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Abstract: Time series forecasting can be a complicated problem when the underlying process shows
high degree of complex nonlinear behavior. In some domains, such as financial data, processing
related time-series jointly can have significant benefits. This paper proposes a novel multivariate
hybrid neuro-fuzzy model for forecasting tasks, which is based on and generalizes the neuro-fuzzy
model with consequent layer multi-variable Gaussian units and its learning algorithm. The model
is distinguished by a separate consequent block for each output, which is tuned with respect to the
its output error only, but benefits from extracting additional information by processing the whole
input vector including lag values of other variables. Numerical experiments show better accuracy
and computational performance results than competing models and separate neuro-fuzzy models
for each output, and thus an ability to implicitly handle complex cross correlation dependencies
between variables.

Keywords: time series; neuro-fuzzy; membership function; backpropagation; Kachmarz method;
Gaussian; prediction

1. Introduction

Time-series represent data points ordered in the time domain and they arise in many fields
including economics, engineering, sociology, and medicine. Mathematical tools for time-series
forecasting can crucially improve the decision-making process. Statistical models have dominated the
field of quantitative time-series analysis for decades. These models are predominantly parametric and
therefore require time-series to be weakly stationary, which is achieved through various differencing
techniques, whose effectiveness is disputed [1,2] due to the highly nonstationary and nonlinear nature
of real-life time-series.

The computational intelligence (CI) approach proposes nature-inspired models and methods
that have been competing against classical statistical approaches in many applied domains. Among
CI principal techniques, Artificial Neural Networks (ANN) are the most known and widely used.
Many neural models have been applied to financial time-series forecasting [3–5]. Crone et al. [4]
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proved the ability of such networks to represent complex data patterns, including highly frequent,
seasonal, and short time-series.

Fuzzy logic and fuzzy sets theory have been extended to a variety of mathematical objects
by introducing a gradual degree of membership and have influenced uncertainty analysis [6,7].
Rule-based fuzzy models have been applied to various domains including stock market
forecasting [8,9]. However, they have some essential drawbacks primarily caused by their dependence
on expert knowledge or complex rule extraction methods.

Neuro-fuzzy systems combine the strengths of ANNs and fuzzy inference systems and have
been successfully applied to a variety of problems. Their advantages are especially visible in rapidly
changing domains with a high degree of uncertainty, e.g., routing guidance and planning [10,11],
electric networks loading forecasting [12,13], complex logistics [14], crude oil blending [15], human
resources portfolio management [16], and many others. Kar et al. [17] provided a brief review of
neuro-fuzzy model applications including forecasting. The Adaptive Network Inference System
(ANFIS), proposed by Jang [18] was the first successfully applied neuro-fuzzy model and the majority
of the later models are based on it. Recently, neo-fuzzy systems [19–21], which are based on zero-order
additive models, have been gaining popularity in various domains.

In the field of stock market prediction, examples of successfully applied neuro-fuzzy models
include the ANFIS model with a modified Levenberg-Marquardt learning algorithm for Dhaka Stock
Exchange day closing price prediction [22] and an ANFIS model based on an indirect approach
and tested on Tehran Stock Exchange Indexes [23]. Rajab & Sharma [24] proposed an interpretable
neuro-fuzzy approach to stock price forecasting applied to varies exchange series. Neuro-fuzzy
prediction models have been combined with genetic algorithms [25], wavelet transform [26], support
vector machines (SVM) [27], and recurrent connections in order to use dynamic memory [28,29]. Such
combined models could show high effectiveness, but they suffer from the additional costs of extra
clustering procedures, layers, and hyper-parameters.

Generally, neuro-fuzzy systems require many rules to cover complex nonlinear relations. To solve
this issue for scenarios where input variables show a certain degree of interdependence and correlation,
in Ebadzadeh & Salimi-Badr [30], multivariable Gaussian functions were used in a neuro-fuzzy model
for efficient handling of correlated input space regions, but prediction performance was measured on
a chaotic time-series, where the behavior may drastically vary from real-life data. Not much attention
was paid to the data noise handling.

