
data

Data Descriptor

The Dataset of the Experimental Evaluation of
Software Components for Application Design
Selection Directed by the Artificial Bee
Colony Algorithm

Alexander Gusev 1 , Dmitry Ilin 2 and Evgeny Nikulchev 2,*
1 Russian Academy of Education, Data-Center, 119121 Moscow, Russia; alexandrgsv@gmail.com
2 MIREA—Russian Technological University, Institute of Integrated Safety,

Security and Special Instrumentation, 119454 Moscow, Russia; i@dmitryilin.com
* Correspondence: nikulchev@mail.ru

Received: 7 May 2020; Accepted: 6 July 2020; Published: 8 July 2020
����������
�������

Abstract: The paper presents the swarm intelligence approach to the selection of a set of software
components based on computational experiments simulating the desired operating conditions of
the software system being developed. A mathematical model is constructed, aimed at the effective
selection of components from the available alternative options using the artificial bee colony algorithm.
The model and process of component selection are introduced and applied to the case of selecting
Node.js components for the development of a digital platform. The aim of the development of the
platform is to facilitate countrywide simultaneous online psychological surveys in schools in the
conditions of unstable internet connection and the large variety of desktop and mobile client devices,
running different operating systems and browsers. The module whose development is considered in
the paper should provide functionality for the archiving and checksum verification of the survey
forms and graphical data. With the swarm intelligence approach proposed in the paper, the effective
set of components was identified through a directional search based on fuzzy assessment of the
three experimental quality indicators. To simulate the desired operating conditions and to guarantee
the reproducibility of the experiments, the virtual infrastructure was configured. The application of
swarm intelligence led to reproducible results for component selection after 312 experiments instead
of the 1080 experiments needed by the exhaustive search algorithm. The suggested approach can be
widely used for the effective selection of software components for distributed systems operating in
the given conditions at this stage of their development.

Dataset: DOI: 10.17632/3rh3r2hckr.3.

Dataset License: CC-BY 4.0.

Keywords: swarm intelligence; quality of systems and programs; Node.js; software system development;
digital platforms; evolutionary computation; computational experiments

1. Introduction

In previous decades, a significant amount of research was devoted to the development of an optimal
modular architecture for component-oriented programming [1] based on a set of criteria [2] including the
quality assessment of modular software architecture [3], increasing the productivity of modular software
by various methods, including clustering methods [4], genetic algorithms [5], and other evolutionary
algorithms [6]. These studies were aimed at the a priori optimization of component-oriented software

Data 2020, 5, 59; doi:10.3390/data5030059 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0003-2437-8537
https://orcid.org/0000-0002-0241-2733
https://orcid.org/0000-0003-1254-9132
http://dx.doi.org/10.3390/data5030059
http://www.mdpi.com/journal/data
https://www.mdpi.com/2306-5729/5/3/59?type=check_update&version=3

Data 2020, 5, 59 2 of 11

architecture in terms of the structural connectivity of the modules, and provided preliminary expert
assessments of the functional completeness of the selected components. The modern spread of
framework-based architecture requires new approaches to numerical measurements of the quality
of service provided by cloud-based software products [7], i.e., the degree to which the product
meets the stated and implied needs when used under specified conditions. Thus, the preference for a
component should be based on an experimental study of the quality of its operation in a stack together
with the components implementing the rest of the functionality of the software system. It is also
necessary to guarantee the reproducibility of the experiments and the conformity of the experimental
environment to the real operating conditions of the software system, which can be done through using
the preconfigured virtual infrastructure, simulating the desired operating conditions [8].

However, two crucial issues arise with organizing experiments to assess the quality of the operation
of software components. The first issue is the potential long execution of the experimental algorithm
depending on the development goals. The second one is the need to guarantee the sustainability of
the solution. Thus, the experimental assessment for each stack of software components should be
performed multiple times to ensure that the results can be reproduced and that the impact of random
factors such as delays in reading from hard drives, data transfer delays, etc. is minimized. It should
be noted that the majority of stacks would in practice show mediocre results in a short sequence of
experiments and there would be no need to evaluate them further. Thus, swarm intelligence can be
applied to control the process of selection as it becomes possible to make sure that the best results are
reproduced while the mediocre stacks are quickly removed from consideration by the swarm.

Thus, the aim of our research was to develop a time-efficient and sustainable swarm intelligence
approach to control the process of the selection of software components based on experimental
evaluation of their quality of operation and apply it to the practical task of component selection for the
Digital Psychological Tools (DigitalPsyTools.ru) for Conducting Large-Scale Psychological Research at
the Russian Academy of Education [9]. Among the swarm intelligence algorithms, the artificial bee
colony (ABC) algorithm was chosen as it shows good convergence in the tasks of software development
optimization, including effort estimation [10], feature selection [11], requirement optimization [12],
code coverage [13], and distributed database query optimization [14].

