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Abstract: Medication-induced acute kidney injury (AKI) is a well-known problem in clinical medicine.
This paper reports the first development of a visual analytics (VA) system that examines how different
medications associate with AKI. In this paper, we introduce and describe VISA_M3R3, a VA system
designed to assist healthcare researchers in identifying medications and medication combinations
that associate with a higher risk of AKI using electronic medical records (EMRs). By integrating
multiple regression models, frequent itemset mining, data visualization, and human-data interaction
mechanisms, VISA_M3R3 allows users to explore complex relationships between medications and AKI
in such a way that would be difficult or sometimes even impossible without the help of a VA system.
Through an analysis of 595 medications using VISA_M3R3, we have identified 55 AKI-inducing
medications, 24,212 frequent medication groups, and 78 medication groups that are associated with
AKI. The purpose of this paper is to demonstrate the usefulness of VISA_M3R3 in the investigation
of medication-induced AKI in particular and other clinical problems in general. Furthermore, this
research highlights what needs to be considered in the future when designing VA systems that are
intended to support gaining novel and deep insights into massive existing EMRs.

Keywords: visual analytics; multivariable regression; frequent itemset mining; interactive
visualization; medication-associated acute kidney injury; electronic medical records;
human-data interaction

1. Introduction

As part of modernizing their operations, healthcare and medical organizations are adopting
electronic medical records (EMRs) and deploying new information technology systems that generate,
collect, digitize, and analyze their data [1]. With the development of EMRs and the extensive use
of computerized provider order entry tools, patients’ medication profile data is now accessible and
processable for secondary reuses [2,3]. The amount of prescription data available to clinical researchers,
pharmaceutical scientists, and clinician-scientists continues to grow, creating an analyzable resource
for generating insights that can help improve the healthcare system [4,5]. Healthcare providers use
modern EMR-based systems to identify adverse drug events [6,7], study medication–medication
interactions [8], investigate medication effects on particular medical conditions [9,10], and ultimately
prevent medication errors [11–13].
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A common problem in clinical medicine which may lead to development of acute kidney injury
(AKI) is medication-induced nephrotoxicity [14–16]. AKI can be defined as a sudden loss of kidney
function over a short period of time [17,18]. The rate of medication-induced AKI can be as high as
60% [19–22]. Many prior studies have assessed the impact of individual nephrotoxic medications on
AKI [23–25]. The combination of multiple medications can further increase the risk of AKI through
synergistic or accumulative nephrotoxicity [22]. For each additional nephrotoxic medication, the chance
of developing AKI may increase by 53% [26]. Rivosecchi et al., through an exhaustive literature search,
further emphasize the need for a comprehensive understanding of how medication combinations alter
the risk of AKI [24]. According to a Center for Disease Control report, as of 2017, there were more than
5000 medications in the market and 1000 adverse medication effects known in the literature. So, for
drug–drug interactions there may be 125 billion possible adverse medication effects between all possible
pairs of medications [27,28]. An individual clinical study is often required to test the nephrotoxicity of
each medication or medication combination. Therefore, it is impossible to comprehensively assess
medication-induced AKI through this number of clinical studies.

Data analytics can offer a solution to this problem by employing algorithms, methods, and
techniques from different fields, such as data mining, statistics, and machine learning [29]. Data
analytics is the investigation of raw data to gain both novel and deeper insights on associations within
the data [30]. There are several tools designed and developed in recent years that employ advanced
machine learning techniques to improve drug-safety science, predict adverse drug reactions, and
identify drug–drug interactions [31–36]. While most clinical machine learning tools are designed to
incorporate large amounts of data, they are not capable of efficiently managing ill-defined problems
that need human judgment. The main challenge of using machine learning techniques lies with their
lack of interpretability and transparency, hence limiting their application in healthcare settings [36].

Interactive visualizations have the potential to address this challenge by providing a means
to access the data at various levels of granularity and abstraction [37]. They can be defined as
computational systems that store and process data and use visual representations to amplify human
cognition [38,39]. Interactive visualizations allow users to explore the underlying data, modify
representations, and change different visual elements to achieve their goals. In recent years, several
EMR-based systems have been developed to interactively visualize patient prescription history [40],
potential adverse medication events [41], and prescription behaviors [42]. Most of these systems only
represent a limited number of attributes and relationships within the data [43–46]. When working
with high-dimensional EMR data, it can be useful to analyze hidden, non-explicit, and unknown
relationships among all the data attributes [47,48]. One of the main issues with traditional data
visualization systems is that they do not incorporate analytical processes, which are essential for
recognizing hidden patterns and trends in the data. Therefore, interactive data visualization systems,
alone and without data analytics components, fall short of satisfying the computational needs and
requirements of users.

While beneficial, both data analytics systems, with their advanced computational capabilities and
interactive visualization systems, with powerful interaction and representation mechanisms, when
used individually prove inadequate in certain situations. The emergence of a type of computational
system known as visual analytics (VA) has the potential to reduce the complexity of EMR data by
combining the strengths and alleviating the limitations of both aforementioned systems [49–51]. VA can
improve the capabilities of users to perform complex data-driven tasks by analyzing EMRs in such
a way that would be difficult or sometimes even impossible to do otherwise. Even though VA is
suitable for different healthcare activities (e.g., prediction of diseases, exploration of patient history,
and identification of adverse medication events), to date, healthcare environments lag behind other
sectors in the development of such systems [1,52,53].