The aforementioned works primarily focused on a single output scenario, so developing a
compact model with a memory-wise architecture and effective learning that can handle complex
cross-correlation dependencies between different input times series is a necessary task. The learning
procedure should combine generalization and smoothing abilities in order to work on small and
noisy datasets.

In this work, we present a novel neuro-fuzzy model and a corresponding learning procedure for
time-series forecasting. This model has three advantages: (1) achieves better accuracy through using
the representational abilities of the multivariable Gaussian functions in the fourth layer; (2) shows good
computational performance, which is achieved by using a stochastic gradient optimization procedure
for tuning consequent layer units and an iterative projective algorithm for tuning their weights; and (3)
has a reasonable amount of hyperparameters that can be chosen.

The remainder of this paper is organized as follows: Section 2 describes the data set that was used
for numerical experiments, Section 3 is devoted to the proposed model architecture and learning, and
Section 4 contains experimental results.

2. Data Description

In order to verify our model performance, we used the log returns of IBM stock and the S&P 500
index from January 1926 to December 1999 with 888 monthly records as the dataset. Correspondingly,
the dataset had two columns with numerical values: IBM represents the log returns of IBM stock, and
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SP column contains the S&P 500 index values. These two returns comprise a bivariate concurrently
correlated time series [31]. We chose this dataset as a framework due to its well-studied statistical
properties and real-life nature. The original dataset can be found in Tsay [31,32] and Table 1 contains a
randomly chosen block of 10 lines.

Table 1. Records example of the IBM stock and the S&P 500 index dataset.

IBM SP

−8.24798 −4.06866
6.67236 −4.81089
4.73701 7.43094
0.70948 2.61842
3.81336 7.52652
0.00000 0.29955
−4.91377 −5.46357
8.11467 0.75415
−4.96210 −3.05211
8.11467 0.75415

Data were normalized in order to compare different models properly. Figure 1 shows the first
300 records in the normalized version of the dataset.
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3. Proposed Model

3.1. Architecture and Inference

The proposed model is a multi-output generalization of the model introduced in Vlasenko
et al. [33,34], based on the classical ANFIS [18] model. It consists of five layers that are shown
in the Figure 2. The main difference with the architecture described in Vlasenko et al. [33] is
that we have m outputs ŷ(k) = (ŷ1(k), ŷ2(k), ..., ŷm(k))

T instead of just one ŷ for each input
pattern x(k) = (x1(k), x2(k), ..., xn(k))

T and, correspondingly, m composite consequent layer units
F = (F1(k), F2(k), ..., Fm(k))

T . Figure 2 depicts the modified architecture.
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The fuzzification layer consists of hψ membership functions for each input variable; hence, their
total amount is hψ × n. Gaussian membership functions are used—this type of membership function is
also known as a radial basis function kernel, popular among a variety of machine learning techniques.
It has the following form:

ψjl(x(k)) = exp

−
(

x(k)− cψ
jl

)
2σ2

je

, (1)

where x(k) corresponds to a current input vector, cψ
jl is the centre, and σjl is a variety or width parameter,

which controls the width of the bell curve.
On the initialization step, the first layer membership function centers cψ

jl are placed at equidistant

widths fixed at σjl = 0.15. An example with hψ = 5 is shown in Figure 3.
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The second layer performs an aggregation of the antecedent premises. It comprises hψ algebraic
product fuzzy T-norm units g. Its outputs are computed by the formula:

gj(k) =
n

∏
i=1

ψjl(xi(k)). (2)

The third layer is non-parametrised and responsible for normalization. It also has hψ units, which
outputs calculated by the following formula:

gj(k) =
gj(k)

hψ

∑
j=1

gj(k)
=

n
∏
i=1

ψjl(xi(k))

hψ

∑
i=1

n
∏
i=1

ψjl(xi(k))
. (3)

This fulfils the Ruspini condition, which states the sum of various membership grades of one
element is one [5]:

hψ

∑
j=1

gj(k) = 1. (4)

The fourth layer is represented by the consequent units Fa that contain multidimensional Gaussian
consequent functions φaje(x(k)) and weights paje. Multidimensional Gaussian functions replace the
standard ANFIS polynomials and have the following form:

φaje(x(k)) = exp

−
(

x(k)− cφ
aje

)T
Q−1

aje

(
x(k)− cφ

aje(k)
)

2

, (5)

where x(k) represents an input vector, cφ
aje is a vector-centre of the current Gaussian, and Qaje is the

receptive field (covariance) matrix.
This function allows handling data distributed unevenly on the main axes. In case of a diagonal

matrix, multidimensional Gaussian simply represents a collection of independent Gaussians with fixed
width (Figure 4a).



