated by following formula:

Deviation = | Nutili MM − Nutili SM | (12)

where Nutili MM = Util(Ri) in the union of all the databases/Maximum_Profit of the database and Nutil i
SM is the synthesized utility calculated by the proposed model.

6.1. Study 1

Kosarak is a very sparse dataset containing 990,000 sequences of click-stream data from
a Hungarian news portal, having 41,270 distinct items. It is partitioned into 5 databases with
198,000 transactions each, representing 5 different data sources. We first performed mono-mining on
the union of these 5 databases using the D2HUP algorithm [28] and calculated the normalized utility
denoted by Nutili MM. Then we mined these 5 databases separately by using the D2HUP algorithm
and then applied our synthesis model to calculate normalized utility denoted by Nutili SM when
minutil = 800,000, µ = 0.4, Maximum_Profit = 17,824,032. The average deviation was found to be 0.001 for
two different methods. The patterns mined from different databases and ranked with its synthesized
utility are tabulated in Table 3.

Table 3. Experimental results for Kosarak dataset.

Pattern ID Itemset Nutili
MM Nutili

SM Deviation

P1 11, 6 1 0.999 0.001
P2 3, 11, 6 0.488 0.487 0.001
P3 3, 6 0.41 0.409 0.001
P4 3, 11 0.348 0.348 0.000
P6 1, 11, 6 0.293 0.292 0.001
P5 148, 218, 11, 6 0.293 0.291 0.002
P7 148, 11, 6 0.29 0.290 0.000
P8 148, 218, 11 0.232 0.232 0.000
P9 148, 218, 6 0.228 0.228 0.000

6.2. Study 2

Chainstore is a very sparse dataset containing 1,112,949 sequences of customer transactions from
a retail store, obtained and transformed from NU-Mine Bench, having 46,086 distinct items. It is
partitioned into 5 databases with 222,589 transactions each, representing 5 different data sources.
We first performed mono-mining on the union of these 5 databases by D2HUP algorithm [28] and
calculated the normalized utility denoted by Nutili MM. Then we mined these 5 databases separately
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by using the D2HUP algorithm and then applied our synthesis model to calculate normalized utility
denoted by Nutili SM when minutil = 500,000, µ = 0.6, Maximum_Profit = 82,362,000. The average deviation
was found to be 0.004 for two different methods. The patterns mined from different databases and
ranked with its synthesized utility are tabulated in Table 4.

Table 4. Experimental results for Chainstore dataset.

Pattern ID Itemset Nutili
MM Nutili

SM Deviation

P1 39,171, 39,688 0.078 0.077 0.001
P5 39,692, 39,690 0.062 0.063 0.001
P4 5166, 16,967 0.051 0.052 0.001
P3 21,283, 21,308 0.05 0.051 0.001
P6 16,977, 16,967 0.05 0.051 0.001
P9 22,900, 21,308 0.049 0.049 0.000
P7 39,206, 39,182 0.055 0.044 0.011
P8 10,481, 16,967 0.042 0.042 0.000
P2 39,143, 39,182 0.052 0.029 0.023

6.3. Study 3

Retail is a sparse dataset containing 88,162 sequences of anonymous retail market basket data
from an anonymous Belgian retail store, having 16,470 distinct items. It is partitioned into 4 databases
with 22,040 transactions each, representing 4 different data sources. We first performed mono-mining
on the union of these 4 databases using the EFIM algorithm [20] and calculated the normalized utility
denoted by Nutili MM. Then we mined these 4 databases separately by using the EFIM algorithm,
and then applied our synthesis model to calculate normalized utility denoted by Nutili SM when
minutil = 20,000, µ = 0.75, Maximum_Profit = 481,021. The average deviation was found to be 0.025 for
two different methods. The patterns mined from different databases and ranked with its synthesized
utility are tabulated in Table 5.

Table 5. Experimental results for the Retail dataset.

Pattern ID Itemset Nutili
MM Nutili

SM Deviation

P1 49, 40 1 1 0.000
P2 49 0.963 0.964 0.001
P7 40 0.579 0.579 0.000
P8 33 0.523 0.524 0.001
P9 33, 49 0.461 0.463 0.002
P3 42, 40 0.522 0.422 0.100
P5 42, 49 0.516 0.418 0.098
P4 42 0.513 0.416 0.097
P6 42, 49, 40 0.506 0.409 0.097

P10 33, 40 0.387 0.388 0.001
P12 33, 49, 40 0.372 0.373 0.001
P17 39, 49 0.363 0.363 0.000
P14 39 0.353 0.353 0.000
P16 39, 40 0.353 0.353 0.000
P20 39, 49, 40 0.349 0.349 0.000
P19 37, 39 0.317 0.327 0.010
P25 37 0.268 0.266 0.002
P27 37, 39, 40 0.243 0.242 0.001
P26 171, 39 0.207 0.208 0.001
P28 37, 40 0.209 0.208 0.001
P30 37, 39, 49 0.186 0.184 0.002
P13 39, 42 0.224 0.182 0.042
P11 33, 42 0.219 0.177 0.042
P15 39, 42, 40 0.211 0.171 0.040
P22 39, 42, 49 0.191 0.155 0.036
P21 33, 42, 49 0.189 0.153 0.036
P18 33, 42, 40 0.187 0.152 0.035
P24 39, 42, 49, 40 0.183 0.148 0.035
P23 33, 42, 49, 40 0.169 0.137 0.032
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6.4. Study 4