This data article provides the experimental results for the quality evaluation of Node.js 12.16.2
components directed by the artificial bee colony algorithm (ABC) [15]. The experiments were performed
in a virtual infrastructure simulating the desired operating conditions of the software system being
developed [16]. The Vagrantfile and Ansible playbook of the virtual infrastructure are provided
within the dataset and allow other researchers to reproduce the experimental conditions on their
system. During the experiment, alternative sets of Node.js components performed the experimental
algorithm in the virtual infrastructure and the Node.js “process” object was used to obtain quality
indicators during the initialization and execution phases of the experimental algorithm. The set of
quality indicators presented in the dataset includes process.memoryUsage(), process.cpuUsage(),
process.hrtime() and their nested indicators for both the phases of the evaluation, which amounts to
14 indicators in all. The dataset contains the scenarios for the software component selection process
(“comands.zip”) and the experimental algorithm (“service-1.zip”), both of which are to be run in
the virtual infrastructure. The modified artificial bee colony algorithm with the cost function script
is provided as well (“matlab.zip”). The file “snippets.zip” contains a number of files representing
the available software component implementations. The file “logging.js” provides the means for
tracking resource utilization during the experiment. The dataset also contains the MATLAB fuzzy
inference system file (“StackQual.fis”) which was used to assess the overall quality of the software
components based on the following three indicators: execution.hrtime, execution.cpuUsage.user,
and execution.memoryUsage.rss. The experimental results in the dataset are organized in json files,
each of which is associated with an ABC agent that initiated the evaluation. The first number in the
filename for each set of results represents the iteration number of the algorithm from 0 to 15, the second
one is the serial number of the food source in the population, and then the role of the agent during the

Data 2020, 5, 59 3 of 11

food source evaluation is specified. The MATLAB environment is preserved in “environment.mat” to
show the terminal solution set, the parameters of the ABC, and the evolution process in detail.

2. Model

At the first stage the n functional requirements qi, i ∈ [1, n] of the software system should
be identified as well as the t different configurations ωk , k ∈ [1, t] of the virtual infrastructure,
representing the set of desired operating conditions for the software system. The software developer
then identifies the set of M software components available for the research. Each component should
implement at least one of the requirements qi and may be provided by various third-party providers.
The subset of alternative software components from M capable of implementing the requirement qi is
denoted as mi, i ∈ [1, n]. The sets of software components in which for every functional requirement
qi, i ∈ [1, n] there exists at least one software component from M are defined as stacks s j, j ∈ [1, p].
S is the set of all the possible stacks. To evaluate the quality of operation for a stack, the f values,
denoting experimentally evaluated partial quality indicators rk, j

ξ
, ξ ∈ [1, f], are introduced. Their values

belong to the space Rf. Thus,

∀ωk : s j
→ Rk, j

∈ Rf

Rk, j = (rk, j
1 , rk, j

2 , . . . , rk, j
ξ

, . . . , rk, j
f)

T
, k ∈ [1, t], j ∈ [1, p],

where rk, j
ξ

, ξ ∈ [1, f], k ∈ [1, t], j ∈ [1, p] are the values of experimentally evaluated partial quality
indicators for the configurationωk of the virtual infrastructure and the stack s j being evaluated.

The integral quality assessment of the stack is then done by a fuzzy inference system (FIS), to the
inputs of which the indicators rk, j

ξ
, ξ ∈ [1, f], k ∈ [1, t], j ∈ [1, p] are sent, and the integral quality indicator

Ψ(ωk, s j
)

for the configuration ωk of the virtual infrastructure and the stack s j is produced as the
output value of the FIS.

The output value of the FIS is then used by the swarm intelligence algorithm as the cost function
for the stack s j for the configurationωk.

The effective selection of software components based on the experimental evaluation of the quality
of operation for the chosen configuration of the virtual infrastructureωk is aimed at the selection of the
stack s∗ satisfying the following condition:

s∗ = argmax
s j, j∈[1,p]

Ψ(ωk, s j). (1)

3. Method

The artificial bee colony algorithm (ABC) is an optimization method that mimics the behavior of
honeybees collecting nectar [15]. The main components of the behavior model of a swarm of honeybees
are as follows:

• Food sources: the value of the food source depends on many factors, such as proximity to the
hive, nutritional value, and the ease of extracting the nectar.

• Recruited bees: these are agents associated with a particular food source on which they are
“employed”. Agents transfer information about their source, the distance to it, and its profitability
and are likely to share this information.

• Non-recruited bees: agents are constantly on the lookout for new food sources. Two types of
non-recruited bees are distinguished: scouts, which explore the environment around the hive in
search of new food sources, and onlookers, which wait in the hive and master a new food source
using information shared by the recruited bees.

