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Abstract: Exploring gene networks is crucial for identifying significant biological interactions
occurring in a disease condition. These interactions can be acknowledged by modeling the tie
structure of networks. Such tie orientations are often detected within embedded community structures.
However, most of the prevailing community detection modules are intended to capture information
from nodes and its attributes, usually ignoring the ties. In this study, a modularity maximization
algorithm is proposed based on nonlinear representation of local tangent space alignment (LTSA).
Initially, the tangent coordinates are computed locally to identify k-nearest neighbors across the genes.
These local neighbors are further optimized by generating a nonlinear network embedding function
for detecting gene communities based on eigenvector decomposition. Experimental results suggest
that this algorithm detects gene modules with a better modularity index of 0.9256, compared to
other traditional community detection algorithms. Furthermore, co-expressed genes across these
communities are identified by discovering the characteristic tie structures. These detected ties are
known to have substantial biological influence in the progression of schizophrenia, thereby signifying
the influence of tie patterns in biological networks. This technique can be extended logically on other
diseases networks for detecting substantial gene “hotspots”.

Keywords: schizophrenia; biological network; community detection; modularity maximization;
tie structure

1. Introduction

Schizophrenia is a multifaceted disorder characterized as a dysfunctional psychiatric illness.
This condition occurs across 1.5% of world population prominently leading to cognitive impairment
and thought delusions [1]. Having a manifold of neurochemical symptoms makes it further demanding
to devise advanced treatments for eradicating this disorder. Furthermore, studies have highlighted the
correlations between aberrant brain interactions and occurrence of the first episode of schizophrenia [2].
While imaging and spectroscopic techniques reveal structural abnormalities associated with the
disorder, their impact on the brain function is yet unknown, to a certain extent [3,4]. Thereby, several
studies in past have failed to identify the fundamental phenomenon responsible for a dysfunctional
brain [5]. In this context, comparative analysis of numerous psychiatric conditions including
schizophrenia, depressive, bipolar and treatment resistant schizophrenia (TRS) revealed that this
subtype of schizophrenia, TRS, is associated with severe cognitive and psychopathological impairments
requiring specialized treatment measures [6]. Henceforth, treatment of the illness requires treatments
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specific to different variants of schizophrenia. Currently, antipsychotic drugs are widely used for
treatment of schizophrenia. However, safety and efficacy of these medications remain questionable [7,8].
Henceforth, alternative mechanisms are been uncovered currently for discovering the pathological,
etiological and physiological impacts of this illness. In this direction, computational methods are seen
as better alternatives. These techniques have paved the way for recognizing the functioning of brain at
diverse orientations [9–11].

Centered on this idea, modeling schizophrenia as a computational network has received
widespread attention in recent years due to its prognostic proficiencies as compared to other
conventional techniques like magnetic spectroscopy and imaging techniques [12–14]. Computational
approaches are capable of associating genomic information across neural circuits to identify functional
phenotypes expressed in the disorder. Such network-based approaches further analyze topological
features of a disease, oriented as a modular unit. The so-derived biological modules characterize patterns
of interactions across several psychopathological, cognitive and psychological factors responsible for
schizophrenia [15].

Numerous computational techniques have been adopted in previous studies for identifying the
functional network modules from biological entities [16,17]. Some of the popular ones include greedy
algorithms, network propagation techniques and co-clustering methodologies [18]. Apart from these
techniques, biological modules are also discovered using community detection. Community detection
techniques are preferred in the case of biological networks due to their commendable influence in
distinguishing the functional components within networks [19]. Communities obtained from such
networks are usually oriented with dense interconnections across internal nodes when compared with
other nodes. These communities are further essential to identifying the dynamics and topological
features of the entire network. The assorted connections identified across communities will eventually
help in exploring the interrelationships across nodes and their influences on other nodes. For instance,
analysis of communities in biological networks identifies the connotations across multiple genetic
factors responsible for epidemics of a disease.

Furthermore, the tie arrangement spanned across a network can be analyzed taking into account
the community structure. These ties are oriented as strong or weak based on the strength of interactions
across the nodes [20]. Identifying such ties reveals the integrity of networks across its neighboring
nodes [21].

Taking into account the benefits of community structures, this study is intended to ascertain the
impact of the tie structure in schizophrenia gene network. Especially, the work identifies some relevant
research questions in this direction:

Question 1: What is the influence of community structure in gene networks?
Question 2: How does the tie structure influence the orientation of gene modules in schizophrenia?
Question 3: Specifically, what tie category influences the functioning of schizophrenia gene network?

2. Related Work

This section highlights significant contributions over the years pertaining to the application of
network approaches towards knowledge discovery from biological information.