BMS is a sparse dataset containing 59,601 sequences of clickstream data from an e-commerce
having 497 distinct items. It is partitioned into 3 databases with 19,867 transactions each, representing
3 different data sources. We first performed mono-mining on the union of these 3 databases using the
EFIM algorithm [20] and calculated the normalized utility denoted by Nutili MM. Then we mined these
3 databases separately by using the EFIM algorithm, and then applied our synthesis model to calculate
normalized utility denoted by Nutili SM when minutil = 500,000, µ = 0.3, Maximum_Profit = 9,449,280.
The average deviation was found to be 0.032 for the two different methods. The patterns mined from
different databases and ranked with its synthesized utility are tabulated in Table 6.

Table 6. Experimental results for BMS dataset.

Pattern ID Itemset Nutili
MM Nutili

SM Deviation

P1 306, 315 0.2032 0.1871 0.016
P3 151, 168 0.1768 0.1255 0.051
P2 148, 168 0.1642 0.1250 0.039
P5 306, 310 0.1426 0.1185 0.024
P4 5, 168 0.1387 0.1073 0.031

6.5. Study 5

Foodmart 1 is a sparse dataset containing 4591 sequences of customer transactions from a retail
store, obtained and transformed from the SQL-Server 2000, having 1559 distinct items. It is partitioned
into 3 databases with 1530 transactions each, representing 3 different data sources. We first performed
mono-mining on the union of these 3 databases using the EFIM algorithm [20] and calculated the
normalized utility denoted by Nutili MM. Then we mined these 3 databases separately by using the
EFIM algorithm and then applied our synthesis model to calculate normalized utility denoted by
Nutili SM when minutil = 9000, µ = 0.3, Maximum_Profit = 30,240. The average deviation was found to
be 0.524 for two different methods. The patterns mined from different databases and ranked with its
synthesized utility are tabulated in Table 7.

Table 7. Experimental results for the Foodmart 1 dataset.

Pattern ID Nutili
MM Nutili

SM Deviation

P10 0.901 0.530 0.371
P11 0.848 0.504 0.344
P3 0.845 0.448 0.397
P9 0.836 0.413 0.423
P26 1 0.220 0.780
P12 0.94 0.188 0.752
P1 0.572 0.165 0.407
P13 0.726 0.155 0.571
P2 0.685 0.148 0.537
P14 0.783 0.140 0.643
P4 0.578 0.137 0.441
P5 0.582 0.135 0.447
P6 0.483 0.132 0.351
P15 0.644 0.132 0.512
P7 0.667 0.131 0.536
P16 0.667 0.127 0.540
P8 0.657 0.124 0.533
P17 0.58 0.121 0.459
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Table 7. Cont.

Pattern ID Nutili
MM Nutili

SM Deviation

P20 0.652 0.116 0.536
P21 0.55 0.116 0.434
P23 0.574 0.113 0.461
P38 0.658 0.075 0.583
P39 0.711 0.074 0.637
P40 0.664 0.073 0.591
P41 0.742 0.072 0.670
P43 0.748 0.071 0.677

6.6. Study 6

Foodmart 2 is a sparse dataset containing 9233 sequences of customer transactions from a retail
store, obtained and transformed from the SQL-Server 2000, having 1559 distinct items. It is partitioned
into 3 databases with 1530 transactions each, representing 3 different data sources. We first performed
mono-mining on the union of these 3 databases using the EFIM algorithm [20] and calculated the
normalized utility denoted by Nutili MM. Then we mined these 3 databases separately by using the
EFIM algorithm and then applied our synthesis model to calculate normalized utility denoted by Nutili
SM when minutil = 20,000, µ = 0.6, Maximum_Profit = 71,355. The average deviation was found to be
0.301 for the two different methods. The patterns mined from different databases and ranked with its
synthesized utility are tabulated in Table 8.

Table 8. Experimental results for Foodmart 2 dataset.

Pattern ID Nutili
MM Nutili

SM Deviation

P1 0.358 1.012 0.654
P2 0.354 0.963 0.609
P7 0.398 0.901 0.503
P6 0.301 0.894 0.593
P3 0.382 0.458 0.076
P4 0.323 0.406 0.083
P9 0.299 0.378 0.079
P11 0.266 0.371 0.104
P15 0.315 0.323 0.009

6.7. Study 7

Accident is a moderately dense dataset containing 340,183 sequences of anonymized traffic
accident data having 468 distinct items. It is partitioned into 4 databases with 85,045 transactions
each, representing 4 different data sources. We first performed mono-mining on the union of these
4 databases using the EFIM algorithm [20] and calculated the normalized utility denoted by Nutili
MM. Then we mined these 4 databases separately by using the EFIM algorithm, and then applied our
synthesis model to calculate normalized utility denoted by Nutili SM when minutil = 7,500,000, µ = 0.5,
Maximum_Profit = 31,171,329. The average deviation was found to be 0.101 for the two different methods.
The patterns mined from different databases and ranked with its synthesized utility are tabulated in
Table 9.

