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Abstract: Datasets are important for researchers to build models and test how these perform,
as well as to reproduce research experiments from others. This data paper presents the NILM
Performance Evaluation dataset (NILMPEds), which is aimed primarily at research reproducibility
in the field of Non-intrusive load monitoring. This initial release of NILMPEds is dedicated to event
detection algorithms and is comprised of ground-truth data for four test datasets, the specification of
47,950 event detection models, the power events returned by each model in the four test datasets,
and the performance of each individual model according to 31 performance metrics.

Dataset: 10.17605/OSF.IO/BXUDN

Dataset License: CC-BY

Keywords: dataset; performance evaluation; performance metrics; event detection; non-intrusive
load monitoring; disaggregation; NILM; smart grid

1. Summary

Public datasets are crucial elements in data science research as these not only allow researchers
to perform systematic evaluations and benchmarks of their algorithms but also enable other researchers
to replicate and reproduce existing research [1].

Non-Intrusive Load Monitoring (NILM or load disaggregation) is the process of estimating
the energy consumption of individual appliances from electric power measurements taken at a limited
number of locations in the electrical distribution of a building [2]. A typical NILM dataset is a collection
of electrical energy measurements, taken from the mains (i.e., aggregate consumption) and from
the individual loads (i.e., ground-truth data, which are obtained either by measuring each load
at the plug-level or measuring the circuit to which the load is connected [3].

As presented in a recent review [3], there are over 20 public datasets for NILM research.
According to the same review, these datasets can be categorized according to their suitability to be used
to evaluate event-based and event-less approaches [4]. Event-based strategies seek to disaggregate
the total consumption employing detecting and labeling appliance transition (referred to as power
events) in the aggregated signal. As such, datasets for event-based NILM must also include labels
for the power events from the appliances of interest. On the other hand, event-less approaches
attempt to match each sample of the aggregated power to the consumption of one specific device,
or a combination of different devices. Therefore, datasets for event-less approaches do not require any
labeled transitions.

Existing NILM datasets are also categorized according to the data reporting rates [5]: macroscopic
datasets with data reporting rates around 1 Hz, and microscopic datasets with rates of several kHz.
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The Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) [6] and the Energy
Monitoring through Building Electricity Disaggregation (EMBED) [7] are examples of microscopic
datasets for event-based NILM. The Almanac of Minutely Power dataset (AMPds) [8], REFIT
(Personalised Retrofit Decision Support Tools For UK Homes Using Smart Home Technology) Project
Electrical Load Measurements Dataset [9], and the Rainforest Automation Energy Dataset for Smart
Grid Meter Data Analysis (RAE) [10] are examples of macroscopic datasets for event-less approaches.
Finally, UK-DALE [11] is an example of an event-less dataset that fits both microscopic and macroscopic
data rates, as it contains both high- and low-frequency data for three out of five houses [3].

This data descriptor presents NILMPEds (NILM Performance Evaluation dataset). NILMPEds
is a different type of NILM dataset, in a sense that it is aimed primarily at research
reproducibility concerning the development and performance evaluation of event detection algorithms.
Event detection is the process of identifying the relevant changes (i.e., appliance) in the aggregate
consumption data [2]. NILMPEds contains the results of 47,950 event detection models when applied
to four public event detection datasets. The different parameter configuration of each model and the
ground-truth data are also available. Finally, this dataset also contains the performance evaluation of
each model according to 31 performance metrics.

The data in NILMPEds were initially collected to serve as baseline data to study the behavior
of performance metrics for event detection algorithms [12]. This is a topic of particular interest
for the NILM research community, given that there is no consensus concerning which performance
metrics to employ in NILM performance evaluation [13,14].

Nevertheless, NILMPEds is also suitable to benchmark high- and low-frequency event detection
algorithms (e.g., [15]). Furthermore, the different detection models can be used to test data labeling
platforms [16–18], as well as to study the potential impacts of event detection algorithms in smart-grid
applications that require this information (e.g., appliance activation forecast for smart-charging
of electric vehicles and battery energy storage systems).

