
data

Article

OFCOD: On the Fly Clustering Based Outlier Detection
Framework †

Ahmed Elmogy 1,2,*,‡ , Hamada Rizk 2,‡ and Amany M. Sarhan 2,‡

����������
�������

Citation: Elmogy, A.; Rizk, H.;

Sarhan, A.M. OFCOD: On the Fly

Clustering Based Outlier Detection

Framework. Data 2021, 6, 1.

https://dx.doi.org/

10.3390/data6010001

Received: 31 October 2020

Accepted: 24 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Engineering Department, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
2 Computers and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta 31733,

Egypt; hamada.rizk@ejust.edu.eg (H.R.); amany_sarhan@f-eng.tanta.edu.eg (A.M.S.)
* Correspondence: a.elmogy@psau.edu.sa
† This paper is an extended version of A hybrid outlier detection algorithm based on partitioning clustering

and density measures, Published in: 2015 Tenth International Conference on Computer Engineering &
Systems (ICCES), 23–24 December 2015.

‡ These authors contributed equally to this work.

Abstract: In data mining, outlier detection is a major challenge as it has an important role in
many applications such as medical data, image processing, fraud detection, intrusion detection,
and so forth. An extensive variety of clustering based approaches have been developed to detect
outliers. However they are by nature time consuming which restrict their utilization with real-
time applications. Furthermore, outlier detection requests are handled one at a time, which means
that each request is initiated individually with a particular set of parameters. In this paper, the
first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection
(OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request
even within huge datasets. The proposed framework has been tested and evaluated using two real
world datasets with different features and applications; one with 699 records, and another with five
millions records. The experimental results show that the performance of the proposed framework
outperforms other existing approaches while considering several evaluation metrics.

Keywords: clustering; outlier detection; outlierness factor; similarity measure

1. Introduction

An outlier is a data point that differs significantly from the other points in the
dataset [1]. Outliers affect the performance of data analysis algorithms and lead up to
misleading results [2]. Thus, detecting outliers becomes an important step in data analysis
and data mining. Outlier detection algorithms detect rare or abnormal behavior that can be
considered important than normal behavior in many applications such as cancer diagnosis,
product defects detection, fraud credit card transactions and hacking network traffic data.
Outlier detection algorithms are also used as a preprocessing step for the data mining
algorithms to filter datasets from outliers [3].

Outlier detection algorithms have extensively been tackled in the past fifteen years.
Many algorithms with different approaches have been introduced in the literature [4–11]
which can be, in general, categorized into [12–14]: statistical-based [15,16], distance-based [17,18],
density-based [19,20] and clustering-based methods [9,21–23]. Statistical-based approaches aim
at finding the probability distribution/model of the underlying normal data and define
outliers as those points that do not conform to that model. However, a single distribution
may not model the entire data that may originate from multiple unknown distributions
limiting the practical adoption of such approaches especially in high dimensional data.
Distance-based approaches define outliers as the points that are located far away from the
majority points using any distance metric like Manhattan distance or Euclidean distance
metrics. These approaches fail when the data points have different spatial densities (spar-
sity) and thus defining an outlierness distance is not practically feasible [24–26]. To combat

Data 2021, 6, 1. https://doi.org/10.3390/data6010001 https://www.mdpi.com/journal/data

https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0001-7282-6598
https://orcid.org/0000-0002-0151-9619
https://doi.org/10.3390/data6010001
https://doi.org/10.3390/data6010001
https://doi.org/10.3390/data6010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/data6010001
https://www.mdpi.com/journal/data
https://www.mdpi.com/2306-5729/6/1/1?type=check_update&version=2

Data 2021, 6, 1 2 of 20

this issue, Density-based approaches are proposed to investigate not only the local density
of the point in question but also the local densities of its nearest neighbors. Density-based
approaches feature a stronger modeling capability of outliers but require more expensive
computation at the same time.

Clustering techniques, on the other hand, aim at finding patterns characterizing the
underlying data then organize the data accordingly into normal clusters (the majority)
and outliers deviating from them. In particular, clustering-based approaches can be con-
sidered as an unsupervised anomaly detection techniques which receive a great deal of
attention because they can construct detection models without using labeled training data.
This advantage boosts their applicability in real environments since labeled data or purely
normal data cannot be readily obtained in practice. This motivates us to leverage clustering
techniques in the outlier detection problem.

Nevertheless, the main challenge of the clustering-based outlier detection approaches
is to get rid of the strong tie between using the outlier detection as a preprocessing step for
clustering outlier-free data and the dependency of outlier detection on clustering which
may be considered a deadlock problem. Additionally clustering algorithms require a large
number of distance calculations which have negative impact on the scalability of the
algorithm, in both time and memory [27,28]. Unlike density-based approaches, clustering-
based approaches do not include a measure for the outlierness degree [29] for data points
which is an essential demand in some applications. Majority of the outlier detection
approaches are considered One-At-A-Time query approaches that require to re-run the
algorithm from scratch for every one-time query in order to identify the outlier points in
query [5]. One-At-A-Time query approach is a time-consuming process which is clearly
infeasible in real-time systems that require in-time response such as fraud credit card
detector and hacking network traffic identifier.