Data 2020, 5, 59 4 of 11

To apply the ABC algorithm to solve Equation (1), the encoding mapping S → Λ ⊆ Nn is

introduced. Thus, for each stack s j, j ∈ [1, p] there are corresponding coordinates for the food source
µ j = D(s j), j ∈ [1, p]. Then the reverse mapping D−1 : Λ→ S is introduced to transform the coordinates
of the food source into the corresponding software stack. The array of stacks being evaluated at the ith
iteration of the ABC algorithm is denoted as ϑγ,γ ∈ [1, Γ]; here Γ is the sequence number of the last
(terminal) iteration of the ABC algorithm, provided that |ϑγ| ≤ p,γ ∈ [1, Γ]. The food sources are then

denoted as µηγ =
(
β
η
1γ

, . . . ,βηnγ

)T
,η ∈ [1, |ϑγ |]; here every βηiγ takes its values in the range from 1 to |mi|,

which corresponds to the index number of the chosen software component from mi. The cost function

values for µηγ = (βη1γ
, . . . ,βηnγ

)T
, η ∈ [1, |ϑγ |],γ ∈ [1, Γ] coincide with Ψ(ωk, sηγ

)
being produced by

the FIS after the evaluation of the corresponding stack in the experimental environment.
Thus, the task of selecting the stack s∗ (1) transforms into the task of selecting the stack s∗Γ for

which the integral indicator Ψ is maximal among the array of stacks sηΓ ,η ∈ [1, |ϑγ |], corresponding to
the set of food sources ϑΓ of the terminal iteration of the ABC algorithm:

s∗Γ = argmax
sηΓ ,η ∈[1,|ϑγ |]

Ψ
(
ωk, sηΓ

)
(2)

The termination of the ABC algorithm solving Equation (2) is complete when the absolute value
of change in the best cost does not exceed the given convergence threshold for the given number of
consecutive iterations (maximum number of stall iterations).

After the termination of the ABC algorithm the coordinates of the best food source are transformed
into its corresponding software stack using the reverse mapping D−1.

4. The Application of the Approach in Software Development

With the approach introduced above, let us consider the case of selecting Node.js components for
the development of the Digital Psychological Tools for Conducting Large-Scale Psychological Research
in Russia.

The aim of the platform design is to facilitate countrywide simultaneous online psychological
surveys in schools. Due to the unstable internet connectivity in the villages and remote territories, it is
crucial to provide guaranteed data delivery even if the communication channel suddenly breaks down.
The questionnaire includes the description structure and may include additional resources such as
images. All the images and other resources are downloaded in an archive from the server during the
survey process.

To meet the goal of facilitating the surveys, the following set of functional requirements and
alternative Node.js components was considered: q1—“sequentially check all the elements of the array
for compliance with the condition and return an array consisting of elements for which the check gave
the value ‘True’”, alternative components: “Lodash”, “Underscore”; q2—“apply the specified function
to all the elements of an array, thereby returning a new array consisting of the transformed elements”,
alternative components: “Lodash”, “Underscore”, JavaScript language tools; q3—“return the first
element of an array”, alternative components: “Lodash”, “Underscore”; q4— “generate the full path to
the file or directory based on the specified array of path elements”, alternative components: “Path”;
q5—“find and replace a substring in the string passed”, alternative components: JavaScript language
tools; q6—“perform archiving of the transferred file array and return the generated Zip archive”,
alternative components: “Adm-zip”, “Jszip”, “Zipit”; q7 —“calculate the Message Digest 5 (MD5) [17]
hash for the specified dataset”, alternative components: “Hasha”, “md5”, “Ts-md5”; q8—“read the
data from a file”, alternative components: “Fs-Extra”, “Fs”; q9—“read the contents of a directory,
returning an array of file and subdirectory names in the directory”, alternative components: “Fs-extra”;
q10—“recursively read the contents of a directory and return an array of file and subdirectory names in
the directory”, alternative components: “Recursive-readdir”.

Data 2020, 5, 59 5 of 11

Thus, n = 10, p = 216.
The evaluation of the quality of operation was performed with respect to the f = 3 partial quality

indicators: r1
k, j—real time spent on the experiment, ns; r2

k, j—the microprocessor operating time spent
in user code during the experiment, ms; r3

k, j—the increase in the resident set size noted at the end of
the experiment (including heap, code segment, and stack), bytes. When conducting the experiment,
the partial indicators were normalized with respect to their maximum values in the experiment and
took their values in the segment [0; 1].

The choice of these indicators is explained by the need to select the software stack whose resource
consumption in terms of resident set size increase and time spent, both by the microprocessor and
physically, is minimal, in order to provide a better user experience on various desktop and mobile
devices across the country.

The platform development team designed a Mamdani FIS system (see Figure 1) to assess the
integral quality Ψ(ωk, s j

)
of the stacks using the three partial quality indicators.

Data 2020, 5, x FOR PEER REVIEW 5 of 11

directory”, alternative components: “Fs-extra”; 10q —“recursively read the contents of a directory
and return an array of file and subdirectory names in the directory”, alternative components:
“Recursive-readdir”.

Thus, n = 10, p = 216
The evaluation of the quality of operation was performed with respect to the 3f = partial

quality indicators: ,
1
k jr —real time spent on the experiment, ns; ,

2
k jr —the microprocessor operating

time spent in user code during the experiment, ms; ,
3
k jr —the increase in the resident set size noted

at the end of the experiment (including heap, code segment, and stack), bytes. When conducting the
experiment, the partial indicators were normalized with respect to their maximum values in the
experiment and took their values in the segment [0; 1].