The purpose of this paper is to demonstrate how VA systems can be designed in a systematic
way: (1) to examine the association between medications and AKI, in particular, and (2) to support
other clinical investigations involving EMRs, in general. To this end, we present a novel system that
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we have developed, called VISA_M3R3—visual analytics, VISA for multiple regression analyses and
frequent itemset mining of electronic medical records, M3R3. VISA_M3R3 is intended to assist clinicians
and healthcare researchers at the ICES-KDT (Kidney Dialysis and Transplantation), located in London,
Ontario, Canada. We demonstrate VISA_M3R3 by investigating the process of identifying medications
and medication combinations that associate with a higher risk of AKI using ICES health administrative
data. To our knowledge, no prior VA system has been designed to examine how different medications
affect kidney function and increase the risk of developing AKI. While few VA systems have been
developed for other areas in healthcare [48,49,54–60], VISA_M3R3 is novel in that it integrates multiple
regression models (i.e., multivariable logistic regression), frequent itemset mining (i.e., Eclat algorithm),
data visualization, and human–data interaction mechanisms in an integrated fashion. As such, the design
concept of VISA_M3R3 can be generalized for the development of other EMR-based VA systems that
apply multivariable regression and frequent itemset mining to gain novel and deep insights into massive
clinical data that exist for different health conditions (e.g., diabetes and heart failure, to name a few).

The rest of this paper is organized as follows. Section 2 provides an overview of the terminological
and conceptual background to understand the design of VISA_M3R3. Section 3 describes the
methodology employed for the design of the proposed VA system. Section 4 presents VISA_M3R3
by providing a description of its structure, components, and results. Finally, Section 5 discusses the
usefulness and limitations of the proposed system and some future areas of application.

2. Background

This section presents the necessary background concepts and terminology for understanding
the design of VISA_M3R3. VA systems fuse the strengths of automated analysis and interactive
visualizations to allow users to explore data interactively, identify patterns, apply filters, and manipulate
data to achieve their goals. This process is more complicated than an automated internal analysis
coupled with an external visualization to show the results. It is both data-driven and user-driven and
requires re-computation when users manipulate data through visual representations. VA not only
relies on computational techniques and analytics but also supports human-in-the-loop mechanisms
that allow users to employ human judgment to reach evidence-based conclusions. To understand the
concepts of VA, we discuss the spatial structure and different modules of VA systems in this section.

2.1. Spatial Structure of Visual Analytics

To conceptualize the spatial structure of VA, Sedig et al. [39,61] proposed its processing load
to be divided into at least five spaces: information space, computing space, representation space,
interaction space, and mental space. The information space represents bodies of data that come
from different sources. Data may come from abstract spaces (e.g., treatment plans) or concrete
spaces (e.g., prescriptions). Data is then processed in the computing space, which may include
(1) pre-processing techniques such as data cleaning, filtering, fusion, integration, and normalization
and (2) data processing and transformation techniques such as data mining, mathematical procedures,
and statistical methods. Since the underlying processing is carried out in the computing space, users
of the VA system ideally do not need to be concerned with any computational work of this space.
Resulting data items are then encoded into perceptible visual forms in the representation space. In order
to achieve their goals through a visually perceptible interface, users can choose actions from a set of
available options (i.e., the interaction space) to act upon existing visualizations in the representation
space. Finally, the mental space refers to users perceiving and processing changes in the interface
through carrying out mental operations such as apprehension, induction, deduction, judgment, and
memory encoding.

In healthcare settings, it is important for the designer to find a balanced distribution of the
processing load among the above five spaces. VA systems can offer such a balanced distribution
of processing load through a proper integration of advanced analytics techniques (i.e., data mining,
statistics, and machine learning) with visual representations to facilitate high-level cognitive activities
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and tasks while at the same time allowing users to get more involved in interactive conversation with
the data through its manipulation, analysis, and synthesis [62–64].

2.2. Modules of Visual Analytics Systems

The information processing load in a VA system is distributed between the user and the main
components of the VA system—namely, the analytics and the interactive visualization modules [65–70].
The data analytics module encompasses the computing space and deals with the analysis of data
from the information space. The interactive visualization module encompasses representation and
interaction spaces.

2.2.1. Data Analytics Module

Human cognition has limitations when engaged in data-intensive mental tasks, especially when
the data is large and complex [68,71]. The analytics module of the VA system supports user cognition
by carrying out most of the computational load. It provides users with the ability to make time-critical
decisions by placing the majority of the processing load in the computing space. In a VA system, data
analytics should not be solely controlled by the system. Instead, users should be involved in controlling
the parameters, settings, and intermediary steps of the processing stage. The primary responsibility of
the analytics module is to store, prepare, analyze, transform, and perform computerized analysis of
the raw data. In the context of VA, the analytics process can be divided into three main stages: data
pre-processing, data transformation, and data analysis [68].

The raw data from the information space gets processed in the pre-processing stage. Data often
contains errors, exceptions, noise, and/or uncertainty. There are several possible reasons for having
inaccurate data in EMRs. For instance, problems might arise from a confusing data collection manual,
faulty instruments, or incorrect data entry. The data analytics module might derive incorrect patterns
if the data is noisy or erroneous. Therefore, it is very important to pre-process raw EMR data retrieved
from a variety of sources. Data pre-processing includes cleaning, integration, and reduction [72].

The pre-processed data is then transformed into forms appropriate for data analytics algorithms.
The quality of information, knowledge, and insight extracted from a dataset can be improved by its
transformation [73]. Strategies for data transformation may include smoothing, attribute construction
(i.e., feature generation), aggregation, normalization, and discretization [29].

Finally, data analysis is the stage to uncover previously undetected relationships among
data items and extract the implicit, previously unknown, and possibly useful information
from data [74,75]. The data analysis process includes, but is not limited to, frequent itemset mining,
regression, classification, and clustering. Usually, these techniques allow analysis of limited types
of variables and do not support heterogeneous data [66]. VA systems overcome this limitation by
incorporating interactive visualizations and human reasoning in the decision-making loop.