Data 2018, 3, 62 6 of 14Data 2018, 3, x FOR PEER REVIEW  6 of 14 

 

 
Figure 4. The examples of multidimensional Gaussain with the same centre but different covariance 

matrices: (a) with diagonal matrix and (b)with matrix 







9.07.0
6.00.9 . 

The detailed structure of the consequent unit aF , for each output ˆay  is depicted in Figure 5. 

 
Figure 5. Detailed fourth layer representation. 

The consequent layer output is: 

( )( )
1

( ( ))
h

aj aje aje
e

f x k p x k
φ

φ
=

= , (6)

where h
φ  is an amount of multidimensional Gaussian functions for each unit jf . 

The output layer is non-parametrized and computed as a sum of its inputs: 

( )( )
1

ˆ
h

a aj aj
j

y g f x k
φ

=

= . (7)

Figure 4. The examples of multidimensional Gaussain with the same centre but different covariance

matrices: (a) with diagonal matrix and (b) with matrix

Data 2018, 3, x FOR PEER REVIEW  6 of 14 

 

 

Figure 4. The examples of multidimensional Gaussain with the same centre but different covariance 

matrices: (a) with diagonal matrix and (b)with matrix 









9.07.0

6.00.9 . 

The detailed structure of the consequent unit aF , for each output ˆ
ay  is depicted in Figure 5. 

 

Figure 5. Detailed fourth layer representation. 

The consequent layer output is: 

  
1

( ( ))
h

aj aje aje
e

f x k p x k






 , (6)

where h
  is an amount of multidimensional Gaussian functions for each unit jf . 

The output layer is non-parametrized and computed as a sum of its inputs: 

  
1

ˆ
h

a aj aj
j

y g f x k





  . (7)

The detailed structure of the consequent unit Fa, for each output ŷa is depicted in Figure 5.
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The consequent layer output is:

faj(x(k)) =
hφ

∑
e=1

pajeφaje(x(k)), (6)

where hφ is an amount of multidimensional Gaussian functions for each unit f j.
The output layer is non-parametrized and computed as a sum of its inputs:

ŷa =
hφ

∑
j=1

gaj faj(x(k)). (7)
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3.2. Learning Procedure

The proposed learning method generalizes the learning approach proposed by Vlasenko et al. [33]
for a multivariate case. It comprises two simultaneous processes: optimization in the weights space P
and in the consequent functions space.

During the initialization step, the fourth layer function centres cφ
ajl are placed equidistantly and

Qajl is initialized as identity matrices. Weights p are all originally set to 0.1.
Weights learning is performed by the Kachmarz method, which is a form of alternating projection

method based on solving linear equation systems. It has gained popularity in signal processing,
machine learning, and other domains. Each pa has the following form:

pa(k + 1) = pa(k) +
ya(k)− pa

T fa(x(k))
faT(x(k)) fa(x(k))

fa(x(k)), (8)

where pa(k) is a weights matrix, ya(k) is a reference signal, and pa
T fa(x(k)) is the model output.

Figure 6 shows a simplified example of the error surface in the weights space.
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The first-order stochastic, or online in terms of machine learning theory, gradient optimization
method is used for consequent functions tuning. Stochastic gradient methods have been shown to
have many advantages in comparison to popular batch gradient methods in real-life optimization
problems including machine learning applications [35,36]. Instead of computing the full gradient over
all dataset in batches, these methods update free model parameters after processing each input pattern.
Their main advantage is the inherent noise of calculated gradients. Additionally, they do not suffer
from rounding errors, which occur when having to store the accumulated gradient [37], and have
better computational performance. The disadvantage is that they cannot be as easily parallelized as
batch methods [36,37] and the severity of such restriction depends on the domain.