2.1. Network Approach for Disease Modeling

Modelling diseases as a network has helped in understanding the dynamic interactions across
biological entities. Some of the popular biological networks include protein-protein interaction
networks, gene regulatory networks, parasite and pathogen networks to name a few [22]. These
networks are oriented as nodes and edges representing multitude biological entities and their
interactions [23]. Comparable to other diseases, schizophrenia is modelled as a network in various
studies. Some of the significant studies are enlisted in Table 1.
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Table 1. Prominent studies modeling schizophrenia as a network.

Sl. No. Study Methodology Adopted Significant Contributions

1 [24]

Disrupted brain function is
modeled using non-linear models

like gaussian naïve bayes and
SVM (Support Vector Machine)

Non-linear models resulted in
better functional brain mapping

with 86% accuracy

2 [25] Functional connectivity between
brain components are investigated

Network topology derived from
fMRI (functional Magnetic

Resonance Imaging) indicated
robustness of schizophrenia brain

connectivity with minimal
hub regions

3 [26]

Neurodevelopmental model is
developed for detecting

schizophrenia using longitudinal
population studies

Postmortem gene expression and
brain imaging denotes phenotypic

characterization with
developmental risk

4 [14]
Disruption in brain patterns are

detected from functional networks
using fMRI experiment

Disruptions are found to be global
in nature owing to long distance

correlations with 93% classification
accuracy differentiating

schizophrenia and control samples

5 [27]

Triple brain network model is
proposed based on central

executive network (CEN) and
default mode to detect aberrant

behavior in schizophrenia

The unitary mechanism of the
disease is identified in cognitive,
negative and positive domains

6 [28]

Several drugs including
dopaminergic, cholinergic,

glutamatergic, GABA
(Gamma-Aminobutyric Acid),

kappa opioid, cannabinoid and
serotonergic are evaluated to
understand their interaction

patterns in schizophrenia

The stimulants impacting
progression of schizophrenia are
identified from the drug models

7 [12]
Multiple alterations in brain

disorders are identified using
a network model

The network model detected the
positive symptoms of diseases

using integrated approach from
social, biological and
psychological factors.

8 [29]
Predictive model is developed
based on functional network

patterns to detect schizophrenia

Sparse multivariate regression
model applied on whole-brain
functionality resulted in 74%

accuracy for predicting
schizophrenia

9 [30]
Magnetic resonance imaging data
is utilized for mapping differences

in brain structure

Overlapping regions of 2% is
observed in cerebral, frontal and

temporal regions.

10 [31]

Differentially expressed
schizophrenia transcripts are

identified using
dysregulated genes

Two markers RGS1 and CCL4 are
identified with 97% accuracy from

27% of patient subset

2.2. Prominence of Community Detection in Biological Networks

Community detection is a mechanism for visualization of connections across different modules in
a network [19]. Community detection is widely used in biological networks for detection of functional
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components. In this context, many algorithms have been devised for community detection. Some of
the prominent ones are discussed in Table 2.

Table 2. Studies highlighting community detection in biological networks.

Sl. No. Study
Algorithm/Methodology
Adopted for Community

Detection
Contributions/Future Scope

1 [32]
Overlapping communties are
detected based on modularity
metric in complex networks

Non-trivial interactions are
detected across protein and

word graphs

2 [33]

Hierarchy structure is inferred
from biochemical networks to
identify topological properties

with enhanced accuracy

Several network phenomenas are
identified by considering

hierarchy as the central dogma for
network orientation

3 [34]

Several community detection
algorithms are designed for

network visualization
and clustering

GLay platform is found to be
suitable for analysis of large
biological networks using

community detection

4 [35]

Differential evolution algorithm is
designed for detecting network

communities using modularity as
fitness function

The algorithm does not require
prior knowledge of the network

structure, hence outperforms other
community detection algorithms

on real world datasets

5 [36]
Generative model is developed

from undirected graphs to detect
network communities

Community structure helps in
detecting functional connections

and dynamics for uncovering
biological mechanisms

6 [37]
Modularity-based community

detection agorithms are compared
on benchmark networks

Protein interaction networks are
investigated to identify multiple

biological modules and
hierarchical organization

7 [38]

Community detection is
performed for detecting

modularity in multiplex networks
based on recursive clustering

Randomization improves the
quality of community detection
based on threshold p-value for

disease dataset

8 [39]

Biologically relevant modules are
deteted as non-overlapping

communities using modularity
and conductance metrics

It is noted that overlapping
community detection algorithms
are preferred for identification of

diseases modules

2.3. Tie Structure Analysis

Tie structure detection is performed to detect macro and micro-level interactions in networks.
A tie is a structure that captures relevant information from a network. The definition of these ties varies
across each network. Coming to biological networks, a tie represents significant biological details in
form of genes, proteins, enzymes, drugs etc. Such ties are oriented as two types namely, strong and
weak ties. A strong tie captures associations across two closely held biological entities while weak ties
are spread across the entire network to discover prominent connotations. These weak ties are also
called bridges as they maintain the global connectivity of the entire network. Both ties are significant
in detecting topological and functional features of a network. Hence, capturing information from
tie structures reveals deeper insights about the dynamics of the underlying network. Some of the
prominent tie detection studies are shown in Table 3.