2.2.2. Interactive Visualization Module

Interactive visualization is an integral part of VA for organizing data items in the information
space and mapping them to visual structures. Interactive visual representations provide users with
the ability to change and modify the displayed data and to guide the analysis process. This, in turn,
will set off a chain of internal reactions that lead to the execution of additional data analysis processes.
Interactive visualizations can potentially bridge the gap between the internal mental representation of
the user and the external representations of the system by allowing the information processing load to
be distributed between the user and the system.

Design of visualizations is straightforward when dealing with simple tasks. As tasks require
completion of one or more subtasks, they become more complex. As tasks become more complex,
design becomes less apparent, particularly when dealing with massive amounts of heterogeneous
data [70,76]. To support complex, EMR-driven tasks, visualizations require some initial analysis [66].
For instance, the task of identifying high-risk medications for a certain medical condition includes
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sub-tasks such as finding associations between the medical condition and medications (through data
analysis), observing their relationships (through visual representations), and filtering medications that
are associated with the medical condition (through analysis and visualization). Furthermore, because
external structures of data affect how users perform tasks, another challenge involves determining how
to organize a large number of data items in the visual representations. To support the performance of
complex tasks, VA combines advanced, behind-the-scene analytics techniques with interactive external
visualizations that organize data items [77,78].

2.3. Visual Analytics and Analytical Reasoning

User-triggered actions, consequent reactions, and discourse with information are essential in a
VA system whose function is to facilitate users’ analytical reasoning activities—activities that refer
to both rational and logical analysis of data as well as evaluation of results. Such activities also
involve analogical, deductive, and inductive reasoning to reach conclusions [70], and emerge from
a series of lower-level tasks (e.g., developing hypotheses or identifying relationships among data
elements) [63,79]. In order to reach a conclusion, some of these lower-level tasks take place in an
iterative and non-linear manner depending on cognitive needs and overall goals of the user [70].
Generally speaking, analytical reasoning can be viewed as transforming given data into information,
knowledge, and insight [70,80]. This derived knowledge and insight serves as a foundation for other
cognitive activities such as decision-making or problem-solving [72,81].

EMRs contain large bodies of complex data, and, oftentimes, EMR-driven tasks are ill-defined.
Thus, users have to rely on their experience, knowledge, and judgment to perform complex activities
(i.e., decision-making and problem-solving) in a healthcare setting [82]. Human-in-the-loop mechanisms
involving interaction with the visual and analytical modules of VA systems can thus help healthcare
activities [71].

3. Materials and Methods

This section describes the methodology we have employed to design the proposed VA system,
namely VISA_M3R3. For our EMR-based data, we use Ontario’s healthcare databases housed in the
ICES facility to illustrate how VISA_M3R3 can be used to identify AKI-associated medications and
medication combinations among older patients. In Section 3.1, we provide an overview of the design
process and participants. We then describe data sources and cohort entry criteria in Sections 3.2 and 3.3,
respectively. Section 3.4 explains the implementation details of our VA system. Finally, in Section 3.5,
we introduce the components of VISA_M3R3 and briefly describe how the overall system works, which
is also discussed more extensively in Section 4.

3.1. Design Process and Participants

Healthcare tasks usually include both well- and ill-defined problems. The well-defined tasks
have specific goals, clear expected solutions, and, oftentimes, a single solution path. On the contrary,
ill-defined tasks do not have clear goals, expected solutions, or solution paths [83].

To help us understand how healthcare practitioners perform real-world tasks, and to help us
conceptualize and design VISA_M3R3, we adopted a participatory design approach. Participatory
design is a co-operative approach that involves all stakeholders (e.g., partners, end-users, or customers)
in the design process to ensure the end product meets their needs [84]. A clinician-scientist, a statistician,
an epidemiologist, data scientists, and computer scientists were involved in the design and evaluation
process of VISA_M3R3. During the initial stage in the participatory design process, we realized that
healthcare experts solve ill-defined problems in many different ways. It is difficult and sometimes
impossible to determine a single correct problem-solving strategy (i.e., analytics and/or visualization
techniques) for ill-defined tasks. Different techniques have their strengths and weaknesses, and there
are different criteria to find out which technique is more appropriate for a specific problem. As such, we
asked experts to provide us with (1) a list of varying real-world, EMR-driven tasks that they perform,
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(2) analytics techniques they usually rely on to accomplish those tasks, (3) visualization techniques
with which they are familiar, and (4) formative feedback on design decisions. In our collaboration with
experts, we recognized two high-level tasks to consider in designing VISA_M3R3 system. (1) They
would like to study the relationships between prescribed medications and AKI; (2) They would like
to identify commonly prescribed medication combinations and understand the impact of different
combinations on AKI. We were told that healthcare experts usually use different regression techniques
to accomplish these types of tasks. Since the system has been designed to assist clinicians and healthcare
researchers at the ICES-KDT program, we decided to incorporate the analytical and visualization
techniques with which they are more familiar. This was essential to build trust between the proposed
system and its end-users.

3.2. Data Sources

For the particular version of VISA_M3R3, we are primarily interested in analyzing medications
prescribed to older hospitalized patients in Ontario. Accordingly, we obtained patient characteristics,
prescriptions, and hospital admission data from five health administrative databases. We used the
Ontario Drug Benefit Program database to get medication use data. We acquired patient characteristics
data from the Registered Persons Database, which contains demographic data on all Ontario residents
who have ever been issued a health card. We obtained hospital admissions and emergency department
(ED) visit data from the Canadian Institute for Health Information Discharge Abstract Database and
National Ambulatory Care Reporting System, respectively. The International Classification of Diseases,
ninth (pre-2002), and tenth revision (post-2002) codes, was used to identify the baseline comorbidities
and incidence of AKI from ED visit and hospital admission data.