Learning is based on the standard mean square error criterion:

E =
1
N

N

∑
k=1

(y(k)− ŷ(k))2, (9)
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where y(k) is the reference signal value, ŷ(k) is the prognosis signal value, and N is the training
set length.

The centres cφ
ajl are then tuned using: cφ

ajl(k + 1) = cφ
ajl(k) + λc

τc
ajl(k)e(k)

ηc(k)
ηac(k + 1) = βcηac(k) + τc

ajl
Tτc

ajl

, (10)

where λc is a learning step, βc is a dumping parameter, and τc
ajl is a vector of back propagated gradient

values with respect to cφ
ajl .

The Qajl matrices learning can be written as: Qajl(k + 1) = Qajl(k) + λQ
τQ

ajl(k)e(k)
ηaq(k)

ηaQ(k + 1) = βQηaQ(k) + Tr
(

τQ
ajl

TτQ
ajl

) , (11)

where λQ is a learning step, βQ is a dumping parameter, and τQ
ajl is a matrix of values back propagated

with respect to Qajl .
Vectors ηac and matrices ηaQ represent the decaying average value of past gradients and the

algorithm initializes with ηac = ηaQ = 10, 000.
Figure 7 depicts an example of the error surface with respect to centres cφ

ajl and Figure 8 shows
examples of multidimensional Gaussians after learning is finished.
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4. Experimental Results

We compared the prediction accuracy and computational performance to ANN using bipolar
sigmoid activation functions. To train the ANN model, we used the Levenberg-Marquardt
algorithm [38] and resilient backpropagation learning algorithm (RPROP) [39] as the popular batch
optimization techniques.

The Accord.NET package [40] was used for the ANN implementations and we wrote custom
software for the neuro-fuzzy model. In addition, we utilized the Math.NET Numerics package [41] for
the linear algebra operations in the neuro-fuzzy model implementation.

The experiments were performed on a computer with Intel ® Core(TM) Core i7-7700 processor
(Intel, Santa Clara, California, U.S.) and 32 GB of memory.

Root Mean Square Error (RMSE) and Symmetric Mean Absolute Percent Error (SMAPE) criteria
were used to estimate prediction accuracy:
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RMSE =

√√√√√ N
∑

k=1
(y(k)− ŷ(k))2

N
,

SMAPE =
2
N

N

∑
k=1

|ŷ(k)− y(k)|
ŷ(k) + y(k)

,

where y(k) is a reference signal value, ŷ(k) is a prognosis signal value, and N is the training set length.
The bipolar sigmoid networks were built from sigmoids with an alpha value 0.4 for all cases,

learning rate 0.67, and 50 epochs were used for resilient backpropagation. The Levenberg-Marquardt
implementation was trained with 10 epochs. The neuro-fuzzy model had the following parameters
hψ = 3, λc = 1, and λQ = 1.

The original dataset was divided into a training set of 660 records and 228 records in the validation
set. The input vectors for the bivariate case were composed of an equal number of sequential numbers
from both dataset components.

We also compared the performance of all models in a univariate case, which is reflected in Table 2.

Table 2. Experimental results.

Model
IBM Stock Daily Log Returns and S&P 500 Index Dataset Results

Execution
time (ms)

IBM stock
RMSE (%)

IBM stock
SMAPE (%)

S&P 500 index
RMSE (%)

S&P 500 index
SMAPE (%)