Data 2019, 4, 149 5 of 23

Table 3. Substantial tie detection studies.

Sl. No. Study Methodology Adopted Significant Conclusion

1 [21]
The cohesive power of weak ties

helps in analyzing
connected components

Emphasis on weak ties reveals the
connectivity and topological

features in the network

2 [40]

Communication patterns are
observed in mobile networks

based on strength of interaction
across the ties

Information diffusion revealed
neither strong nor weak ties

are effective

3 [41]

Importance of ties is explored and
a recommender system is

developed using probability-based
matrix factorization algorithm

Different types of social network
ties are classified using the

recommendation system with
enhanced accuracy and specificity

4 [42]
The word of mouth implication is
demonstrated using agent-based

modeling approach

Strong ties are found to
disseminate information

accurately compared to weak ties

5 [43]

Strongly connected components
are analyzed based on the local

bow-tie structures in world wide
web graphs

Differences were observed
between WWW graphs and other

graphs due to global
bow-tie associations

Based on these studies it is concluded that tie structure identification is substantial for analyzing
network orientations. Currently, no study has focused on the direction of tie structure analysis in
schizophrenia gene network. Hence, this study focuses on recognizing relevant gene connections
across the disease network.

3. Methods

This section highlights the methodology adopted for elucidating relevant gene entities from
schizophrenia network.

3.1. Collecting Gene Data

Schizophrenia gene data is gathered from multiple biological repositories including DisGeNET [44],
SZDB [45] and SZGR2.0 [46]. Such an integrated dataset includes all the essential genes expressed
in pathology of schizophrenia. This dataset is further validated by linking the genes with the
schizophrenia pathway information mined from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [47].

3.2. Identifying Functional Modules and Creating the Gene Network

From thousands of genes collected in the previous step, functional modules are identified based
on the biological processes expressed in schizophrenia. Biological processes are identified by Gene
Ontology (GO) search [48] and literature analysis [49–54]. Centered on these essential processes in
schizophrenia, the genes are spanned across different modules. These modules are further employed
for constructing the schizophrenia gene network. This network is undirected, as there are no paths
between each gene modules.

3.3. Categorizing the Gene Components

Gene modules within the schizophrenia network are classified based on the biological processes
they belong to. It is observed that a gene can be part of more than one biological process. Gene
modules are pigeonholed based on joint modelling of genes and their biological processes using
topic modelling strategies. Topics are pre-defined as labeled attributes using biological processes.
Supervised topic modeling is suitable for such tasks as a response variable for each term exists in the
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data. Out of numerous algorithms available for supervised modelling, supervised Latent Dirichlet
Allocation (sLDA) algorithm [55] is appropriate for the dataset, resulting in enriched topic specific gene
associations. These associations are derived by estimating the maximum likelihood of gene modules
within the network.

3.4. Modularity Based Community Detection

Following module classification, community structure is to be identified from the gene dataset.
Out of several standard metrics available for computing the quality and strength of communities,
modularity index is chosen. Modularity is known to perform better for biological networks when
there are multiple interactions across genetic networks [56,57]. Modularity compares the edge density
of the clusters in a given graph G along with the edge clusters in any random graph G’. The larger
the differences among these edge densities, better the communities are clustered. Mathematically,
the modularity function is represented as Q, defined by:

Q =
1

2m

∑
i j

(
ai j −

kik j

2m

)
(1)

Here, ai j represents the edges between vertex i and vertex j, kik j/2m denotes the edges among
vertex i and vertex j, when they are randomly placed. The elements within modularity function are
indicated using the matrix, M. It is defined as M = [mij], here mij is denoted as:

mi j = ai j −
kik j

2m
(2)

When G is undirected. By substituting the value of mij, the modularity function Q becomes,

Q =
1

4m

(
sTMs

)
(3)

Here, s = (s1, . . . , sn)T is the vector indicating the community membership in quadratic form.
Initially, gene communities are detected using this modularity metric. However, it resulted in

poorly identified clusters with no relevant interactions. Hence, this metric is to be optimized for
deriving better partitioned gene communities.

3.5. Optimizing Modularity Using Nonlinear Embedding

Of several optimizations available for modularity metric, non-linear embedding is preferred for
preserving the inherent patterns, when compared to linear methods [58]. Nonlinear embedding maps
the manifold in low dimension to high dimensional embedding by representing the data instances
with their nearest neighbors. Such dimensional adaptations in tangent space are known to preserve
the data points with minimal reconstruction errors.

Local tangent space alignment (LTSA) algorithm is a type of nonlinear embedding deduced in
tangent space by examining the overlapping substructures within the local coordinates [59]. Based
on these local embeddings, global coordinates are aligned across the network. Such an embedding is
suitable for community detection as it retains the intrinsic network alignment by unraveling the inter
communities and interweaving the intra community nodes [60]. Unweighted variant of LTSA function
is considered for deriving the communities, as the gene network is undirected in this case.