Despite the obvious differences with the other NILM datasets, since NILMPEds derives from
two microscopic datasets and five event detection algorithms (details in Section 2.2), it should be
considered under the category of microscopic event-based datasets.

2. Methods

2.1. Event Detection Dataset

The event detection results presented in this paper were obtained from the BLUED
and the UK-DALE datasets, more concretely Phases A and B of BLUED, and one week of data
from UK-DALE’s Houses 1 and 2.

The BLUED dataset consists of load demand data from one house in the USA with a two-phase
electric installation. The voltage and current sampled at 12 kHz is available, as well as a list of all the power
events with an absolute power change of at least 30 Watts. The UK-DALE dataset consists of power
demand data from five houses in the UK. For three of the five houses (Houses 1, 2 and 5), the dataset also
contains the whole-house voltage and current sampled at 16 kHz.

Before using the datasets, it was necessary to compute the active and reactive power from
the high-frequency voltage and current measurements. These values were computed at line frequency,
i.e., 60 Hz for BLUED and 50 Hz for UK-DALE. Furthermore, since no individual labels were available
for UK-DALE, this had to be done manually. The data labeling was done three steps: (1) an expert
heuristic detector was applied to the active power at 50 Hz; (2) the obtained false positives were
removed manually; and (3) the missing labels (i.e., false negatives) were added manually. It is important
to remark that, for the sake of consistency with BLUED, only power events with a minimum absolute
power change of 30 Watts were labeled. For additional details about this process, please refer to [17].

Table 1 summarizes these datasets. Rate is the sampling rate at which active and reactive power
was calculated; P.E. is the number of power events in the dataset; Power Change (W) is a summary



Data 2019, 4, 127 3 of 9

of distribution of the power events in terms of mean, and the 25%, 50%, and 75% percentiles; and Elapsed
Time (s) is a summary of the difference in seconds between the power events in the same terms
as the Power Change column.

Please note that only the ground-truth data for these datasets are made available in NILMPEds
(see Section 3.1). However, the interested readers should refer to [19] for additional details and
download information.

Table 1. Summary of the active power change and elapsed time between power events in the event
detection datasets.

Dataset Name Dataset ID Rate P.E. Power Change (W) Elapsed Time (s)

Mean 25% 50% 75% Mean 25% 50% 75%

UK-DALE H1 1 50 Hz 5440 268 48 100 273 111 4 7 28
UK-DALE H2 2 50 Hz 2842 365 45 74 137 212 6 15 172
BLUED PA 3 60 Hz 887 274 84 116 582 690 18 294 892
BLUED PB 4 60 Hz 1562 351 40 170 428 383 7 35 83

2.2. Event Detection Algorithms and Models

The event detection models are based on five different event detection algorithms, one expert
heuristic, and four probabilistic detectors. For each algorithm, the event detection models were obtained
by means of a parameter sweep, i.e., a controlled variation of a number of parameters in each algorithm.
Ultimately, the parameter sweep returned 47,950 distinct event detection models across the five algorithms.
The five algorithms and the respective number of models are presented in Table 2.

Table 2. Number of different models evaluated across the four datasets.

Event Detection Algorithm Models Model-Dataset Pairs
Name ID

Simplified LLR Detector with Maxima [15] 1 1 k 4 k
LLR Detector with Maxima [15] 2 1 k 4 k
Simplified LLR Detector with Voting [15] 3 1.1 k (50 Hz); 9.5 k (60 Hz) 22 k; 19 k
LLR Detector with Voting [20] 4 1.1 k (50 Hz); 9.5 k (60 Hz) 22 k; 19 k
Expert Heuristic Detector [21] 5 4.95 k 19.8 k

47.95 k 109.8 k

Extensive details about the event detection algorithms and the parameter sweep are out
of the scope of this paper, but the interested readers can refer to [15], and the respective algorithm
publications for more information. NILMPEds, instead, makes available the values of the different
parameters for each detection model (see Section 3.2).

2.3. Power Events and Performance Metrics

Each detection model was trained and tested against the four datasets for a total of 109,800
detection model/dataset pairs. From these, 31 performance metrics were calculated. For more details
about the performance metrics, and their calculation, the interested readers should refer to [22].