To solve the above-mentioned challenges, an OFCOD: On-the-Fly Clustering-based
Outlier Detection framework is proposed in this paper. OFCOD is a hybrid outlier detection
framework which mixes clustering with a density-based approach in a novel way. The com-
bination of clustering techniques and density measures yields a significant improvement
as it enjoys the advantages of each individual method. Specifically, the proposed algorithm
consists of two stages; an offline stage and an online stage. In the offline stage, OFCOD em-
ploys the K-Medoids clustering algorithm [30,31]. A proposed enhancement is presented
to reduce the distance calculations performed by K-Medoids to avoid repeated/redundant
distance calculations and optimize the utilization of the computer memory. Thereafter,
normal clusters and outlier clusters are identified based on multiple criteria and a density-
based outlierness factor is only calculated for probable outlier points leading to a severe
reduction in the computational cost. This paper extends our earlier work in Reference [23].
Specifically, The cluster representative points and the detected outliers can be then lever-
aged to classify novel instances in the online phase. Therefore, unlike Reference [23] or the
baseline approaches, OFCOD is capable of detecting outliers on-the-fly at run time without
re-running the whole process from scratch enabling its adoption in real-time applications.
Finally, OFCOD provides a unique feature which enables the constructed clusters in the
offline phase to be updated at run time by adjusting the clusters’ representative points
upon new instances (queries).

Evaluation of OFCOD is done on two realistic datasets (of two different applications):
Wisconsin Breast Cancer (WBC) dataset and KDD’99 dataset. The former contains 699 di-
agnostic data points dedicated for identifying breast cancer and the latter contains five
millions network connection instances used to build intrusion detection systems. Our re-
sults show that OFCOD outperforms the baseline approaches on both datasets. Specifically,
OFCOD provides high true positive rate (at least 99.39%) without compromising on the
false positive rates.

The rest of this paper is organized as follows—the OFCOD framework is introduced
in Section 2. The efficacy of the proposed framework is experimentally verified in Section 3.
At the end, Section 4 concludes the whole paper and points out future research directions.

Data 2021, 6, 1 3 of 20

2. Proposed Framework

The proposed framework aims to overcome the limitations of the traditional outlier
detection methods that require the algorithm to run each time from scratch to determine
if the new entered data point is an outlier or normal. This is achieved by introducing
a whole vision of the problem starting from the traditional offline detection to the required
components needed to classify whether the new point is an outlier or not.

The proposed framework shown in Figure 1 is divided into two stages: offline stage
and online stage. The offline stage is used to perform clustering on preliminary data,
while the online stage is used to answer any real-time outlier requests. The details of each
component are discussed in this section.

Figure 1. On the fly clustering-based outlier detection (OFCOD).

2.1. The Offline Stage

The offline stage is responsible for partitioning the data set into clusters, which
can be considered as abstracts of the data. Once the clusters are identified, a single
computational step is needed to specify the cluster of each new object. A variety of K-
Means clustering methods have been proposed for outlier detection [9,29]. K-Means is
a well-known algorithm, simple in implementation, and computationally fast even with
large data sets. Nevertheless, it suffers from high sensitivity to outliers. This is because
outliers are always far away from the majority of data. This leads to dramatical distortion
of the centroids setting when an outlier is assigned to a cluster. This in turn affects the
assignment of other objects to the clusters. In addition, K-Means algorithm is influenced
by the negative impact of using the squared-error function of Euclidean distance [32].

On the other hand, K-Medoids clustering algorithm is robust to outliers and noise
compared to k-Means algorithm [33] and hence it is being used as a core for the proposed
framework. Medoid is the most centrally located point in a cluster. In K-Medoids, medoid is
used as a reference point instead of the cluster mean value. K-Medoids is a fast convergence
algorithm as it requires less iterations compared to K-Means [33] algorithm.

Data 2021, 6, 1 4 of 20

The offline stage of the proposed framework consists of six main steps: (1) data pre-
processing and initializing parameters; (2) launching clustering; (3) finding outlier clusters;
(4) identifying probable outliers inside cluster; (5) assigning outlier factor; (6) removing
outliers from the data set. These steps are explained in details in this section.

2.1.1. Data Preprocessing and Parameters Initialization

Datasets have various features of different scales. These scales must be unified to
avoid deceiving the algorithm by causing bias toward the highest scale features over the
other features. Thus, Min-Max normalization is employed to range all the features from
min value “0” to max value “1” given as [3]:

Nvalue =
Avalue −min
max−min

, (1)

where Nvalue is the normalized value of the feature, Avalue is the actual value of the feature,
and min and max are minimum and maximum values for that feature. The min and max
values can be determined from the information of the used dataset which includes the
valid range for each feature.