Proposed model
hφ = 1, βc = 0.89, βQ = 0.98 64 8.938 10.049 4.443 4.594

hφ = 1, βc = 1.19, βQ = 0.97 39 12.956 20.548 - -

hφ = 1, βc = 0.88, βQ = 0.93 38 - - 6.097 9.005

Proposed model
hφ = 2, βc = 0.85, βQ = 0.93 120 8.878 10.104 4.356 4.532

hφ = 2, βc = 0.82, βQ = 0.91 63 12.865 20.138 - -

hφ = 2, βc = 0.75, βQ = 0.92 65 - - 6.056 8.677

Proposed model
hφ = 4, βc = 0.78, βQ = 0.91 257 8.866 10.013 4.294 4.463

hφ = 4, βc = 0.75, βQ = 0.91 126 12.693 20.133 - -

hφ = 4, βc = 0.74, βQ = 0.93 110 - - 6.113 8.775

Bipolar Sigmoid Network
RBPR 847 8.91 10.156 4.66 4.96

514 13.162 20.876

545 - - 6.308 9.139

Bipolar Sigmoid Network
Levenberg-Marquart 302 8.940 10.07 4.542 4.755

313 14.544 22.664 - -

297 - - 7.025 11.019

The performed experiments showed that ANN with a resilient backpropagation needs a
significant number of epochs to attain good accuracy, greatly reducing computational performance.
Levenberg-Marquardt learning requires fewer epochs, but each epoch costs more in terms
of computing.



Data 2018, 3, 62 11 of 14

The proposed model demonstrated better performance results in all cases—both computational
time and accuracy were significantly better than those of competitors. Also, the results in Table 2 show
that accuracy improves with a larger hφ, but the downside is longer execution time.

The multivariate neuro-fuzzy model requires less computational resources than the two
independent univariate models and has drastically better accuracy.

Visualization of the learning process is presented in Figures 9 and 10; IBM stock returns are
depicted for the multivariate and univariate cases. Figure 9 shows the significant improvement in the
forecasting plot obtained using the multivariate neuro-fuzzy model. Conversely, Figure 10 does not
show such a degree of improvement for the bipolar sigmoid artificial neural model.
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5. Conclusions

In this paper, we introduced a novel multiple output neuro-fuzzy model with multidimensional
Gaussian functions in the consequent layer. The proposed model expands upon existing single output
neuro-fuzzy models by adding separate fourth layer composed of computational units for each output.
The model allows optimal training performance with respect to other outputs by implicitly handling
lagged cross-correlation relations, which are common in financial data.

Experimental simulations demonstrated the good computational performance and prediction
accuracy of our model in comparison to well-known ANN models. In addition, the advantage of
utilizing multivariate time-series was proven.

Author Contributions: Conceptualization, O.V.; methodology, O.V. and D.P.; software, A.V.; validation, A.V. and
N.V.; formal analysis, O.V.; investigation, A.V.; writing—original draft preparation, A.V.; writing—review and
editing O.V. and N.V; visualization, A.V. and N.V.; supervision, D.P.

Funding: This research received no external funding.



Data 2018, 3, 62 13 of 14

Acknowledgments: The authors thank the organizers of the DSMP’2018 conference for the opportunity to publish
the article, as well as reviewers for the relevant comments that helped to better present the paper’s material.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Commandeur, J.J.; Koopman, S.J. An Introduction to State Space Time Series Analysis; Oxford University Press:
Oxford, UK, 2007.

2. Logue, A.C. The Efficient Market Hypothesis and Its Critics. CFA Digest 2003, 33, 40–41. [CrossRef]
3. Weigend, A.S.; Huberman, B.A.; Rumelhart, D.E. Predicting the future: A connectionist approach. Int. J.

Neural Syst. 1990, 1, 193–209. [CrossRef]
4. Crone, S.F.; Hibon, M.; Nikolopoulos, K. Advances in forecasting with neural networks? Empirical evidence

from the NN3 competition on time series prediction. Int. J. Forecast. 2011, 27, 635–660. [CrossRef]
5. Bodyanskiy, Y.; Popov, S. Neural network approach to forecasting of quasiperiodic financial time series.

Eur. J. Oper. Res. 2006, 175, 1357–1366. [CrossRef]
6. Dubois, D.; Prade, H. The legacy of 50 years of fuzzy sets: A discussion. Fuzzy Sets Syst. 2015, 281, 21–31.

[CrossRef]
7. Dubois, D.; Prade, H. Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets Syst.

2012, 192, 3–24. [CrossRef]
8. Sheta, A. Software Effort Estimation and Stock Market Prediction Using Takagi-Sugeno Fuzzy Models.

In Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21
July 2006. [CrossRef]

9. Chang, P.-C.; Liu, C.-H. A TSK type fuzzy rule based system for stock price prediction. Expert Syst. Appl.
2008, 34, 135–144. [CrossRef]
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