The performance of each model was calculated taking into consideration a tolerance interval,
Ω, in which the detected power events should fall to be considered correct detections. The detection
interval is defined by Equation (1). It is based on the ground-truth position (GT), and a tolerance
(Tol) value (in samples) that was set to account for eventual ambiguity when defining exactly where
an event occurs during the ground-truth labeling process.

Ω = [GT − Tol, GT + Tol] (1)
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In previous work on this topic [23], the authors varied this parameter from 1 to 6 seconds (in 1-second
steps) and found that there were no improvements with more than 3 seconds. Consequently, it was
decided to set this parameter to range between 0 and 3 seconds with variable steps, as defined by the set
τ in Equation (2), where Fs is the sampling rate of the dataset. Ultimately, this results in 10 values per
metric for each detection model/dataset pair.

τ = {0, 1, 5, 15, Fs, 1.5× Fs, 2× Fs, 2.5× Fs, 3× Fs} (2)

3. Data Description

NILMPEds is made available in four different folders, and all data files are in Comma Separated
Values format (CSV). Figure 1 provides an overview of the underlying organization of NILMPEds.
The following subsections thoroughly describe the content of the different folders.

/
Ground Truth

gt_d1.csv
...
gt_d4.csv

Detection Models
dm_a1a2.csv
dm_a3a4_50Hz.csv
dm_a3a4_60Hz.csv
dm_a5_50Hz.csv
dm_a5_50Hz.csv

Power Events
pe_a1d1.csv
...
pe_a1d4.csv
...
...
pe_a5d1.csv
...
pe_a5d3.csv
pe_a5d4.csv

Performance Metrics
pm_a1d1.csv
...
pm_a1d4.csv
...
...
pm_a5d1.csv
...
pm_a5d3.csv
pm_a5d4.csv

Figure 1. Underlying folder and file organization of NILMPEds.

3.1. Ground Truth

This folder contains the ground truth data that were used to evaluate the event detection models,
one CSV file per dataset. The underlying fields are described in Table 3.

Table 3. Column descriptions for the ground truth files (gt_d<?>.csv).

Column Description

Position Position of the power event in number of samples from the beginning of the dataset.

Delta_P
Difference in power before and after the power event, considering the average of one
second of samples before and after the event position.

Distance Distance in samples to the previous power event.

Day
The corresponding day in the dataset. The days are numbered from 1 to the total
number of days in the dataset.

3.2. Event Detection Models

This folder contains the values for the parameters for each of the 47,950 event detection models.
Table 4 describes the underlying fields.
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Table 4. Column descriptions for the event detection model files (dm_*.csv).

Column Description

All Models (dm_*.csv)

Model_ID Unique model identifier for each event detection algorithm.
w0 Length of the pre-event window in seconds.
w1 Length of the post-event window in seconds.

Models for Algorithms 1 and 2 (dm_a1a2.csv)

Mpre Maxima precision in seconds.

Models for Algorithms 3 and 4 (dm_a3a4_<?>Hz.csv)

wV Length of the voting window in seconds.
Vthr Minimum number of votes necessary to trigger a power event.

Models for Algorithm 5 (dm_a5_<?>Hz.csv)

Gpre Number of seconds before the second under evaluation
tElap Minimum elapsed time between events
Eedge Sample index inside the second where the event occurred

3.3. Power Events

This folder contains data for the power events that were detected by each of the 109,800 detection
model/dataset pairs. The power events are grouped by algorithm and dataset, in a total of 20 CSV
files (5 algorithms × 4 datasets). The underlying fields in each file are described in Table 5.

Table 5. Column descriptions for the power event files (pe_a<?>d<?>.csv).

Column Description

ID Power event unique identifier.
Model_ID Model identifier. This corresponds to the Model_ID in the detection models data.
Position Position of the power event in number of samples from the beginning of the dataset.

Delta_P
Difference in power before and after the power event, considering the average of one second
of samples before and after the event position.

ds
Value of the detection statistics. This field is not available for the models of Algorithm 5 since
these are not probabilistic.