This step also focuses on selecting the best number of clusters K which leads to fast
clustering convergence. A variety of trials is applied on the dataset to achieve this purpose.
The chosen best K value corresponds to the highest detection rate and lowest false rate
of the clustering process. We adopt the approach in Reference [34] that takes a random
sample of 10 % of the data set. A preliminary clustering on this sample is performed using
the proposed modified K-Medoids algorithm. The resultant K medoids are used as the
initial medoids in the proposed framework.

2.1.2. Launching Clustering

Our experiments show that the K-Medoids algorithm suffers from high computational
complexity due to the exhaustive repeated distances’ calculations during the algorithm
execution. Specifically, among consecutive iterations of the algorithm until convergence,
the distances between some set of points in question are calculated repeatedly. In order
to reduce repetition in the distance calculations, a simple straightforward algorithm is
developed in Reference [34] aiming at avoiding the repeated calculations of the same
distance. This is done by constructing the overall distance matrix between all points
beforehand. Thereafter during the algorithm execution, any required distance between
a pair of points is queried directly from the distance matrix. However, the distance
between non-negligible number of points may not be required by the algorithm and
considering them while constructing the distance matrix leads to redundant calculations
and thus a high computational cost. Despite the K-medoid algorithm has a fast convergence
advantage (require minimal number of iterations), the distance calculations of the algorithm
in Reference [34] has a complexity of O(n2) as it depends on the number of points rather
than the number of iterations.

Therefore, we propose a modified version of K-Medoids to avoid both the repeated
distances’ calculations and the redundant calculations. The distance between each pair of
points is calculated once and cached in memory to avoid recalculation. However, caching
large amount of distances in the computer memory may lead to a crash of the framework
during the run time. Therefore, to tackle this issue, the framework use both the computer
memory (fast memory called memTable) and the computer disk (large storage space called
ssTable) to store the calculated distances. The mechanism of leveraging both storage spaces
is initiated by cashing the queried distances incrementally in the memory until its utilization
exceeds 80% (where the memory is near full case). Then, the framework’s distances are
partitioned between both the memory (memTable) and the disk (ssTable). Any required
distance between a pair of points is queried directly from its cached location based on
a lookup table. This lookup table enables not only the identification of the location of the
required distances but also the management of which distances to keep in the memory

Data 2021, 6, 1 5 of 20

space (i.e., memTable) and which to move to the dedicated disk space (i.e., ssTable). This can
be done by recording the query frequency of each distance in the lookup table. Specifically,
When partitioning is required (i.e., memTable utilization ≤ 80%) move only the first-in
queried distances (with least call frequency) to the ssTable in the disk. This modification
on the K-Medoids algorithm makes it scalable because the complete distance matrix has a
space to be stored in even if there is no memory space for it. Figure 2 shows the flowchart
of our modified algorithm.

Figure 2. Modified distance calculation of K-Medoids algorithm.

Finally, the clustering step outputs the set of clusters C = C1, C2, . . . , Ck, the set of
medoids for each cluster M = m1, m2, . . . , mk and semi-completed distance matrix.

2.1.3. Finding Outlier Clusters

This step is responsible for distinguishing outlier clusters from normal clusters. This is
done based on two parameters; cluster size and the cluster outlierness factor. In order to
do so, we need to define some parameters as follows:

Definition 1 (Average Cluster Size (ACS)). This is used to measure how large a cluster size is.
ACS can be given by the following equation:

ACS =
|G|
k

(2)

where |G| is the cardinality of the data set and k is the number of clusters.

Definition 2 (Large Cluster Set (LC)). Is a set of clusters whose size is greater than ACS. This can
be described as:

LC = {Ci : |Ci| ≥ ACS} (3)

Data 2021, 6, 1 6 of 20

Definition 3 (Small Cluster Set (SC)). Is a set of clusters whose size is less than half ACS.
This can be described as:

SC =

{
Cj :

∣∣Cj
∣∣ < ACS

2

}
(4)

Since we are mainly concerned of the small clusters which could be outlier clusters,
we recommend to expand the gap between the small clusters and the large clusters by
neglecting the range between ACS and ACS

2 .

Definition 4 (Cluster Outlierness Factor (COF)). Is the average distance between each small
cluster and all the large clusters. COF can be described by the following equation:

COF(Ci)=
|LC|

∑
j=1

d
(
Ci, Cj

)
|LC| (5)

where Ci∈SC, |LC| is the cardinality of the large clusters set, and d(Ci, Cj) is the distance
between cluster i and cluster j. This distance is calculated as follows:

d
(
Ci, Cj

)
=
∣∣mi1 −mj1

∣∣+ ∣∣mi2 −mj2
∣∣+ · · ·+ ∣∣∣mil −mjl

∣∣∣ (6)

where (mi1, mi2, . . . mil) is the dimensions of the medoid point (M) of cluster Ci and
(mj1, mj2, . . . mjl) is the dimensions of the medoid point (M) of cluster Cj.