3.3. Cohort Entry Criteria

We developed a cohort of individuals aged 65 years or older who were admitted to hospital
or who visited the ED between April 1, 2014 and March 31, 2016. The ED visit date or hospital
admission date served as the index (cohort entry date). If an individual had multiple ED visits or
hospital admissions, we selected the first incident. Individuals with an invalid healthcare number, age,
and/or sex were excluded from the cohort. A 120-day look-back window from the index date was used
to capture the associated medication use data. We used a 5-year look-back window to identify relevant
baseline comorbidities.

3.4. Implementation Details

The current VISA_M3R3 system is implemented in HTML, JavaScript library D3, standard PHP
programming language, and R packages. R was used to develop the Analytics module. Html and D3
were used to create various external representations in the Visualization module. The communication
between these two modules was implemented using PHP and JavaScript.

Most of the data analytics components were developed in R (version-3) because it (1) provides
extensive support for carrying out data mining operations such as regression and frequent
itemset mining, (2) is available in ICES workstations, (3) has a vast array of libraries, (4) is a
platform-independent tool, (5) is an open-source tool, and (6) is constantly growing and providing
updates whenever new features are available.

We used D3 to implement external representations of the Visualization module because of the
following reasons. (1) D3 offers a data-driven approach to help users attach their data to the DOM
(document object model) element. (2) It allows users to get access to full capabilities of modern
web-browsers. (3) D3 uses a functional style that enables users to reuse JavaScript code and add
functionalities. (4) It is compatible with other programming languages and platforms that have been
used in this system. (5) D3 is a free and open-source software.
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3.5. Workflow

As shown in Figure 1, VISA_M3R3 has three modules: Analytics, Visualization, and
Interaction. The Analytics module is composed of two components: (1) single-medication analyzer
and (2) multiple-medications analyzer. The Visualization module is composed of five views:
(1) single-medication view, (2) multiple-medications view, (3) frequent-itemsets view, (4) covariates
view, and (5) medication-hierarchy view. The Interaction module provides users with six main actions:
(1) arranging, (2) drilling, (3) filtering, (4) searching, (5) selecting, and (6) transforming. The basic
workflow of the system is as follows.Data 2020, 5, 33 8 of 26 
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First, an integrated dataset is created from different EMR databases stored at ICES. Next, the
inclusion and exclusion criteria are applied to build the final cohort. The variables in the comorbidity and
prescription data are then encoded and transformed into forms appropriate for analysis. After applying
pre-processing techniques, we split the dataset into two groups. One contains the single medication
data, and the other contains medication combination data; the latter is generated from the frequent
itemset mining algorithm. We develop a number of multivariable regression models on both groups
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of data. The models are then validated through Bonferroni correction and mapped into respective
visual representations. We developed five views to represent data items created from different
analysis techniques. The output of the single-medication and multiple-medications analyzers are
encoded into two scatter plots in the single-medication and multiple-medications views, respectively.
The frequent-itemsets view represents the result of the frequent itemset mining algorithm using a
chord diagram. The covariates view allows users to control the information presented in other views
though sliders. The medication-hierarchy view includes a data table to display additional information
about data elements from the original dataset. Users are allowed to perform a number of actions on
the visual representations to manipulate data items. For instance, users can highlight and/or filter out
certain items and drill down into the details of the selected data elements in different views.

4. Design of VISA_M3R3 and Results

In this section, we describe the three main components of VISA_M3R3 as well as some results.
Section 4.1 (Analytics module) explains how the data is processed and offers a summary of its results.
Section 4.2 (Visualization module) describes VISA_M3R3’s interfaces and discusses how the system
helps users in interpreting results. Finally, Section 4.3 (Interaction module) illustrates how users can
interact with the displayed data.

4.1. Analytics Module

We used VISA_M3R3 to analyze ICES’ EMRs to identify individual medications and medication
combinations that are associated with AKI. Our system aims to facilitate understanding of relationships
among medications, medication combinations, and AKI. The Analytics module of VISA_M3R3
performed an individual and group analysis using logistic regression and frequent itemset mining to
achieve this goal.

4.1.1. Single-Medication Analyzer

Single-medication analyzer includes the regression models created to identify the association
between each medication and AKI. In order to capture an accurate association, we included the
demographic and comorbidity variables as potential covariates in the models. For demographics
(i.e., the study of a population based on certain non-medical factors), we included the following
variables in the models: age, sex, income quintile, rural location, and long-term care. For comorbidity
(commonly defined as any distinct additional disease or condition that has existed during the clinical
course of a patient who has the first disease or condition under observation), we included the
following variables in the models: diabetes mellitus, hypertension, heart failure, coronary artery
disease, cerebrovascular disease, peripheral vascular disease, chronic liver disease, chronic kidney
disease, major cancers, and kidney stones. We obtained the medication prescription data from the
Ontario Drug Benefit Program database. This database includes medication name, medication dose,
date filled, and route-of-administration of the prescriptions. We identified 595 different medications by
analyzing prescriptions that were filled 120 days before the index date. Thus, we created 595 binary
variables to record the medication use data for each medication and each patient. We also gathered the
class and subclass information of these medications from the literature.

We combined data from different sources into a single dataset. The combined dataset contained
5 demographic, 10 comorbidity, and 595 medication variables for each patient included in the cohort.
In total, there were 926,005 unique patients in the dataset. Next, we applied the necessary pre-processing
and transformation techniques on the combined dataset to make it ready for the regression analysis. We
used the “glm” function in R packages to develop separate multivariable logistic regression models [85]
for each medication in the dataset. Thus, the regression formula included AKI as the response variable
and medication, demographics, and comorbidities as predictor variables. The “family” argument in
the “glm” formula was set to “binomial”. We used the “summary” function to obtain the estimate,
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p-value, standard error, and z-score for each coefficient. In addition, the “confit” function was used to
compute 95% confidence intervals and odds ratio.