The choice of these indicators is explained by the need to select the software stack whose
resource consumption in terms of resident set size increase and time spent, both by the
microprocessor and physically, is minimal, in order to provide a better user experience on various
desktop and mobile devices across the country.

The platform development team designed a Mamdani FIS system (see Figure 1) to assess the
integral quality Ψ(,)k jsω of the stacks using the three partial quality indicators.

Figure 1. The structure diagram of the fizzy inference system (FIS).

The decision surfaces for the FIS are shown in Figure 2.

(a) (b) (c)

Figure 2. FIS decision surfaces. (A) the decision surface with respect to ,
1
k jr and ,

2
k jr (B) the decision

surface with respect to ,
1
k jr and ,

3
k jr (C) the decision surface with respect to ,

2
k jr and ,

3
k jr .

The MATLAB Fuzzy Logic Toolbox file of the FIS, “StackQual.fis”, is available on the Mendeley
repository associated with this paper.

This dataset contains 312 experimental quality evaluations of alternative software stacks with
respect to 14 quality indicators as well as configuration files and scenarios to recreate the
experimental virtual infrastructure. It also shows in practice the process of the selection of the best
software stack by the artificial bee colony algorithm and provides ideas for the further application of
swarm intelligence in software component selection.

Figure 1. The structure diagram of the fizzy inference system (FIS).

The decision surfaces for the FIS are shown in Figure 2.

Data 2020, 5, x FOR PEER REVIEW 5 of 11

directory”, alternative components: “Fs-extra”; 10q —“recursively read the contents of a directory
and return an array of file and subdirectory names in the directory”, alternative components:
“Recursive-readdir”.

Thus, n = 10, p = 216
The evaluation of the quality of operation was performed with respect to the 3f = partial

quality indicators: ,
1
k jr —real time spent on the experiment, ns; ,

2
k jr —the microprocessor operating

time spent in user code during the experiment, ms; ,
3
k jr —the increase in the resident set size noted

at the end of the experiment (including heap, code segment, and stack), bytes. When conducting the
experiment, the partial indicators were normalized with respect to their maximum values in the
experiment and took their values in the segment [0; 1].

The choice of these indicators is explained by the need to select the software stack whose
resource consumption in terms of resident set size increase and time spent, both by the
microprocessor and physically, is minimal, in order to provide a better user experience on various
desktop and mobile devices across the country.

The platform development team designed a Mamdani FIS system (see Figure 1) to assess the
integral quality Ψ(,)k jsω of the stacks using the three partial quality indicators.

Figure 1. The structure diagram of the fizzy inference system (FIS).

The decision surfaces for the FIS are shown in Figure 2.

(a) (b) (c)

Figure 2. FIS decision surfaces. (A) the decision surface with respect to ,
1
k jr and ,

2
k jr (B) the decision

surface with respect to ,
1
k jr and ,

3
k jr (C) the decision surface with respect to ,

2
k jr and ,

3
k jr .

The MATLAB Fuzzy Logic Toolbox file of the FIS, “StackQual.fis”, is available on the Mendeley
repository associated with this paper.

This dataset contains 312 experimental quality evaluations of alternative software stacks with
respect to 14 quality indicators as well as configuration files and scenarios to recreate the
experimental virtual infrastructure. It also shows in practice the process of the selection of the best
software stack by the artificial bee colony algorithm and provides ideas for the further application of
swarm intelligence in software component selection.

Figure 2. FIS decision surfaces. (a) the decision surface with respect to r1
k, j and r2

k, j (b) the decision
surface with respect to r1

k, j and r3
k, j (c) the decision surface with respect to r2

k, j and r3
k, j.

The MATLAB Fuzzy Logic Toolbox file of the FIS, “StackQual.fis”, is available on the Mendeley
repository associated with this paper.

This dataset contains 312 experimental quality evaluations of alternative software stacks with
respect to 14 quality indicators as well as configuration files and scenarios to recreate the experimental
virtual infrastructure. It also shows in practice the process of the selection of the best software stack by
the artificial bee colony algorithm and provides ideas for the further application of swarm intelligence
in software component selection.

The dataset can be widely used by software development teams to rapidly build the experimental
infrastructure and tune the parameters of the artificial bee colony algorithm according to their task.

The interdependence between the 14 quality indicators can be further investigated to increase the
efficiency of the experimental selection of software components.

Data 2020, 5, 59 6 of 11

The experimental results can be used directly in developing software systems with the sets of
components which were evaluated.