When we need to calculate cluster outlierness factor for the small clusters, the average
distances between each small cluster and all other large clusters are computed; namely
Base Cluster Outlierness Factor (BCOF). BCOF is computed as:

BCOF =
K

∑
i=1

∑
|k−1|
j d

(
Ci, Cj

)
k(k−1)

(7)

Equation (7) assumes that outliers are collected in small sparse clusters which are far
from large clusters. Thus, a cluster belongs to outlier cluster set OC if:

OC = {Ci | COF(Ci)> BCOF} (8)

where Ci∈SC.
This step outputs the initial outlier cluster set. Till now, none of the points of this set is

considered as an outlier because some points may be misclassified. The role of the next
steps is to exclude these misclassified points from the outlier set.

2.1.4. Identify Probable Outliers inside Cluster

The previous step assumes that all points belonging to outlier cluster set are outliers
and all points belonging to normal cluster set are inliers. This assumption is not sufficient
for two reasons. First, the outlierness value for each outlier point is not exist. Second, some
points may be misclassified inside each cluster. Calculating the outlierness factor for each
point in the cluster is not feasible because the number of outlier points is significantly less
than the number of inlier points. Also, the outlierness factor is often calculated in terms
of O(n2). In this work, a separation method is developed to distinguish probable outliers
from inlier points. The outlierness factor is only calculated for probable outliers which
greatly decreases the computational time of the proposed algorithm. To do so, a local
cut-off value (S) for each individual cluster must be defined to determine the region of
probable outliers. In Reference [9], a local cut-off value (S) is defined as: S(Ci) = r(Ci). This
means that the local cut-off value S is only dependent on the radius r of the cluster. We
found experimentally that this definition does not yield high detection rate. Therefore, we
refine the proposed algorithm by adding another step to identify the probable outlier inside
each cluster. This step will limit the calculations of the outlierness factor to be applied

Data 2021, 6, 1 7 of 20

on the probable outliers only, which in turn reduces the computational complexity. Thus,
we redefine S as follows:

S(Ci) = r(Ci)+b ∗ (β(Ci)) where Ci ∈ C (9)

where Ci is a cluster belonging to the set of clusters C, r(Ci) is the radius of cluster Ci, β(Ci)
is a slicing distance threshold which is the average distances of points under the radius
region to the medoid M(Ci) and b is a weighted value that starts from 1 and incremented
until reaching the optimal value.

The cut-off value S(Ci) can be obtained through the following steps:

• Slice the distance from medoid M(Ci) of cluster Ci to the border of the cluster into
a set of regions of equal width β.

• Calculate the average number of points in all slices under radius region nr, from
medoid M(Ci) as follows:

nr =

nβ

∑
j=1

nj

nβ
(10)

where nβ is the number of slices inside the radius region.
• Find the number of points, nb, in each slicing region located outside the cluster

radius r(Ci).
• Compare nb with the average nr and continue incrementing b until the stopping

condition (nr − nb >> 0) is met.
• Finally, S(Ci) = r(Ci) + b ∗ β(Ci).

To determine the true oultlier points in the produced clutsers, outlier and normal
clusters are handled differently. All points which lie inside the outlier cluster and satisfy
Equation (11) are considered outliers.

d(pi, m(Ci))≤S(Ci) where pi∈ Ci , Ci∈OC (11)

The remaining points in the outlier cluster set that satisfy Equation (12) are considered
probable outliers. As shown in Figure 3, the probable outlier points lies outside S, while the
true outliers lies inside S.

d(pi, m(Ci)) > S(Ci) where pi∈ Ci , Ci∈OC (12)

On the other hand, for each normal cluster, the portable outliers are determined based
on the points that satisfy Equation (13). Figure 4 shows three portable outliers p1, p2 and p3
lying outside S while inliers are the points that lie inside S.

d(pi, m(Ci)) > S(Ci) where pi∈ Ci , Ci /∈OC (13)

The output of this step is a set of true outliers in addition to a collection of proba-
ble outliers.

Data 2021, 6, 1 8 of 20

Figure 3. True and portable outliers of an outlier cluster. (Figures 3–9 are based on “A hybrid outlier
detection algorithm based on partitioning clustering and density measures”, by Hamada Rizk et al.
which appeared in 2015 Tenth International Conference on Computer Engineering & Systems (ICCES).
© [2015] IEEE.)

Figure 4. Inliers and probable outliers of a normal cluster.

2.1.5. Assigning Outlier Factor

The degree of being an outlier for each portable outlier point either in normal or outlier
clusters is determined using its outlierness factor. The density-based Local Outlier Factor
(LOF) algorithm proposed in Reference [4] is used in this paper with some modifications
for this purpose. In our modified algorithm, we provide the LOF algorithm with the local
neighborhood instead of the number of nearest neighbor points (KNN) as in the original
LOF algorithm.