VISA_M3R3 provides users with the ability to compare regression models based on their odds
ratios, confidence intervals, p-values, and standard errors. Odds ratio measures the association
between medication and AKI. A high odds ratio for a specific medication indicates a stronger positive
association between that medication and AKI. A list of statistically significant medications was created
by filtering models based on the p-value of the medication variable’s coefficient. A small p-value
indicated that it was unlikely that an observed relationship between the predictor (i.e., medication)
and response variable (i.e., AKI) was due to chance. Out of 595, we found 55 medications that were
strongly associated with AKI. In order to avoid false positives when comparing multiple independent
models, we made the alpha value lower based on the Bonferroni correction to account for the number
of comparisons being done. A p-value less than 8.4 × 10−5 (divide 0.05 by 595) was considered to be
statistically significant in this context. Next, we calculated the frequency of each medication in the
list. Data items produced through the single-medication analyzer included odds ratios, confidence
intervals, p-values, standard errors, and usage frequencies of 55 medications. Users of VISA_M3R3
could explore and manipulate these data items to make sense of how an individual medication can
affect AKI. Users’ sensemaking tasks included, but were not limited to, identifying medications with
high odds ratio and lower p-value, understanding the comparative risk of medications, assessing the
behavior of medication class or subclass, and exploring data items at various levels of abstraction.

4.1.2. Multiple-Medications Analyzer

In order to identify the medication combinations that are associated with AKI, we first prepared
a dataset of frequently prescribed medications. Since we had 595 individual medications, the total
number of combinations was a large number. Therefore, we used the Eclat algorithm [74] to obtain
frequent combinations with a support of 0.07%. Eclat is a frequent itemset mining algorithm that
employs a depth-first search to discover groups of items that frequently occur in a transaction
database. An itemset that appears in at least a pre-defined number of transactions is called a frequent
itemset. At this stage, a total of 24,212 frequent itemsets (i.e., medication groups) were produced from
595 individual medications.

A number of binary variables were created to record the usage of the mediation groups. We set the
value of a particular medication group for a patient when that patient was dispensed all medications
within the group within 120 days before the index date (at least once per medication). Next, we applied
a multivariable logistic regression model on each medication group to identify potential accumulative
nephrotoxicity. The formula included group variables, individual medication variables that belong to
the group, demographic variables, and comorbidities as predictors. Statistically significant medication
groups were identified by filtering the models based on a Bonferroni-corrected alpha value (divide
0.05 by the number of medication groups). We also calculated the usage frequency of 78 medication
groups that were found to be statistically significant.

In the multiple-medications analyzer, we employed a combination of frequent itemset mining
and logistic regression to generate data items such as frequent medication combinations, statistically
significant medication groups, p-values, odds ratios, confidence intervals, and standard errors.
These data items allowed users to understand the synergistic effect of a combination of different
medications on AKI. Users’ sensemaking tasks included, but were not limited to, identifying medication
groups with high impact on AKI, understanding the comparative risk of medications within a group,
and exploring data items at various levels of abstraction. VISA_M3R3 organizes data items in different
visual representations to allow users to perform these tasks.

4.2. Visualization Module

VISA_M3R3 (Figure 2) is composed of five main views: single-medication view,
multiple-medications view, covariates view, medication-hierarchy view, and frequent-itemsets view.
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These views are supported by a number of selection controls, such as search bar and collapsible
tree structures. Each of these visualizations represents an important aspect of the Analytics module.
In this section, we discuss how data items generated in the Analytics module are encoded as visual
representations to allow users perform the activities and tasks mentioned in the previous section.
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VISA_M3R3 (Figure 2) is composed of five main views: single-medication view, multiple-
medications view, covariates view, medication-hierarchy view, and frequent-itemsets view. These 
views are supported by a number of selection controls, such as search bar and collapsible tree 
structures. Each of these visualizations represents an important aspect of the Analytics module. In
this section, we discuss how data items generated in the Analytics module are encoded as visual 
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Figure 2. The Visualization module of VISA_M3R3 is composed of five views: (A) single-medication
view, (B) multiple-medications view, (C) covariates view, (D) medication-hierarchy view,
and (E) frequent-itemsets view.

4.2.1. Single-Medication View

Single-medication view uses a scatter plot to represent the results of individual regression models
for all the medications, as displayed in Figure 3. The generated scatter plot displays each model in
proximity to each other based on their p-value and odds ratio. A linear scale is used for the vertical
axis (odds ratio), whereas a log scale is used for the horizontal axis (p-value) since the p-value is
exponential. Medications that are plotted closer together affect the risk of developing AKI in a similar
manner. The regression model for each medication is encoded as a glyph where horizontal lines on
both sides of each circle represent the confidence interval, and the vertical line shows the standard
error of the model. The single-medication view enables users to identify high-risk medications that
are associated with AKI and understand the comparative risk of these medications. For instance, the
glyph in the top-right corner with a p-value of 1 × 10−45 and an odds ratio of 2.4 represents Metolazone.
These values suggest that the odds of developing AKI for a patient using this medication are more
than two times higher than a patient with similar conditions who is not using it.