5. Data Description

The following is the description of the Mendeley dataset, associated with this article:

1. The files “result*.json” provide the individual evaluation of the software stack quality indicators.
The first number in the filename represents the iteration number of the ABC from 0 to 15,
the second one is the serial number of the food source in the population, and then the role of the
agent during the food source evaluation is specified. An example of the inner structure of these
files is as follows:

{
"time": 1586854218846,
"initialization": {

"cpuUsage": {
"user": 24000,
"system": 12000

},
"memoryUsage": {

"rss": 3665920,
"heapTotal": 3162112,
"heapUsed": 2988264,
"external": 23259

},
"hrtime": 56721643

},
"execution": {

"cpuUsage": {
"user": 4000,
"system": 4000

},
"memoryUsage": {

"rss": 266240,
"heapTotal": 262144,
"heapUsed": 311848,
"external": 56536

},
"hrtime": 7281639

}
}
Here, the initialization section represents the quality indicators measured while performing the

initialization of the experiment (“init.js” from “commands.zip”), the execution section represents
the indicators measured when performing the experimental algorithm (“index.js”, “main.js” from
“service-1.zip”), and “time” is the timestamp for the results. The items inside the sections mentioned above
reflect the measured values of the Node.js “process” object: process.cpuUsage(), process.memoryUsage(),
and process.hrtime(), which are described in detail in the Node.js documentation [18].

2. The file “commands.zip” contains scenarios for the initialization of the experimental infrastructure,
i.e., virtual machines (“init.js”), preparation of the list of alternative software components
(“prepare-alternatives.js”), and launching the experimental algorithm (“run-service-1.js”).

Data 2020, 5, 59 7 of 11

3. The file “service-1.zip” contains the scenario of the experimental algorithm (“./src/main.js”)
and the file “index.js”, which is the launch scenario of the experiment and the scenario of data
gathering before and after the execution of the experimental algorithm.

4. The file “snippets.zip” contains a number of files representing the available software component
implementations. Every file provides the factory function with the component initialization
algorithm. The factory function returns a new proxy function, which maps passed arguments to
match the component’s function signature and vice versa for the output.

5. The file “logging.js” provides the means for tracking resource utilization during the experiment.
6. The file “matlab.zip” contains the integer-valued implementation of the artificial bee colony

algorithm (“abc.m”) and the cost function computation file “penaltyJS.m” as well as supplementary
m-files, which are called automatically to implement the data exchange between the ABC on the
host and the virtual experimental environment.

7. “Vagrantfile” and “playbook.yml” are the configuration files for Vagrant and Ansible respectively
which can be used to deploy the virtual infrastructure for experiments.

8. “StackQual.fis” is the MATLAB fuzzy inference system (FIS) which was used to assess the overall
quality of the software components in our research article based on the following three indicators:
execution.hrtime, execution.cpuUsage.user, and execution.memoryUsage.rss.

9. “environment.mat” is the MATLAB environment file storing the terminal population of solutions
and the parameters of the ABC.

10. “Evolution.tif” is the graph representing the selection process for software stacks with the ABC
and showing the increasing value of overall quality, provided by “StackQual.fis” during the
experimental evaluations.

6. Experimental Design, Materials, and Methods

The experimental methodology is presented in Figure 3 [19].

Data 2020, 5, x FOR PEER REVIEW 7 of 11

2. The file “commands.zip” contains scenarios for the initialization of the experimental
infrastructure, i.e., virtual machines (“init.js”), preparation of the list of alternative
software components (“prepare-alternatives.js”), and launching the experimental
algorithm (“run-service-1.js”).

3. The file “service-1.zip” contains the scenario of the experimental algorithm
(“./src/main.js”) and the file “index.js”, which is the launch scenario of the
experiment and the scenario of data gathering before and after the execution of the
experimental algorithm.

4. The file “snippets.zip” contains a number of files representing the available software
component implementations. Every file provides the factory function with the
component initialization algorithm. The factory function returns a new proxy
function, which maps passed arguments to match the component’s function
signature and vice versa for the output.

5. The file “logging.js” provides the means for tracking resource utilization during the
experiment.

6. The file “matlab.zip” contains the integer-valued implementation of the artificial bee
colony algorithm (“abc.m”) and the cost function computation file “penaltyJS.m” as
well as supplementary m-files, which are called automatically to implement the data
exchange between the ABC on the host and the virtual experimental environment.

7. “Vagrantfile” and “playbook.yml” are the configuration files for Vagrant and
Ansible respectively which can be used to deploy the virtual infrastructure for
experiments.

8. “StackQual.fis” is the MATLAB fuzzy inference system (FIS) which was used to
assess the overall quality of the software components in our research article based on
the following three indicators: execution.hrtime, execution.cpuUsage.user, and
execution.memoryUsage.rss.

9. “environment.mat” is the MATLAB environment file storing the terminal population
of solutions and the parameters of the ABC.

10. “Evolution.tif” is the graph representing the selection process for software stacks
with the ABC and showing the increasing value of overall quality, provided by
“StackQual.fis” during the experimental evaluations.

6. Experimental Design, Materials, and Methods

The experimental methodology is presented in Figure 3 [19].

Figure 3. Experimental methodology.