The value of the local neighborhood of a cluster is chosen to be the same as the cut-off
value S of that cluster. Thus, the modified algorithm does not need KNN parameter to
calculate LOF. In our modified algorithm, LOF is computed only for probable outliers
which represent less than 10% of the dataset while the complexity of calculating LOF in
original LOF algorithm is O(n2).

Figure 5 shows the idea of our modified LOF algorithm. As seen, the LOF is computed
only for points: p1, p2 and p3 that lie outside S. To calculate the LOF of a point pi, the density
of the point pi is compared with the densities of the nearest neighbor points lying in the
neighborhood S centered at pi. This is done for probable outliers of a normal cluster as
shown in Figure 5 and for probable outliers of an outlier cluster as shown in Figure 6.

Data 2021, 6, 1 9 of 20

Figure 5. Finding Local Outlier Factor (LOF) for probable outliers of a normal cluster.

Figure 6. Finding LOF for probable outliers of an outlier cluster.

2.1.6. Removing Outliers from the Dataset

As explained previously in step 6, |O| points are added to the set of outliers O.
The outlierness factor is used to find the remaining outlier points from the probable outliers.
A sorted probable outlier list is created with the highest outlierness factor point at the
top and the lowest outlierness factor point at the bottom of the list. Thus, 80% of the top
outliers will be extracted away from the data set forming the outlier database and the
remaining points form the pure data set. At this step, the clustering process is repeated but
on the outlier free data set. A K-Means algorithm is chosen at this step due to its fastness.
Moreover, as there are no more outliers exist in the dataset, no worries about the accuracy
of the K-Means algorithm. The output of this step are new clusters with new medoids.
Each medoid is in the core of the cluster.

2.2. The Online Stage

The steps of the online stage, shown in Figure 1, can be summarized as follows:

1. Receiving the query: The online framework receives the query from the user through
this step. The query can be a single point to be checked whether it is an outlier or
not, or a batch of points to be labeled as outlier or inlier. A preprocessing function is
performed on the data before being passed to the next step similar to the one used in
the offline stage.

2. Similarity calculation: In this step, we utilize the clusters set obtained from the
offline stage in measuring the similarity between the tested point and all clusters
represented by their centroids. The output of the offline stage is a clustered outlier-free
dataset. Each cluster has a medoid that represents the whole cluster. The online stage
exploits the relationship between the medoids and their clusters (i.e., a medoid is
a fully representative of its cluster). The similarity between the test point and all

Data 2021, 6, 1 10 of 20

clusters represented by their medoids is measured. The cosine similarity measure [35]
is chosen to calculate the similarity according to the following equation:

similarity = COS(P, MC) =
P ·MC
||P||||MC||

=
∑L

i=1 Pi ·MCi√
∑L

i=1 Pi
2
√

∑L
i=1 MCi

2

(14)

where P is the point given by the user to check its outlierness, M is the medoid of
cluster C and i is the ith dimension of the point. The resulting similarity ranges from
−1 to 1. The value −1 means exactly opposite similarity while 1 means exactly the
same similarity. The 0 value indicates orthogonality. Any value between −1 and 1
indicates intermediate similarity or dissimilarity.

3. Classification and assignment:After calculating the similarity between the test point
and the clusters, the test point should belong to the cluster with the highest mea-
sured similarity to the point and satisfying Equation (15). The similarity measure is
evaluated not only for normal clusters but also for outlier clusters.

P ∈ Ci i f f MAX
i=1:k

(COS(P , MCi)) (15)

The test point is assigned to the closest cluster in the feature space. Hence, the cluster
size is increased by one point and its medoid should be relocated. Thus, this cluster is
maintained up-to-date with any new points.
Steps 2 and 3 greatly reduce the computation time than the traditional clustering
approaches because the traditional approaches require the generation of the whole
clusters including the new data point.

4. Medoids and cluster relocation:Finally, to keep the clusters data-up-to date after the
insertion of the new point, this step runs in the background to determine the correct
center point of the cluster that is affected by the new added point. A new medoid
is calculated for the assigned cluster of the test point based on averaging the values
of all points including the test point to form a new value. Thus, the only required
calculation is for the cluster affected by the addition of that point. This will surely
reduce the computational time.
Alternatively, to avoid repeating the average calculation for each new assigned
point, the centroid is computed directly based on the previous value of the cen-
troid. Thus, the process of calculating the new medoid is independent on cluster size.
Equation (16) is used for that.