4.2.2. Multiple-Medications View

The multiple-medications view, displayed in Figure 4, uses another scatter plot to represent the
results of the regression analysis of groups that are created by the frequent itemset mining algorithm.
Each glyph in this scatter plot encodes a medication group model. Similar to the single-medication
view, horizontal lines on both sides of each circle in the glyph represent the confidence interval, and the
vertical line shows the standard error of the model. We map the p-value and odds ratio to the x- and
y-axis, respectively. The multiple-medications view provides users with the ability to detect medication
groups that are associated with AKI. For instance, through frequent itemset mining analysis, we find



Data 2020, 5, 33 11 of 24

that the pair of Gabapentin and Furosemide medications is frequently prescribed together. As shown
in Figure 4, this pair appears to be associated with AKI with a p-value of 1 × 10−26.
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4.2.3. Frequent-Itemsets View

Frequent-itemsets view represents the result of the frequent itemset mining analysis by showing
all possible combinations of the most frequent items using a chord diagram. As shown in Figure 5,
medications are mapped to nodes along the circumference of the circle. Each node consists of an
individual circle and a text field showing the name of the medication. Each chord (link) connects
two nodes (medications) if they co-occur in the dataset within a certain timeframe. For instance, as
shown in Figure 5, there are links between Moxifloxacin Hcl and three other medications (Furosemide,
Allopurinol, and Amlodipine besylate) because these three medications have been prescribed with
Moxifloxacin Hcl more than a certain number of times (0.07 percent of the total population) within
120 days prior to the index date.

The size of the circle of each node displays the frequency of the medication in the dataset.
Higher usage frequency of a certain medication results in a larger radius for the circle representing
that medication. This allows users to visually compare medications based on their use frequency.
For instance, a relatively large radius of the circle representing Ramipril indicates that it is one of the
frequently prescribed medications in Figure 5B.

The nodes that belong to the same subclass are placed close to each other separated by spaces.
This enables users to visually identify the nodes that share common characteristics (i.e., belong to the
same subclass). For instance, users can detect that Furosemide, Hydrochlorothiazide, Metolazone,
Indapamide, and Chlorthalidone are all diuretics; therefore, they are placed in the same group
(Figure 5A). The frequent-itemsets view also reveals subclasses that are composed of a higher number
of AKI-associated medications. It can be observed from Figure 5C-1,C-2 that there are two subclasses
(Angiotensin and Beta-blockers) that contain six medications that are associated with AKI.
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4.2.4. Covariates View

The covariates view is composed of several sliders that filter data items with respect to different
covariates involved in the regression model. The number of sliders depends on the number of
covariates that are found to be statistically significant based on the result of the regression analysis.
As displayed in Figure 6, six sliders were generated to create control for cancer, diabetes, hypertension,
heart failure, coronary artery disease, and coronary liver disease.

Each slider included in the covariates view had three components (a rectangle, vertical lines,
and two arc-shaped handles). The rectangle contained the other two components in it. The length of
the rectangle represented a linear or log scale, depending on the type of variable it was representing.
A linear scale was used when the slider represented the odds ratio of a covariate. We used a log scale to
represent the p-value of a covariate. All sliders were generated based on the p-value of the covariates.
The vertical lines in the rectangles represented the regression models of both single-medication and
multiple-medications analyzers. The placement of the line on the horizontal axis depends on the p-value
or odds ratio of the covariate in the corresponding model. For instance, in the slider representing
diabetes (second from the top in Figure 6), most of the models are densely clustered in the right corner.
This indicates that diabetes has a high impact on the association between medications and AKI. Two
arc-shaped handles are placed on both ends of the rectangle to allow users to choose a range of values
on the horizontal axis.
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4.2.5. Medication-Hierarchy View

The medication-hierarchy view contains a data table to provide a list of medications that have
been selected through other views, as displayed in Figure 7. The table has three sortable columns for
medications, subclasses, and higher-level classes. Each subclass contains a set of medications that
share common chemical structures and mechanisms of action, and/or are used to treat similar diseases.
A class contains medication subclasses that can be grouped together because of their similarity.
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4.3. Interaction Module

The Interaction module of VISA_M3R3 is intended to support human-in-the-loop processes
of VA. Using the many interactions provided by this module, users can gain insight into the data
and manipulate the incorporated data analysis techniques. In this section, we will explore these
interactions and discuss how they assist users in identifying high-risk medications and understanding
the association between medication groups and AKI. We describe interactions that can be performed
in each of the views discussed in the previous section. These interactions not only affect displayed
data at the selected view but also change the representation of the data in other views.

4.3.1. Single-Medication View Interactions

As shown in Figure 8, the glyphs representing regression models of individual medications are
placed very close to each other in the scatter plot. It is sometimes difficult for users to distinguish
between models when the glyphs are densely clustered. In order to address this issue, we used the
Cartesian fisheye distortion technique on both axes of the scatter plot. Fisheye distortion enables users
to zoom in on small areas of the plot without losing sense of its overall structure. Users can apply
fisheye distortion by moving their mouse pointer over the grey rectangular areas on both axes of the
scatter plot. Fisheye distortion magnifies the local region around the mouse continuously. Users have
the ability to enable and disable the fisheye distortion action by clicking on the grey rectangular areas.
The color of the rectangular area gets lighter when the fisheye distortion action is disabled. As shown
in Figure 8, fisheye on the top-left scatter plot is disabled (light grey rectangles) and bottom-left scatter
plot is enabled (relatively dark grey rectangles).
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The model selection interaction of the single-medication view affects all the other views. Using this
interaction (Figure 8), users can highlight a single medication model throughout VISA_M3R3 in order to
(1) determine positions of group models that include the selected medication in the multiple-medications
view, (2) detect the position of the selected medication in the covariates view, (3) observe the class
and subclass of the selected medication in the medication-hierarchy view, and (4) identify other
medications that are frequently prescribed with the selected medication in the frequent-itemsets view.
The selected medication is highlighted using the red color in the top-left scatter plot in Figure 8.
The glyphs representing corresponding groups in the bottom-left scatter plot, vertical lines representing
the medication in the covariates view, and links between selected medication and other frequently used
medications in the frequent-itemsets view are all highlighted using the amber color. The utility of this
interaction is when users are interested in learning more about a medication that is strongly associated
with AKI. They would select a glyph at the top-right corner of the scatter plot, whereupon VISA_M3R3
would highlight and display the relevant information associated with that glyph. Another interaction
supported by this view is hovered drilling. This interaction enables users to drill into scatter plot glyphs
and get additional information about their corresponding model (Figure 3).