3.6. Implementing LTSACom for Community Detection

Employing the LTSA function for gene community detection generates an implementation
LTSACom. This algorithm attempts to represent the local structure of gene communities in tangent
space to explore possible gene interactions [61].
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Consider a nonlinear x-dimensional manifold B with an underlying modularity matrix
M = [m1, m2 . . . , mn], such that mi € Rm. The manifold is to be embedded in y-dimensional space such
that x < y. Initially, the modularity matrix, M is to be sampled from an m-dimensional orientation to
s dimension with local embedding. The fixed data point in M is denoted by a, while the tangent space
attached to “a” is denoted by T1A. The algorithm includes three basic steps:

Step 1: Extracting Local Coordinates

The first step is performed to identify local coordinates in modularity function based on their
orientation in the manifold. Any function representing a manifold can be expressed using the Taylor
series of first order expansion. The expansion of manifold is denoted as:

f (m) = f (a) + J f (a)·(m− a) + O(‖m− a‖2) (4)

Here, m denotes the s-dimensional data point such that m € Rs. The tangent vector is employed at
this point to provide the representation of ‘a’ in tangent space with minimal error. This is followed
by computing the local orthogonal basis of modularity matrix. This orthogonality is significant for
deriving mutually orthogonal vectors QM, based on the Jacobian function Jf.

J f (M)·
(
M−M

)
= QMθ

∗

M

(
M

)
(5)

The next objective is to identify the local transformation metric L for global space coordinate M
such that it minimizes the local mapping function. It is defined as:∫

Ω
(

∫
Ω
‖M−M− LMθ

(
M

)
‖dM/

∫
Ω

dM)dM (6)

Step 2: Alignment-Based Feature Extraction

For the gene data instances xi, computing optimal approximation in s-dimensional subspace is
achieved by Principal Component Analysis (PCA) at local orientation. PCA reduces dimensions of m
orthonormal attributes in M into s dimensional space (such that m < s). It is followed by computing
the covariance matrix, C. This matrix C includes the covariance metrics of the matrix M for all the data
attributes. Furthermore, performing eigenvalue decomposition for the matrix C results in a list of
eigenvectors and their respective eigenvalues. These eigenvectors indicate the components present in
the diminished subspace s sorted based on their eigenvalues. Based on this decomposition, r vectors
having maximal variance is derived for the k neighbors in low dimension. The metric defined for
selecting local coordinates is denoted as:(

minx,M,Ӫ‖Xi −
(
xeT + MӪ

)
‖

)2

2
(7)

Here, M includes “n” orthonormal attributes, with xi defining the average of all the Xi values.
Ӫ is given by QT

i

(
xi j − xi

)
. Q in the Ӫ function denotes the matrices of r singular vectors corresponding

to the largest n singular instances derived from PCA.
Outcomes from PCA are reflected in the alignment matrix constructed from the local coordinates.

It is important to derive this alignment matrix by maintaining the reconstruction error to be as minimal
as possible. The alignment matrix so constructed includes all the coordinates in low dimension.

Step 3: Global Alignment of Coordinates

Based on the eigenvector computed in the previous step, the matrixes with the smallest n + 1
eigenvectors are selected. This selection includes spanning the coordinates from the second eigenvector
matrix till the smallest n + 1 eigenvector. This assortment identifies the global coordinates of matrix M,
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such that the overall reconstruction error is minimal. The characteristic equation for error analysis is
given by:

Li = Ti
(
I − eeT/k

)
θ+i , (8)

Here θ+i denotes the inverse of θi.
Grounded on these three principles, LTSACom algorithm is designed for analyzing the

schizophrenia gene communities.

3.7. Validation of Gene Communities

It is important to validate the underlying community structure obtained in the previous step to
affirm its structural orientation. In this context, a random number of edges are removed from each
community to examine the structural variations. The network obtained after removing random edges is
subjected to community detection using LTSACom algorithm. The modularity function is recomputed
to compare the observations before and after removing the edges. The performance of LTSACom
is further evaluated using the mixing parameter (µ) which is an influential metric for evaluation of
community structure. It is defined as follows:

µ =

∑
n dext

n∑
n dtot

n
(9)

Here, the external and total degrees are estimated for every node in the network denoted as dext
n

and dtot
n respectively [62]. The external degree for a node is denoted as the sum of links connecting itself

to every other vertex in other communities. Several studies have reported that network communities
are well depicted when the range is between 0 and 1, while a value of 0.5 depicts well connected
structures. Based on the computed values of mixing parameter, performance of the algorithm in
detecting gene communities is adjudicated.