3.4. Performance Metrics

This folder contains the performance data for each of the 109,800 detection model/dataset
pairs. The performance metrics are also grouped by algorithm and dataset, in a total of 20 CSV files.
The underlying fields in each file are described in Table 6, where Best and Worst refer to the theoretical
best and worst values of each metric, respectively.

Table 6. Column descriptions for the performance metric files (pm_a<?>d<?>.csv).

Column Description Values Range
Best Worst

Model_ID
Model identifier. This corresponds to the Model_ID
in the power events data. - -

Tolerance
A tolerance value (in samples) that was set to account for
eventual ambiguity when labeling the event detection datasets. - -

Events The number of real power events in the dataset. - -
TP True Positives Events 0
FP False Positives 0 S-Events a

TN True Negatives S-Events a 0
FN False Negatives 0 Events
A Accuracy 1 0
E Error-rate 0 1
P Precision 1 0
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Table 6. Cont.

Column Description Values Range
Best Worst

R Recall 1 0
FPR False Positive Rate 0 1
TPP True Positive Percentage 1 0
FPP False Positive Percentage 0 a

TNR True Negative Rate 1 0
FDR False Discovery Rate 0 1
F05 F0.5-Score 1 0
F1 F1-Score 1 0
F2 F2-Score 1 0
MCC Matthews Correlation Coefficient 1 −1
SMCC Standardized MCC 1 0
DPS_PR Distance to Perfect Score between Precision and Recall 0 2
DPS_Rate Distance to Perfect Score between TPR (i.e., Recall) and FPR 0 b

DPS_Perc Distance to Perfect Score between TPP and FPP. 0 b

WAUC Wilcoxon statistics based Area Under Curve 1 0
WAUCB Wilcoxon statistics based AUC Balanced 1 0
GAUC Geometric Mean AUC 1 0
BAUC Biased AUC 1 0
TPC_FP Total Power Change - False Positives 0 c

TPC_FN Total Power Change - False Negatives 0 c

APC_FP Average Power Change - False Positives 0 c

APC_FN Average Power Change - False Negatives 0 c

DPS_TPC Distance to Perfect Score TPC 0 d

DPS_APC Distance to Perfect Score APC 0 d

a S is the number of samples in the event detection dataset. b Since the FPP metric can return a value greater
than 1, it is not possible to define a fixed lower bound. c The worst result is proportional to the number of events
and size of the erroneous events; thus, it is not possible to define a fixed lower bound. d Since we cannot
define a fixed lower bound to the individual metrics, it is also not possible to set a lower bound to the DTP
metric.

4. Data Exploration

As an application example, Figure 2 shows the distribution of event detections across the five
algorithms and four datasets. The horizontal dotted line in each graph represents the number of actual
power events in the dataset. As can be observed, algorithms one and two are more conservative when
compared to the other alternatives. It is also evident that Algorithms 3 and 4 detect much more events
than the other three options. The voting threshold parameter in part explains this effect, since setting it
to a low value (e.g., 5) will result in very liberal event detection models.
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Figure 2. Cont.
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Figure 2. Distribution of detected power events across the five algorithms and four datasets.

Performance Metrics

Another application example is provided in Figure 3 that shows the median F1-score for each
algorithm across the four datasets. As it can be observed, after a tolerance value of Fs (i.e., ±50
or 60 samples), the detection results are not significantly different. In contrast, tolerance values
below ±5 samples lead to particularly poor outcomes. Finally, it is also evident from the results that
the heuristic detector (Algorithm 5) tends to be outperformed by its probabilistic counterparts.
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Figure 3. Median F1-Score, for each dataset, under the different detection tolerance values.

5. Future Work and Source Code Release

This data descriptor presents NILMPEds, a performance evaluation dataset for event detection
algorithms in NILM.

One limitation of the current version of NILMPEds is the low number of detection algorithms
and public datasets used in the evaluation process. Consequently, to increase its value, a future version
will also include results from the EMBED dataset. EMBED is one of the few NILM datasets that contain
labeled power events by default. Furthermore, to promote the addition of new event detection algorithms,
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the source code used to generate NILMPEds will be released along with the dataset, in the Open Science
Framework online platform1.
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