New M(i) =
M(i) ∗ (cluster size− 1) + P(i)

cluster size
(16)

5. Outlier alarm system:This system is responsible for presenting the results to the
user based on the requested mode. The request mode could be a single point mode,
a batch mode or a test mode. In the single point mode, only one point is introduced
to the framework and the result is an alert indicating whether the point is an outlier
or not. In the batch mode, the framework runs on a set of points and the response is
a file that includes all input points with the class of each one whether it is an outlier
or not. The third mode is the test mode which generates four files consisting of the
false positive points, the true positive points, the true negative points, and the false
negative points of the test set [36]. This data is used to verify the performance of the
framework, when both of the input set and the original set are class labeled.
At the end of this online stage, the tested point is reclassified as an outlier or inlier.
The point is assigned to a specific outlier or inlier cluster and the clusters are updated
to be ready for further usage. The complexity of the online stage of the proposed

Data 2021, 6, 1 11 of 20

framework is O(K) while K is the number of clusters which is very smaller than the
number of points in the dataset leading to on-the-fly response.

3. Results and Discussion

The performance of the proposed framework is evaluated using two real datasets:
Wisconsin Breast Cancer (WBC) and KDD’99 datasets.

The Wisconsin Breast Cancer (WBC) [37] is a real dataset originally collected from
Wisconsin hospitals. WBC dataset consists of 699 points each with 9 numerical features
representing the values of diagnosis. Each point belongs to one of two classes: benign or
malignant. The WBC dataset includes 458 points (65.5%) as benign class and 241 points
(34.5%) as malignant. The KDD’99 dataset [38] consists of 41 features of network connec-
tions. These connections are labeled either normal or outliers/intrusions of four different
types. KDD’99 dataset consists of a training set which has 4,898,431 (5 millions) connection
instances and a test set of 311,029 (300 K) connections. These datasets include normal
connections in addition to four main types of intrusions (outliers). For the clarity of pre-
sentation, we consider WBC as the default dataset and we have also tested our proposed
framework on the KDD’99 in Section 3.2.6.

3.1. The Offline Stage of the Proposed Framework

We adopt the techniques used in References [1,21,22] by randomly removing some of
the malignant points to form a very unbalanced distribution. As a result, the dataset has 39
(8%) malignant points (considered as outliers) and 444 (92%) benign points (considered as
inliers). The removed points will be used to test the performance of the online stage of the
algorithm. True positive rate (TPR) and false positive rate (FPR) [36] are used as metrics to
evaluate the performance of proposed outlier detection algorithm.

The data points are normalized to be in the range from 0 to 1 using Min-Max nor-
malization. The number of clusters k is used as the only input to the offline stage of the
proposed framework. k is set only one time. A 10% of the dataset is randomly chosen
as a sample for the preliminary clustering step. The experimental results show that by
choosing k = 8, the best clustering results are obtained. The value of k is fed into the offline
stage of the framework only once.

The performance of the proposed offline stage is compared with the traditional algo-
rithms; PLDOF [9], CBOD [22] and FindCBLOF [24]. TPR and FPR are used as evaluation
metrics. The top-n outlier points are requested with random sequence to ensure the validity
of results. Table 1 shows the results obtained by the offline stage of the proposed framework
compared the other approaches.

Table 1. True positive rate (TPR) and false positive rate (FPR) Values.

Number of Points
(Top Ratio)

Proposed Algorithm PLDOF [9] CBOD [22] FindCBLOF [21]

TPR FPR TPR FPR TPR FPR TPR FPR

16 41.03% 0% 17.8% 2.03% 41.03% 0% 38.46% 0.23%
32 74.36% 0.67% 38.5% 3.82% 66.67% 1.35% 69.23% 1.13%
47 94.87% 1.8% 58.9% 5.4% 92.31% 2.48% 87.18% 2.93%
50 100% 1.8% 61.5% 5.85% 94.87% 2.93% 92.3% 3.15%
64 100% 1.8% 71.79% 8.11% 97.44% 5.8% 100% 5.63%
162 100% 1.8% 94.87% 27.7% 100% 27.7% 100% 27.7%

It is noted from Figure 7 that the offline stage of our algorithm is the first to reach
the maximum detection rate of 100% while keeping FPR at the minimum value of 1.8% as
shown in Figure 8.

Data 2021, 6, 1 12 of 20

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

16 32 47 50 64 162

T
ru

e
 p

o
s
it

iv
e

 r
a

te
 (

T
P

R
)

Number of records

proposed algorithm

PLDOF

CBOD

FindCBLOF

Figure 7. True positive rates at different number of points.

0%

5%

10%

15%

20%

25%

30%

16 32 47 50 64 162

F
a

ls
e

 p
o

s
it

iv
e

 r
a

te
 (

F
P

R
)

Number of records

Proposed algorithm

PLDOF

CBOD

FindCBLOF

Figure 8. False positive rates at different number of points.

Table 1 and Figures 7 and 8 exhibit the direct proportional relation between the number
of points and the detection rate which may be considered as a good performance evidence
for all algorithms. However, with the increase of the number of requested outlier points, the
FPR increases as well for all algorithms with no limits except for the proposed algorithm.
The proposed algorithm reaches the maximum value of FPR 1.8% at a number of points
equals 47. This value is kept constant when the number of points is greater than 47. Also,
the average TPR, and FPR along with the percentage of outlierness factor calculations for
all algorithms are shown in Figure 9. As seen, the proposed algorithm outperforms all
other algorithms.