3.8. Discovering the Tie Structure from Communities

Corresponding genes across the network communities are identified based on their associations.
Furthermore, these connotations divulge the inherent tie structure (i.e., strong and weak ties) within
these communities. Strong ties are formed within gene communities, while weak ties are formed
across different gene communities. Weak ties act as coexpressive ties in case of biological networks
due to multiple interactions between any two vertices. The genes spread across such ties are further
examined to validate their biological relevance in the progression of the disorder.

3.9. Multiple Correspondence Analysis

The relationship between gene communities and their embedded genes is discovered using
multiple correspondence analysis (MCA). MCA is a multivariate technique which is the generalized
extension of principal component analysis (PCA) for detecting the associations among multiple
categorical variables [63]. This technique identifies the correlations among gene modules across the
network based on their orientation.

4. Results

This section highlights the observations for schizophrenia gene dataset based on community
detection and tie analysis. The dataset utilized for this study is shown as Supplementary file.

4.1. Description of the Gene Dataset

Annotated schizophrenia gene dataset is categorized based on the substantial biological processes
identified from GO and literature analysis. Six prominent processes are identified for schizophrenia
disorder, namely inflammation, immune response, genetic factors, neurotransmitters, metabolism
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and stress inducers. Based on these categories, the genes are pigeonholed into six different modules.
The genes spread across each category are as presented in Table 4.

Table 4. The distribution of schizophrenia genes across the gene modules.

Sl. No Gene Modules Number of Genes

1. Inflammation 73
2. Immune response 213
3. Genetic factors 674
4. Neurotransmitters 149
5. Metabolites 168
6. Stress Inducers 36

Orientation of these genes at different phases is reflected in Figure 1.
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Figure 1. The orientation of schizophrenia genes at different phases: (a) the initial gene network
comprising of all schizophrenia genes as a cluster; (b) the gene network highlighting the nodes after
calculating their degrees; (c) the genes oriented based on their biological modules; (d) genes revealing
the tie structure across the modules. The figure is generated from Gephi tool.

4.2. Supervised LDA for Topic Modeling

Six modules identified in the previous step are subjected to topic modeling process for accessing
the nature of association among genes. Supervised topic modeling is to be implemented owing to
the labeled gene dataset. The supervised Latent Dirichlet Allocation (sLDA) algorithm is tested on
this dataset using its functionality available in R programming language [64]. Gibbs sampling is
performed initially using the sLDA function by taking the gene data as input. The latent parameters
alpha, eta and variance are set to 1.0, 0.5 and 0.3 respectively after trial and error analysis for defining
their values. The computed model results in topic matrix for each gene category predicting their
connotations. This step is iterated ten times, to cross validate the outcome from the model resulting
in a tenfold cross validation. This model reveals stronger connections between modules 1, 2 and 3
which are inflammatory, immune and genetic factors respectively. These associations are calculated
based on the connectivity score ranged between 0 and 1. The stronger the association, the higher is
this score. Relations captured within these modules are used to identify mutual genes across these
schizophrenia gene categories. The pictorial representation in Figure 2 highlights gene modules along
with associations between three significant gene modules for a smaller data instance.
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Figure 2. The topics spanned gene modules revealing a strong association between topic 1 (i.e.,
inflammation), topic 2 (i.e., immune response) and topic 3 (i.e., genetic factors). The colored pattern
indicates the type of gene mechanisms on X-axis (lr) with the estimate of their occurrence on Y-axis
(density). The black colored patterns indicate gene mechanisms as topics. Topic 1 defines module
1 (inflammation), topic 2 is of module 2 (Immune response) and topic 3 is module 3 (genetic factors).
The figure is generated from R programming language.

4.3. Modularity-Based Community Detection

Underlying the association between genes and their categories, communities are to be
detected. Initially, traditional modularity metric is applied on these genes to detect communities.
The algorithm however, resulted in two communities with a low modularity index of 0.239. To further
discover enhanced communities, maximization of the modularity function Q is performed using
non-linear embedding of LTSA algorithm. This algorithm, LTSACom comprises of three steps for
community detection:

Step 1: The modularity matrix, M is given as input for the algorithm. It is followed by extracting
local information from gene modules based on their nearest k neighbors. For each of the six modules,
the nearest neighbors are computed.

Step 2: The alignment matrix A is constructed based on the largest eigenvector computed using
PCA in low dimensional subspace. The local coordinates obtained from these vector matrices are
further summated.

Step 3: Computing all the minimum (d + 1) eigenvectors for the modularity metric is done by
observing the inherent tie structure in the network. These eigenvector matrices conforming to the 2nd
value up to the smallest (d + 1) eigenvalues are selected to detect the global coordinates of M.