Table 9. Experimental results for Accident dataset.

Pattern ID Itemset Nutili
MM Nutili

SM Deviation

P2 28, 43 31, 16, 18, 12, 17 0.9913 0.99 0.001
P1 28, 43, 21, 31, 16, 18, 12, 17 1 0.8 0.200
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6.8. Result Analysis

Table 10 summarizes the characteristics of datasets used along with the deviations found in both
methods. The average deviation for each dataset is calculated by following formula:

Average Deviation = ∑ (| Nutili MM − Nutili SM |)/N (13)

where N = Number of patterns forwarded by n data sources; Nutili MM, Nutili SM are calculated as per
the algorithm designed.

Table 10. Dataset characteristics.

Dataset Nature of Dataset Transactions Distinct Items Average Deviation

Kosarak Very Sparse 990,000 41,270 0.001
Chainstore Very Sparse 1,112,949 46,086 0.004

Retail Sparse 88,162 16,470 0.025
BMS Sparse 59,601 497 0.032

Foodmart1 Sparse 4591 1559 0.524
Foodmart2 Sparse 9233 1559 0.301
Accident Moderately Dense 340,183 468 0.101

The top k patterns mined by both the methods are almost identical in each dataset, hence the
proposed model is able to mine and synthesize the high-utility patterns from different databases.
The proposed model worked very well for very sparse and sparse datasets having a huge number of
transactions under the study. However, it is difficult to find common patterns from multiple sources
for the dense datasets, especially when the number of transactions and distinct items under study are
very low (or high). Hence, only one dense dataset is considered here. The different datasets used were
partitioned and mined to be treated as multiple databases, after which they have applied the proposed
synthesis model. Figure 2 depicts the visualization of results found. The average deviation increases
as the density of databases increases, but this trend is reversed for the Accident dataset. This is due to
the presence of the high number of transactions in that dataset. So, the average deviation also depends
upon the number of transactions.

6.9. Runtime Performance

There are very few approaches proposed for aggregating high-utility patterns from multiple
databases. Various known techniques such as sampling, distributed and parallel algorithms are
proposed. However, the sampling technique depends heavily on the transactions of the databases
which are randomly appended into a database to hold the property of binomial distribution.
The limitations of parallel mining algorithms which require hardware technology are already discussed
in previous sections. The runtime performance of our proposed synthesis model is evaluated with
PHUI-Miner, sampling approach developed by Chen et al. [29] and parallel mining method developed
by Vo et al. [30]. Figures 3 and 4 respectively show the results of our Synthesis model with sampling
algorithms PHUI-Miner and PHUI-MinerRnd on Kosarak and Accident dataset. In the figures we can
observe that our Synthesis model (SM) clearly outperforms the PHUI-Miner and PHUI-MinerRnd
algorithms on both the datasets. Figures 5 and 6 respectively show the results of our Synthesis model
with Vo’s model on BMS and Retail dataset. The relative utility threshold for our proposed model is
the ratio of minutil to Maximum_Profit. In the figures we can observe that our Synthesis model (SM)
clearly outperforms the Vo’s model on both the datasets. The reason that these datasets were selected
for comparison is that only these are common in all the studies.
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7. Conclusions

This paper provides an extension to the work of Wu’s model which is only applicable to frequent
patterns, whereas our approach is applicable to frequent patterns as well as high-utility patterns in
multiple databases. Experiments conducted in this study show that the results of the synthesis model
and mono-mining are almost identical, hence the goal set during problem formation has been achieved.

The proposed method is useful when data sources are widely distributed and are not desirable
to transport their whole database at the central node. The local pattern analysis gives the insights of
the local behavior of nodes, whereas the global pattern analysis gives the insights of global behavior
of nodes. The local analysis is useful for studying patterns at the local level and also at the global
level, depending upon the weight of the local source in a global scenario. The weights of sources
give the importance of local sources. However, the reliability of the weighted model proposed in this
paper is an important issue to be discussed. If a given pattern occurs only in a single data source,
if its synthesized utility is well above the threshold then it has to be considered as a high-utility valid
pattern. Arbitrarily requiring that a pattern has to occur in multiple sources is not justified. There could
be interaction effects between the parameters of different sources and they should also be considered
in the equations defined.

Our proposed approach in this paper is suitable when data comes from different sources, such as
sensor networks in the Internet of Things (IoT). Our approach is also beneficial when store managers
are interested in high-profit items. This work can be extended further for dense datasets, as the results
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found for them were not very effective. Our future work will also focus on synthesizing patterns with
negative utility, on-shelf with negative profit units and high-utility sequential rule/pattern mining.
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