The Virtual Machine was configured with the automatic configuring tools Vagrant and Ansible to
simulate the set of desired operating conditions for the software system being developed. The considered
configuration included the host central processing unit (CPU): Intel® Core™ i7-7700; number of cores:
4; number of logical processors: 8; clock frequency: 3.60 GHz; the amount of host random access

Data 2020, 5, 59 8 of 11

memory (RAM): 12 GB; the host operating system: Ubuntu 16.04 LTS; Vagrant version: 2.2.4; Node.js
version: 12.16.2; 2 virtual CPU cores; 2.0 GB of virtual RAM; virtual machine operating system: Ubuntu
16.04 LTS; provisioning software: Ansible; file exchange tools for the virtual machine: NFS server
and BindFS inside the virtual machine; additional system software: git, make, htop, iotop, rsync,
and node-gyp.

The above-mentioned parameters of the virtual infrastructure and the Vagrantfile and Ansible
playbook file are provided on the Mendeley repository associated with this paper.

The ABC algorithm was executed with the following parameters: colony size: 10; maximum
number of stall iterations: 10; convergence threshold: 0.0001; number of onlooker bees: 10; abandonment
limit parameter: 20; acceleration coefficient: 1.

At the start of the experiments, the list of alternative sets of software components “alternatives.json”
was generated using the “prepare-alternatives.js” scenario from the file “commands.zip”, provided with
the data repository. The “init.js” scenario was performed to initialize the experimental environment, and
“run-service-1.js” was then used to start the experimental infrastructure. The code for the experimental
infrastructure and the components are provided within the files “service-1.zip” and “snippets.zip”,
respectively. At the beginning of each stack evaluation, the ABC algorithm generated the “functions.json”
file, which is a json representation of a single stack under evaluation which defines a set of alternative
Node.js components in the experiment. The file “functions.json”’ contains the code names of the
functional features which were to be implemented with the set of components under evaluation,
the paths to the components’ code, and optionally the parameters of the components. The corresponding
MATLAB class “jsfuns.m”, which was used to represent the “funstions.json” structure, is available
within “matlab.zip” in the data repository associated with this paper.

The integration of the components of the stack was implemented using a functional approach,
which is the most convenient way of combining various sets of software components. Each function
called during the experiment is a kind of software interface that can be implemented using one of the
stack components.

At the initialization stage, the functions defining the basic settings of the components were called.
Each of them formed a new anonymous function at the output, which had exclusive access to the
component with the specified settings. Next, anonymous functions were placed in a single namespace
with the code names of the functional requirements of the software system. To increase the reliability
of the results obtained, the component cache (also known as the Node.js module cache) was cleared
before initialization.

After initialization, the execution phase of the experimental algorithm began. The experimental
algorithm consisted of the following steps:

• Form the path to the directory with a set of subdirectories.
• Read the list of subdirectories.
• Exclude hidden subdirectories.
• Form the path for each directory.
• Do the following for each path:

Read the entire list of files recursively.
Read and load all the files into the RAM.
Create a Zip archive in the RAM.
Calculate the MD5 hash for the created archive.

After the execution of the experimental algorithm, a json file, “results.json”, was generated.
This contained the results of the experiment obtained through the interface of the Node.js “process”
object which provided the measurement tools for the evaluation. These data were used as the input
values for the FIS. The output value of the FIS was then considered by the ABC algorithm as the cost
function for the food source corresponding to the stack that was experimentally evaluated.

Data 2020, 5, 59 9 of 11

7. Results and Discussion

The ABC algorithm converged to the solution of Equation (2) after 15 iterations. The coordinates
of the solution were [2 3 1 1 1 1 1 2 1 1], which corresponds to the following selection of components
to meet the functional requirements: q1 should be implemented with the component “Underscore”;
q2 and q5 should be implemented with the JavaScript language tools; q3 should be implemented
with the component “Lodash”; q4 should be implemented with the component “Path”; q6 should
be implemented with the component “Adm-zip”; q7 should be implemented with the component
“Hasha”; q8 should be implemented with the component “Fs”; q9 should be implemented with the
component “Fs-extra”; q10 should be implemented with the component “Recursive-readdir”. The FIS
output for the solution was equal to 0.8123.

The graph of the selection with the ABC algorithm is presented in Figure 4.

Data 2020, 5, x FOR PEER REVIEW 9 of 11

which provided the measurement tools for the evaluation. These data were used as the input values
for the FIS. The output value of the FIS was then considered by the ABC algorithm as the cost function
for the food source corresponding to the stack that was experimentally evaluated.

7. Results and Discussion

The ABC algorithm converged to the solution of Equation (2) after 15 iterations. The coordinates
of the solution were [2 3 1 1 1 1 1 2 1 1], which corresponds to the following selection of components
to meet the functional requirements: 1q should be implemented with the component “Underscore”;

2q and 5q should be implemented with the JavaScript language tools; 3q should be implemented
with the component “Lodash”; 4q should be implemented with the component “Path”; 6q should
be implemented with the component “Adm-zip”; 7q should be implemented with the component
“Hasha”; 8q should be implemented with the component “Fs”; 9q should be implemented with
the component “Fs-extra”; 10q should be implemented with the component “Recursive-readdir”.
The FIS output for the solution was equal to 0.8123.

The graph of the selection with the ABC algorithm is presented in Figure 4.

Figure 4. The graph of the selection with the artificial bee colony (ABC) algorithm.