The computational time of the proposed algorithm is measured in order to show the
effect of each proposed modification on the response time. All experiments have been
run on a 64-bit 2.2 GHz i5 CPU, Asus UX303 machine, Windows 10 and 12 GB of physical
memory. Figure 10 shows the time performance of the proposed algorithm before and after
modifying the distance calculations of K-Medoids algorithm.

The effect of outlier factor calculation reduction is illustrated in Figure 11 which en-
sures the importance of this proposed modification. We could not compare the response
time of the proposed algorithm to the other three algorithms (PLDOF, CBOD and Find-
CBLOF) as they did not consider the time evaluation in their work. However, as they use
repeated calculations, their time is expected to be larger than the proposed algorithm.

Data 2021, 6, 1 13 of 20

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

proposed
algorithm

PLDOF CBOD FindCBLOF

TPR

FPR

OF calculation

Figure 9. Average TPR, FPR and OF calculations.

10
-1

10
0

10
1

10
2

10
3

Ti
m

e (
se

c)

386433812898241519321449966483

Number of points

 Proposed alg. without K-Medoids distance modification

 Proposed alg. with K-Medoids distance modification

Figure 10. The effect of K-Medoids modification on time performance (log scale) of the proposed al-
gorithm.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

ec
)

386433812898241519321449966483

Number of points

 Proposed alg. without OF calculations reduction

 Proposed alg. with OF calculations reduction

Figure 11. The effect of OF calculations on time performance (log scale) of the proposed algorithm.

3.2. The Online Stage of the Proposed Framework

In this section, a diverse set of experiments is executed to find the best configuration of
our framework. The configuration parameters of our framework are systematically defined
by executing a separate experiment for each adjustable parameter. First, we study the effect
of the number of clusters (k) which controls the number of classes and defines a trade-off

Data 2021, 6, 1 14 of 20

between accuracy and efficiency. Second, we study the effect of the number of top outliers
queried (N). As we have used only 483 points from the dataset in the offline stage (the
proposed hybrid algorithm), the remaining points, which represent 31% of the original
dataset, are used to test the performance of the online stage.

3.2.1. The Effect of the Number of Clusters k

Figure 12 shows the effect of the number of clusters on the TPR and FPR of the OFCOD.
The figure shows that the TPR is first enhanced by increasing the number of clusters until
reaching its maximum value at k = [4,8] then it tends to decrease again. On the other side,
the FPR decreases with the increase of the number of clusters. Furthermore, the increase of
the number of clusters highly affects the computation time and complexity of the clustering
process. Hence, the optimal results have been obtained at k = 8 where TPR = 100% (at the
left y-axis) and FPR = 1.8% (at the right y-axis), which is selected and fed into the clustering
step of the OFCOD offline stage.

 0

 20

 40

 60

 80

 100

 120

2 4 6 8 10 12 14 16 18 20
 0

 1

 2

 3

 4

 5

 6

 7

 8

K

TPR
FPR

Figure 12. The effect of changing K on TPR and FPR.

3.2.2. The Effect of the Number of Top Outliers Queried

In this section, we investigate the queried top outlier points (records) which have the
highest outlierness factor. Figure 13 shows the true positive rate (TPR) for the proposed
algorithm used in the offline phase at different number of queried outlier points (N).
As shown, the detection rate of the proposed algorithm raises (until reaching 100% on
the left scale) with the increase of the number of requested outlier points. Even with
a number of points is as low as 47, OFCOD can achieve its maximum value of 100%.
However, the FPR increases until it saturates at only 1.8% (at the right scale) without further
increase. This highlights the stability of the proposed algorithm and how it outperforms
the compared schemes (as shown in Figures 7 and 8) whose FPRs are negatively affected
by the increase of the number of queried outliers.

Data 2021, 6, 1 15 of 20

 0

 20

 40

 60

 80

 100

 120

16 32 47 50 64 162
 0

 0.5

 1

 1.5

 2

 2.5

 3

Top N queried outliers

TPR
FPR

Figure 13. The effect of changing N on TPR and FPR.

3.2.3. The OFCOD Performance When Varying the Test Set

Five different sized test sets are randomly constructed (from the WBC dataset) con-
sisting of a number of inliers (normal points) and outliers. In order to validate the gen-
eralization performance of the proposed framework, majority of these points are new
points which are not invoked in the offline stage. Each dataset has a different percentage of
outliers. The generated datasets are with 5%, 15%, 20%, 25% and 31% outliers out of all
outliers exist in the original dataset.