4.3.2. Multiple-Medications View Interactions

We designed the interactions of the multiple-medications view in a similar manner to the
interactions of the single-medication view. The only difference was how we designed the selection
interaction. The group model selection interaction affects all the other views. Using this interaction
(Figure 9), users can highlight a group model throughout the system in order to (1) identify the position
of single models included in the selected group in the single-medication view, (2) determine the
position of the selected group in the covariates view, (3) observe the class and subclass of medications
included in the selected group in the medication-hierarchy view, and (4) highlight the nodes and links
representing the group in the frequent-itemsets view. To maintain consistency across all views, the
color scheme of the multiple-medications view is similar to the single-medication view. This interaction
can be used when users want additional information about a specific group model; they can select the
corresponding glyph and observe whether medications included in the selected group are associated
with AKI individually in the single-medication view.
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4.3.3. Covariates View Interactions

The single-medication and multiple-medications analyzers produce a set of regression models.
These models can be described by a certain number of common attributes (e.g., p-value and odds ratio
of each covariate) because all of them include the same set of demographic and comorbidity variables
as their covariates. The value of an attribute changes based on how each covariate affects the model.
It is essential to understand the impact of covariates on both single and group models.

Users can create complex queries composed of several simpler queries related to attributes of
different covariates. In each simple query, users apply a filter to the models by selecting a specific range
in each slider. Figure 10 shows an example of a complex query involving p-value of six covariates.
Users can drag both ends of the given sliders to choose a certain range. The color of the range selector
changes from green to red when a slider is active. The color of the vertical line representing the
model changes from grey to amber when the corresponding model satisfies the criteria of the complex
query. Also, the medication-hierarchy view displays the list of models that meet the criteria of the
complex query.
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In many situations, users struggle to choose appropriate ranges for the sliders. As a result, the
query might produce an empty or a limited result set. In order to address this issue, we implemented a
sensitivity encoding mechanism in VISA_M3R3 [86]. The sliders are set to their maximum and minimum
ranges by default. In this case, the color of the glyphs in both scatter plots is set to green because all
models satisfy the query. The color of the glyph in the scatter plots encodes the number of simple queries
its corresponding model satisfies in the covariates view, as shown in Table 1 and Figure 10.

Table 1. Sensitivity encoding using color coding of glyphs.

Number of Satisfied Filters Color of the Glyphs

6 Green
5 Black
4 Blue
3 Cyan
2 Purple
1 Grey
0 Yellow

4.3.4. Frequent-Itemsets View Interactions

The selection interaction of the frequent-itemsets view affects the single-medication view, covariates
view, and medication-hierarchy view. Using this action (Figure 11), users can select a single medication
from the chord diagram by clicking on its corresponding node in order to (1) identify other medications
that are frequently prescribed with the selected medication in the frequent-itemsets view, (2) understand
the association between the selected medication and AKI in the single-medication view, (3) determine
the position of the selected medication in the covariates view, and (4) observe the class and subclass
of the selected medication in the medication-hierarchy view. Figure 11 shows an example of this
interaction. Selecting Moxifloxacin Hcl would highlight the links and the names of the other
medications (i.e., Furosemide, Allopurinol, and Amlodipine besylate) that are frequently consumed
with Moxifloxacin Hcl.Data 2020, 5, 33 19 of 26 
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4.3.5. Medication-Hierarchy View Interactions

Medication-hierarchy view supports two interactions as shown in Figure 12. Users can sort the
table based on medication name, subclass, or class by clicking on the corresponding column header.
For instance, if they click on “Medication”, medication names in the table get sorted alphabetically.
They can also sort in the opposite order by clicking on the same header again. In addition, users can
click on any row in the table to select the corresponding medication or medication groups. Selected
medications get highlighted in all other views.

4.3.6. Selection Controls

Selection controls include a search bar, a collapsible tree structure, and several buttons to control
the information displayed in different views (top-right corner of Figure 12). If users are interested in
learning about a specific medication, they can enter the name of that medication (or part of the name) in
the search bar and the information related to that medication gets displayed in the medication-hierarchy
view. Users can expand the tree structure by clicking on the “+” icon at the top-right corner to get a
menu of medication subclasses. Each item in the menu is linked to a checkbox. It is possible to limit
data items displayed in other views by selecting these checkboxes. For instance, as shown in Figure 12,
users have selected a number of subclasses such as Iron preparations, Vasodilator antihypertensive,
and Antiemetics and Antinauseants in the collapsible tree structure to limit the number of data items
shown in the scatter plots, data table, and chord diagram.Data 2020, 5, 33 20 of 26 
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5. Discussion

In this paper, we have shown how VA systems can be designed to address the challenges of
prescription data stored in EMRs in a systematic way. To achieve this, we have reported the development
of VISA_M3R3, a VA system designed to assist medical researchers at ICES’ KDT program. VISA_M3R3
incorporates three main components: an Analytics module, made up of single-medication analyzer
and multiple-medications analyzer; a Visualization module, made up of five views: single-medication
view, multiple-medications view, covariates view, frequent-itemsets view, and medication-hierarchy
view; and an Interaction module, made up of a set of different human-data interactions. VISA_M3R3 is
unique in the manner in which it combines multivariable regression with Eclat to support underlying
processing in the computing space and implements fisheye and sensitivity encoding to provide support
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for the representation and interaction spaces. It offers a balanced distribution of processing load through
a proper integration of analytics techniques (i.e., regression and frequent itemset mining in the Analytics
module) with visual representations (i.e., different interactive views in the Visualization module) to
facilitate high-level cognitive tasks. Some of the main tasks commonly performed by researchers,
and which VISA_M3R3 is designed to support, include: (1) compare multiple regression models,
(2) understand the relationship between different predictors and a response variable, (3) identify the
frequent itemsets from items of interest, and (4) interpret multivariable regression models. VISA_M3R3
is primarily designed as a research tool for the medical researchers at ICES’ KDT program, and it is
up to them to decide how this system will be applied within the healthcare system. A number of
training materials have been prepared to assist new users who are not familiar with the analytics and
visualization techniques incorporated in VISA_M3R3 to use the system effectively.