Experimental measurements for the partial quality indicators for all iterations of the ABC
algorithm are provided in the Mendeley repository.

The application of the ABC algorithm for selecting the software stack required 312 experimental
evaluations of possible stacks before the algorithm converged. The use of extensive search in this task
would require 1080 experiments to perform at least five evaluations and compute the average for
each stack of 216 considered. The assessment of larger sets of functional requirements and alternative
components with extensive search would rapidly lead to a combinatorial explosion (Figure 5).

Figure 5. Extensive search combinatorial explosion for larger sets of functional requirements and
components. The Z-axis is logarithmic base 10.

Figure 4. The graph of the selection with the artificial bee colony (ABC) algorithm.

Experimental measurements for the partial quality indicators for all iterations of the ABC algorithm
are provided in the Mendeley repository.

The application of the ABC algorithm for selecting the software stack required 312 experimental
evaluations of possible stacks before the algorithm converged. The use of extensive search in this task
would require 1080 experiments to perform at least five evaluations and compute the average for
each stack of 216 considered. The assessment of larger sets of functional requirements and alternative
components with extensive search would rapidly lead to a combinatorial explosion (Figure 5).

Data 2020, 5, x FOR PEER REVIEW 9 of 11

which provided the measurement tools for the evaluation. These data were used as the input values
for the FIS. The output value of the FIS was then considered by the ABC algorithm as the cost function
for the food source corresponding to the stack that was experimentally evaluated.

7. Results and Discussion

The ABC algorithm converged to the solution of Equation (2) after 15 iterations. The coordinates
of the solution were [2 3 1 1 1 1 1 2 1 1], which corresponds to the following selection of components
to meet the functional requirements: 1q should be implemented with the component “Underscore”;

2q and 5q should be implemented with the JavaScript language tools; 3q should be implemented
with the component “Lodash”; 4q should be implemented with the component “Path”; 6q should
be implemented with the component “Adm-zip”; 7q should be implemented with the component
“Hasha”; 8q should be implemented with the component “Fs”; 9q should be implemented with
the component “Fs-extra”; 10q should be implemented with the component “Recursive-readdir”.
The FIS output for the solution was equal to 0.8123.

The graph of the selection with the ABC algorithm is presented in Figure 4.

Figure 4. The graph of the selection with the artificial bee colony (ABC) algorithm.

Experimental measurements for the partial quality indicators for all iterations of the ABC
algorithm are provided in the Mendeley repository.

The application of the ABC algorithm for selecting the software stack required 312 experimental
evaluations of possible stacks before the algorithm converged. The use of extensive search in this task
would require 1080 experiments to perform at least five evaluations and compute the average for
each stack of 216 considered. The assessment of larger sets of functional requirements and alternative
components with extensive search would rapidly lead to a combinatorial explosion (Figure 5).

Figure 5. Extensive search combinatorial explosion for larger sets of functional requirements and
components. The Z-axis is logarithmic base 10.

Figure 5. Extensive search combinatorial explosion for larger sets of functional requirements and
components. The Z-axis is logarithmic base 10.

Data 2020, 5, 59 10 of 11

Thus, the swarm intelligence approach proposed in this paper allows development teams
to effectively select the software stack based on experimental evaluations of reasonable time and
acceptable computational efforts, automatically discarding unpromising stacks while verifying, iteration
by iteration, the stability of the chosen one.

8. Conclusions

The swarm intelligence approach for the effective selection of software components based on
experimental evaluations of their quality of operation was discussed and applied to the problem of the
development of a module facilitating psychological surveys for the countrywide Digital Psychological
Tools for Conducting Large-Scale Psychological Research. It was shown how software developers can
set the desired quality indicators and perform a search for the appropriate set of software components
using the virtual infrastructure, simulating the planned operating conditions of the software system.
To reduce the number of experiments the developers can use the swarm intelligence approach presented
in the paper.

The aim of the development of the Digital Psychological Tools is to facilitate countrywide
simultaneous online psychological surveys in schools in the conditions of unstable internet connection
and the large variety of desktop and mobile client devices, running different operating systems and
browsers. The module whose development is considered in the paper should provide the functionality
for the archiving and checksum verification of the survey forms and graphical data. There were
216 possible sets of software components available to build the module. With the experimental
approach proposed in the paper, the effective set of components was identified based on evaluations of
three quality of operation indicators. To simulate the desired operating conditions and to guarantee
the reproducibility of the experiments, the virtual infrastructure was configured, and the artificial
bee colony algorithm was applied to reduce the number of experiments with the unpromising sets of
software components. The application of the artificial bee colony algorithm led to reproducible results
regarding component selection after 312 experiments instead of the 1080 experiments needed by the
exhaustive search algorithm.