The algorithm of LTSACom is represented as Algorithm 1.
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Algorithm 1: LTSACom for community detection

Input
Input the modularity matrix M derived from schizophrenia gene dataset for detection of
gene communities

Step 1 Compute the nearest neighbors using the local information among genes in tangent space
Step 2 Construct the unweighted alignment matrix A based on the embedded vectors in the matrix M
Step 3 Global optimization of A based on local tangents using eigenvector decomposition
Output Compute the modularity index for the dataset to identify gene communities

Performing these steps in nonlinear embedding generates network structure for the schizophrenia
gene dataset, resulting in six diverse communities. The modularity index for these communities is
found to be 0.9256, which is considerably superior compared to the initial value of 0.239.

4.4. Validating the Community Structure

The gene communities detected by LTSACom need to be authenticated to ensure that the modules
are not formed by a random chance. For this purpose, mixing parameter is computed by altering the
link structure in the network. It is observed that as the value of µ elevates, the modularity function
decreases gradually. When µ is found to be 0.56, the algorithm detects relevant gene communities with
six diverse clusters representing the six classes of genes. This value reflects the stronger interconnections
across the gene communities.

For each of these communities, some of the centrality metrics are also computed and represented
pictorially as distributions in Figure 3. As observed in the figure, betweenness centrality and closeness
centrality highlight the importance of certain nodes within a network. These nodes act as influential
connections across the network based on the centrality index. Furthermore, distribution plots for
eccentricity and modularity are calculated using eccentricity distribution and size distribution plots
respectively. Eccentricity distribution is used to identify the distances across any two genes of interest
in a network. Furthermore, distribution of communities based on their modularity index is displayed
in the size distribution plot. All these distributions are derived from the network visualization software,
Gephi 0.9.2 [65].
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4.5. Performance Analysis of LTSACom

The performance of LTSACom algorithm is further examined based on comparative analysis
with other state of art modularity maximization algorithms. Some of the algorithms used for this
purpose include spectral algorithm (SP) [66], Fast-Newman (FN) algorithm [67], Finding and Extracting
a Community (FEC) algorithm [68], Fast Unfolding Algorithm (FUA) [69], Multi-layer Ant Based
Algorithm (MABA) [70] and InfoMap algorithm [71].

These algorithms are tested on schizophrenia gene dataset for 200 iterations and the modularity
index is calculated at each trial. Computations revealed that LTSACom algorithm maintains a better
modularity index with increasing trials as compared to other algorithms. Observations from this
computation are seen in Table 5, clearly indicating better performance of LTSACom in detecting gene
communities for schizophrenia data.

Table 5. Performance analysis of LTSACom for modularity maximization.

Trials Modularity SP FUA MABA FN FEC InfoMap LTSACom

20 0.1 0.6784 0.7622 0.7981 0.8021 0.7123 0.7892 0.9194
40 0.2 0.6755 0.7544 0.8083 0.8166 0.7851 0.7985 0.8996
60 0.3 0.7081 0.765 0.8348 0.7933 0.8037 0.7831 0.8631
80 0.4 0.7002 0.7598 0.8329 0.7821 0.8136 0.8043 0.9386

100 0.5 0.6923 0.7322 0.8071 0.8031 0.8203 0.8124 0.8931
120 0.6 0.7093 0.7999 0.8199 0.7932 0.8108 0.8342 0.9032
140 0.7 0.7129 0.7132 0.8478 0.8155 0.8093 0.8188 0.9203
160 0.8 0.7361 0.6992 0.8332 0.7973 0.8478 0.8109 0.9201
180 0.9 0.7102 0.7338 0.8554 0.8045 0.8313 0.8013 0.9289
200 1.0 0.7009 0.7221 0.8441 0.7899 0.8396 0.8032 0.9256

The communities are also depicted pictorially highlighting their gene assemblies in Figures 4 and 5
respectively. As observed from these figures, the stronger the association between the communities,
the more resilient are their interactions.Data 2019, 4, 149 13 of 25 
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4.6. Identifying Tie Structure from Gene Communities

Interconnected tie structure is scrutinized from the network communities to ascertain persuasive
genes in schizophrenia. For the six gene communities, several ties are detected which co-occur across
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different modules. These spanned ties across the communities tend to have fragile connections within
the network, forming weak ties. Furthermore, the relevance of these ties in schizophrenia is evaluated
using literature analysis. Based on this analysis, substantial gene ties are identified and highlighted in
Table 6. The tie structure spanning the entire network for different communities is shown in Figure 6 at
different stages. This figure highlights the influence of intrinsic genes and ties based on the network
size. Initially, the network comprises of genes and their categories oriented among each other. These
genes represent the core connections which persist to exist in the network irrespective of its size.
By increasing the network size, further genes get added to the network, highlighting the communities
and tie structure.

Table 6. Significant ties in schizophrenia gene network.