We have demonstrated how VISA_M3R3 can be used to detect AKI-associated medications among
older patients who visited the hospital or emergency department in Ontario between 2014 to 2016
using ICES health administrative data. We have seen that VISA_M3R3 allows healthcare researchers
to generate hypotheses, understand the relationships among data elements (e.g., medications and
diseases), and recognize patterns and trends that would be otherwise difficult to identify. About 9% of
all the medications that are prescribed to the older patients have been found to be associated with
AKI. Using VISA_M3R3, we detect 55 medications (Furosemide, Allopurinol, Hydrochlorothiazide,
Atorvastatin, Spironolactone, Olmesartan Medoxomil, to name a few) and 78 medication combinations
(Furosemide and Oseltamivir Phosphate, Allopurinol and Metolazone, Celecoxib and Quetiapine, and
so on) that are associated with an increased risk of AKI. In general, medications belong to Angiotensin
Receptor Blockers, Diuretics, Nonsteroidal Anti-inflammatory, and Xanthine Oxidase Inhibitors classes
are found to be strongly associated with AKI. Moreover, some combinations of medication classes such
as Anti-inflammatory and Antidepressants and Diuretics and Antiviral Agents have been identified
with the evidence for increased risk of developing AKI. The lists of medications and medication
combinations have been reviewed by a nephrologist to validate the results. Most of these medications
are already known to be nephrotoxic in the existing literature, which confirms the accuracy of our
findings through VISA_M3R3 [87–92].

In terms of the extensibility and scalability of VISA_M3R3, we have designed it in a modular
way so that it can easily accept new data sources, data types, and analysis techniques. VISA_M3R3
can be used to investigate many other clinical problems, such as identifying risk factors associated
with hypertension, and understanding the relationship between dietary habits and diabetes. To test
the applicability of the system in different healthcare areas, we have used VISA_M3R3 to detect
hospital admission codes (i.e., reasons for hospitalization) that are associated with AKI using healthcare
utilization database housed at ICES. We detected 8543 itemsets by analyzing the hospital admission
codes that co-occur frequently. Using VISA_M3R3 to analyze this data, 185 individual codes and
215 group codes are found to be statistically significant. The top few reasons for hospitalization
(representing admission codes associated with AKI) included (1) essential hypertension, (2) malignant
neoplasm of bladder, (3) non-follicular (diffuse) lymphoma, (4) mycosis fungoides, (5) iron deficiency
anemia, and (6) chronic obstructive pulmonary disease. This result also aligns with what has already
been known from the literature, which more generally and comprehensively proves the efficacy of
VISA_M3R3’s design [93–97].

There are four key limitations to the development of VISA_M3R3. The first one is that it reports
the regression analysis result of the group models but does not consider how individual items within
the group are affecting the outcome. For instance, in the study with medications, VISA_M3R3 reveals
that the combination of Furosemide and Metoprolol increases the risk of AKI. However, it does not
explain the additive risk of using Metoprolol with or without Furosemide and vice versa. This issue
can be resolved by incorporating a stratified analysis on each item available in at least one group.
The second limitation is that, even though we have had a participatory design and medical experts have
evaluated VISA_M3R3 and have found it very useful and usable, we have not conducted any formal
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experimental usability studies to evaluate its performance, nor the efficacy of its human-data discourse
mechanisms. The third one is that VISA_M3R3 incorporates a limited number of analytics techniques.
Although there are more advanced machine learning algorithms in the literature, we decided to
design the system based on techniques that are more interpretable to our end-users (i.e., clinicians and
healthcare researchers). Fourth, the preparation of the dataset for VISA_M3R3 could be labor-intensive
in some situations, depending on the data source and problem at hand. However, there are a number of
readily available libraries and packages available to assist users with the data cut and preparative work.

6. Conclusions

The purpose of this paper is to demonstrate how VA systems can be designed in a systematic
way to support EMR-driven tasks and investigation of different clinical problems. We report the
development of a VA system (called VISA_M3R3) and demonstrate how it can be used to help medical
practitioners and researchers identify medications and medication combinations that associate with
a higher risk of AKI. VISA_M3R3’s novelty stems from its design; it incorporates multivariable
regression, frequent itemset mining, data visualization, and human–data interaction mechanisms
in an integrated fashion to support ill-defined, complex EMR-driven tasks. Using VISA_M3R3, we
analyzed ICES health administrative data. Through this analysis, 55 medications and 78 medication
groups, strongly associated with AKI, were identified. Although, through clinical studies, a number of
these AKI-associated medications and medication groups are known by medical researchers, some of
them have never been studied before. VISA_M3R3 can alert and raise physicians’ awareness of such
potentially AKI-associated medications. This, in turn, can prompt healthcare providers to conduct
further clinical investigations to improve healthcare research outcomes. Finally, VISA_M3R3’s design
concepts are generalizable. They can be used to systematically develop any VA system whose goal
is to support medical tasks involving analysis of EMR data using multiple regression models and
frequent itemset mining. Applications of such VA systems can lead to the emergence of best practices
for developing similar VA systems in other medical domains.
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