Author Contributions: Conceptualization, E.N. and A.G.; methodology, D.I. and A.G.; software, D.I.; validation,
A.G. and D.I.; investigation, D.I.; resources, D.I.; data curation, A.G. and D.I.; writing—original draft preparation,
A.G. and D.I.; writing—review and editing, E.N.; supervision, D.I.; project administration, E.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (RFBR), grant number 17-29-02198.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shock, R.C.; Hartrum, T.C. A classification scheme for software modules. J. Syst. Softw. 1998, 42, 29–44.
[CrossRef]

2. Lun, L.; Chi, X.; Xu, H. Coverage criteria for component path-oriented in software architecture. Eng. Lett.
2019, 27, 40–52.

3. Sarkar, S.; Rama, G.M.; Kak, A.C. API-Based and information-theoretic metrics for measuring the quality of
software modularization. IEEE Trans. Softw. Eng. 2007, 33, 14–32. [CrossRef]

4. Mitchell, B.; Traverso, M.; Mancoridis, S. An architecture for distributing the computation of software
clustering algorithms. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture WICSA
2001, Amsterdam, The Netherlands, 28–31 August 2001; pp. 181–190. [CrossRef]

5. Kwong, C.K.; Mu, L.F.; Tang, J.F.; Luo, X.G. Optimization of software components selection for
component-based software system development. Comput. Ind. Eng. 2010, 58, 618–624. [CrossRef]

6. Mitchell, B.S.; Mancoridis, S.; Member, S. On the Automatic Modularization of software systems using the
bunch tool. IEEE Trans. Softw. Eng. 2006, 32, 193–208. [CrossRef]

7. Nazarov, A.N. Processing streams in a monitoring cloud cluster. Russ. Technol. J. 2020, 7, 56–67. [CrossRef]

http://dx.doi.org/10.1016/S0164-1212(98)00005-3
http://dx.doi.org/10.1109/TSE.2007.256942
http://dx.doi.org/10.1109/WICSA.2001.948427
http://dx.doi.org/10.1016/j.cie.2010.01.003
http://dx.doi.org/10.1109/TSE.2006.31
http://dx.doi.org/10.32362/2500-316X-2019-7-6-56-67

Data 2020, 5, 59 11 of 11

8. Kolyasnikov, P.; Nikulchev, E.; Silakov, I.; Ilin, D.; Gusev, A. Experimental evaluation of the virtual environment
efficiency for distributed software development. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 309–316. [CrossRef]

9. Kolyasnikov, P.; Nikulchev, E.; Kosenkov, A.; Malykh, A.; Takhirova, Z.; Malykh, S. Analysis of software
tools for longitudinal studies in psychology. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 21–33. [CrossRef]

10. Khuat, T.T.; Le, M.H. Applying teaching-learning to artificial bee colony for parameter optimization of
software effort estimation model. J. Eng. Sci. Technol. 2017, 12, 1178–1190.

11. Andaru, W.; Syarif, I.; Barakbah, A.R. Feature selection software development using Artificial Bee Colony
on DNA microarray data. In Proceedings of the 2017 International Electronics Symposium on Knowledge
Creation and Intelligent Computing (IES-KCIC), Surabaya, Indonesia, 26–27 September 2017; pp. 6–11.
[CrossRef]

12. Alrezaamiri, H.; Ebrahimnejad, A.; Motameni, H. Parallel multi-objective artificial bee colony algorithm for
software requirement optimization. Requir. Eng. 2020, 1–18. [CrossRef]

13. Boopathi, M.; Sujatha, R.; Senthil Kumar, C.; Narasimman, S. Quantification of software code coverage
using artificial bee colony optimization based on Markov Approach. Arab. J. Sci. Eng. 2017, 42, 3503–3519.
[CrossRef]

14. Panahi, V.; Navimipour, N.J. Join query optimization in the distributed database system using an artificial
bee colony algorithm and genetic operators. Concurr. Comput. 2019, 31, 1–13. [CrossRef]

15. Karaboga, D.; Akay, B. A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 2009,
214, 108–132. [CrossRef]

16. Basok, B.M.; Zakharov, V.N.; Frenkel, S.L. Iterative approach to increasing quality of programs testing.
Rus. Tech. J. 2017, 5, 12–43.

17. Rivest, R. RFC 1321: The MD5 Message-Digest Algorithm, 1992.
18. Process. Node.js Documentation. Available online: https://nodejs.org/docs/latest-v12.x/api/process.html

(accessed on 23 April 2020).
19. Gusev, A.; Ilin, D.; Kolyasnikov, P.; Nikulchev, E. Effective selection of software components based on

experimental evaluations of quality of operation. Eng. Lett. 2020, 28, 420–427.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14569/IJACSA.2019.0100539
http://dx.doi.org/10.14569/IJACSA.2019.0100804
http://dx.doi.org/10.1109/KCIC.2017.8228447
http://dx.doi.org/10.1007/s00766-020-00328-y
http://dx.doi.org/10.1007/s13369-017-2554-7
http://dx.doi.org/10.1002/cpe.5218
http://dx.doi.org/10.1016/j.amc.2009.03.090
https://nodejs.org/docs/latest-v12.x/api/process.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	Method
	The Application of the Approach in Software Development
	Data Description
	Experimental Design, Materials, and Methods
	Results and Discussion
	Conclusions
	References