Sl. No. Coexpressed
Gene Ties Gene Names Categories They Belong to

1. Akt1 Protein kinase B Immune response, Genetic factors,
Neurotransmitters, Metabolites

2. DRD2 Dopamine Receptor 2 Genetic factors, Neurotransmitters,
Metabolites, Stress inducers

3. IL10 Interleukin 10 Inflammatory, Immune response,
Genetic factors, Metabolites

4. PPP3CC Protein Phosphatase 3 Catalytic
Subunit Gamma

Immune response, Genetic factors,
Neurotransmitters, Metabolites

5. PLA2G4A Phospholipase A2 Group 4A
Inflammatory, Immune response,

Genetic factors,
Neurotransmitters,

6. GSK3B Glycogen synthase kinase-3B Immune response, Genetic factors,
Neurotransmitter, Metabolites

7. NO Nitric oxide Inflammatory, Immune response,
Neurotransmitter, Stress inducer

8. COX2 Cyclooxygenase 2 Inflammatory, Immune response,
Genetic factor, Neurotransmitter

9. FKBP5 FK506 Binding Protein 5 Immune response, Genetic factors,
Stress inducers

10. IL1B Interleukin 1 beta Inflammatory, Immune response,
Metabolite

11. COMT Catechol-O-methyltransferase Genetic factors, Neurotransmitter,
Stress inducer

12. DISC1 Disrupted in Schizophrenia 1 Genetic factor, Metabolite, Stress
inducer

13. PDE4B Phosphodiesterase 4B Immune response, Genetic factor,
Metabolite

14. PNPO Pyridoxine 5’-phosphatase oxidase Genetic factor, Metabolite, Stress
inducer

15. NFAT4 Nuclear Factor of Activated T
Cells 4

Inflammatory, Immune response,
Genetic factor

16. IFNG Interferon gamma Inflammatory, Immune response,
Genetic factor

17. TNFA Tumor Necrosis Factor Alpha Inflammatory, Immune response,
Genetic factor

18. IL3RA Interleukin 3 Receptor Subunit
Alpha

Inflammatory, Immune response,
Genetic factor

19. IL4 Interleukin 4 Inflammatory, Immune response,
Genetic factor

20. GRIK3 Glutamate Ionotropic Receptor
Kainate Type Subunit 3

Genetic factor, Neurotransmitter,
Metabolite

21. VEGF Vascular endothelial growth factor Inflammatory, Genetic factor,
Metabolite

22. HTR4 5-Hydroxytryptamine Receptor 4 Genetic factor, Neurotransmitter,
Metabolite
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Table 6. Cont.

Sl. No. Coexpressed
Gene Ties Gene Names Categories They Belong to

23. GNAS Guanine nucleotide binding
protein, alpha stimulating

Immune response, Genetic factor,
Neurotransmitter

24. CHRNA7 Cholinergic Receptor Nicotinic
Alpha 7

Genetic factor, Neurotransmitter,
Metabolite

25. DTNBP1 Dysbindin 1 Genetic factor, Neurotransmitter,
Metabolite

26. RELN Reelin Genetic factor, Neurotransmitter,
Metabolite

27. DRD1 Dopamine Receptor D1 Genetic factor, Neurotransmitter,
Metabolite

28. DRD3 Dopamine Receptor D3 Genetic factor, Neurotransmitter,
Metabolite

29. DRD5 Dopamine Receptor D5 Genetic factor, Neurotransmitter,
Metabolite

30. ERBB4 Epidermal growth factor receptor
family 4

Genetic factor, Neurotransmitter,
Metabolite

31. GRIA2

Glutamate Ionotropic Receptor
AMPA

(Alpha-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) Type

Subunit 2

Genetic factor, Neurotransmitter

32. HSPA1A Heat Shock Protein Family A
Member 1A Immune response, Genetic factor

33. RASD2 RASD Family Member 2 Genetic factor, Metabolite
34. IDO Indoleamine 2,3-dioxygenase Immune response, Metabolite
35. PGE2 Prostaglandin E2 Inflammatory, Immune response
36. KYN Kynurenine Inflammatory, Immune response
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Figure 6. The tie structure of schizophrenia network, (a) the core genes expressed across different 
gene modules; (b) few more genes obtained after increasing the network size; (c) the core genes 
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using the MCA technique. This analysis exposes the concealed comprehensions within the 
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for performing MCA [72]. Primarily, variations occurring across data instances are calculated using 
the eigenvalues. Based on these variations, individual modules are identified and visualized along 
with their gene associations. The quality of the associations is detected using cos2 metric. The metric 
is calculated for the genes to adjudicate their connotations. Higher the value of cos2 better is the 
associations across the entities. The genes corresponding to different gene modules are shown in 
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Figure 6. The tie structure of schizophrenia network, (a) the core genes expressed across different gene
modules; (b) few more genes obtained after increasing the network size; (c) the core genes forming
a community structure displaying the inherent ties; (d) the community structure oriented across the
core genes for the entire network.

4.7. Multiple Correspondence Analysis

Relationship spanning across categorical network modules and their gene instances is detected
using the MCA technique. This analysis exposes the concealed comprehensions within the schizophrenia
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network. The FactoMineR package available in R programming language is utilized for performing
MCA [72]. Primarily, variations occurring across data instances are calculated using the eigenvalues.
Based on these variations, individual modules are identified and visualized along with their gene
associations. The quality of the associations is detected using cos2 metric. The metric is calculated for
the genes to adjudicate their connotations. Higher the value of cos2 better is the associations across the
entities. The genes corresponding to different gene modules are shown in Figure 7 as an MCA plot.
This figure highlights the interactions based on the cos2 index.Data 2019, 4, 149 20 of 25 
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5. Conclusions

This study explores the importance of tie structure in gene networks, inspired from the findings
of Granovetter [21]. The study initially frames a few exploratory questions pertaining to the gene
interactions in schizophrenia. Some of the relevant findings obtained from the study are discussed in
this section. The first question is concerning the influence of community structure in schizophrenia
gene network. Based on the analysis, it is observed that inherent modular structure in gene networks
can be discovered proficiently by discovering communities. These modular structures are further
considered for ascertaining hidden associations in the network. Hence, communities are found to be
precise entities for quantifying biological properties from the gene network. The second question is
based on the outcome of the first question. Since communities are considered to be crucial in networks,
the next question ascertains the impact of tie structure within these communities. From observations,
it is found that ties highlight the inherent associations among different genes. These associations
further reveal the strength of network connectivity. The patterns of these ties within gene communities
could also highlight the influence of a gene across the entire network. Hence, the study claims that
integral ties are substantially imperative to ascertain the functioning of a gene network. The third
question is framed to discover the relevance of strong and weak ties in the gene network. Investigating
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the gene network revealed that the entire network is composed of coexpressed ties scattered across
different biological modules. These coexpressed ties are spanned across two or more communities
representing weaker connections. However, these frail interactions maintain global connectivity of the
gene network as compared to strong ties. Henceforth the study affirms that weak ties influence the
functioning of schizophrenia gene network both locally and globally.

In brief, the study finds two crucial outcomes: (i) A novel implementation of modularity
maximization algorithm, LTSACom based on LTSA function for detecting gene communities; and
(ii) Detecting the influence of weak ties in schizophrenia network. The modularity-based algorithm so
designed helps in revealing diverse gene communities across the network with an increased modularity
value of 0.9256. Furthermore, these communities disclose coexpressive interactive ties across the
network throwing light on the relevance of embedded ties. These ties influence the global connectivity
of network with feeble interactions across prominent genes in the network. Identifying such genes
helps in ascertaining the “dominant hotspots” that influence the progression of a disease. Additionally,
the study also performs some fundamental analyses including topic modeling, centrality distributions,
community validation and MCA testing for identifying the dynamics of the inherent gene network.

This study is novel in some directions. The research is innovative in discovering the impact
of weak ties in schizophrenia gene networks. Previous studies have focused on network-based
approaches for recognizing gene expressions from schizophrenia network [73,74]. However, these
studies have not acknowledged the relevance of tie structures within schizophrenia gene networks.
Furthermore, computational gene modeling employed in this study can be a promising technique for
ascertaining the micro and macro level interactions across the network. These patterns of interactions
can be scrutinized to uncover the expression of a particular gene of interest. Such pattern-based gene
expressions can promote drug designing towards a susceptible gene target rather than a much more
complex protein. However, this study is an initial attempt in this direction, as surplus investigation is
required to reconstruct the schizophrenia gene network on large scale for measuring gene expressions
for targeted therapy. The dataset adopted in this study focuses on genes alone while proteins and drugs
are other significant entities to be considered for modelling the disease. Identifying interactions across
protein networks and drug molecules will discover hidden functional implications of the disorder.
Henceforth, such a dataset needs be constructed to aid in modelling the disorder at modular level.
Furthermore, gene communities are discovered by optimizing the modularity metric which is often
subjected to resolution limits resulting in local and global deviations, that needs to be nullified [75].
In this context it is necessary to evaluate the performance of optimized modularity on local and global
scale prior to tie structure analysis. Despite these limitations, the current study identifies significant
associations among multiple mechanisms that contribute for progression of the illness. These outcomes
have significant implications in designing targeted therapies against schizophrenia. Such targeted
therapeutics can be adopted in conjunction with other medications to combat the disorder at genomic
level. Furthermore, contributions from current research help in detecting complex interactions among
genetic, inflammatory, immune and environmental factors based on modularity metric derived from
LTSACom algorithm. Unraveling such complex associations with the help of tie interactions helps in
designing personalized medications on individual basis compared to universal treatment procedures
for schizophrenia. Henceforth, the current approach looks promising for detecting functional entities
within the gene network. Furthermore, this technique could be expanded in future to expose common
functional modules across group of psychiatric disorders including schizophrenia, bipolar disorder,
paraphrenia and other psychotic symptoms.
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