Tables 2 and 3 exhibit the true positive rates and the false positive rates of the online
stage, for each dataset with respect to the number of clusters. For instance, at k = 8, Table 2
shows that the TPR equals 100% for 5%, 15% and 20% datasets and slightly decreases
with the increased number of points (25% dataset).This is acceptable due to the possibility
of misclassification of at least one point. For the next requests of the same datasets (25%
dataset) or the 31% dataset, the TPR increases again to reach 100%. This is due to the
centroid re-adjustment feature of the online stage. A similar scenario occurs in Table 3
for the false positive rates. The results show consistent favorable performance of the true
positive rates (high values) and the false positive rates (low values). These results confirm
the generalization ability of the proposed framework due to its adaptive nature to adjust
clusters’ centroids upon new requests.

Table 2. TPR of the proposed online stage of OFCOD framework.

K
Percent of Points to Check

5% 15% 20% 25% 31%

2 100% 100% 100% 99.39% 99.5%
4 100% 97.93% 100% 95.7% 99.5%
6 96.77% 100% 100% 99.39% 99%
8 100% 100% 100% 99.39% 100%
9 96.77% 94.84% 93.89% 92.64% 92.57%

10 96.77% 95.88% 93.89% 91.41% 92.1%

Data 2021, 6, 1 16 of 20

Table 3. FPR of the proposed online stage of OFCOD framework.

K
Percent of Points to Check

5% 15% 20% 25% 31%

2 33.33% 12.5% 22.22% 9.1% 14.82%
4 33.33% 12.5% 11.11% 0% 7.14%
6 33.33% 12.5% 22.22% 9.1 7.14%
8 33.33% 12.5% 11.11% 0% 7.14%
9 33.33% 12.5% 11.11% 0% 7.14%

10 33.33% 12.5% 22.22% 0% 7.14%

3.2.4. The OFCOD Response Time

The computational time of the proposed online stage of the framework is measured
in order to show the response time. All experiments have been run on a 64-bit 2.2 GHz i5
CPU, Asus UX303 machine, Windows 10 and 12 GB of physical memory. Figure 14 shows
the in-time response of the proposed on-the-fly framework is significantly better than the
proposed traditional hybrid outlier detection algorithm. This is because the proposed
framework has reduced run-time computations without the need to launch clustering from
scratch.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
(s

ec
)

531348304347386433812898241519321449966483

Number of points

 Proposed hybrid algorithm

 Proposed OFCOD framework

Figure 14. The response time (log scale) of the proposed hybrid algorithm vs. the proposed OFCOD
framework.

3.2.5. Comparative Evaluation

We compute the TPR and FPR of the proposed algorithm on a test set which results
in 99.58%. The accuracy of the proposed OFCOD framework is compared to K-SVM ap-
proach [39], KNN [40] and Lasso [40] on the same dataset to evaluate the performance of
the proposed framework. In K-SVM approach [39], a k one-class support vector machine
models are trained for normal data. It worths noting that, one-class SVM is a typical unsu-
pervised learning technique which can define a hypersphere (i.e., a cluster) in which most
of the normal points fall. During the testing stage (i.e., run-time), the K-SVM approach
calculates the distance of each data point in question to the center of the K hyperspheres
created in the training phase. Thereafter, the SVM model of the closest hypersphere to the
point, is queried to classify either the point is inlier or outlier. Similarly, the K-Nearest
Neighbor (KNN [40]) approach creates clusters inside each class of points. Therefore,
any new instance is compared to the created clusters to find the most similar one to which

Data 2021, 6, 1 17 of 20

the new instance belongs. On the other hand, the Lasso approach [40] transforms the
anomaly detection problem into a linear regression model. It defines the detection parame-
ters as regression variables and constructs the model (finding the regression variables) that
maximizes the detection accuracy.

Table 4 shows that the proposed OFCOD platform outperforms all approaches in both
the TPR and the FPR while maintaining the response time as small as low as 23 ms. This can
be justified as the performance of K-SVM approach [39] depends heavily on the assumption
that all hyperspheres only model normal data. This assumption cannot be justified and
guaranteed since outliers can be grouped in small hyperspheres (clusters) as discussed in
Sections 2.1.3 and 2.1.4. The KNN approach [40] has the similar problem in addition to
its limited generalization ability to unseen test instances. These issues lead to the worst
results among others. On the contrary, the Lasso approach [40] relaxed this assumption
leading to better results compared to the K-SVM and KNN approaches. In conclusion, the
proposed OFCOD framework has the advantage of finding outliers in both outlier clusters
and normal clusters which is the general case. Moreover, it has the ability to update clusters
and re-adjust their centroids based on new queries.

Table 4. Performance Comparison.

Method/Metric TPR FPR Testing Time

OFCOD 99.39% 2.48% 0.0023 s
Lasso [40] 98.53% 3.22% 2 s

K-SVM [39] 97.16% 3.15% 0.0039 s
KNN [40] 93.87% 4.17% 3 s

3.2.6. Scalability Evaluation

In this section, we evaluate the scalability of the proposed framework when applied to
large datasets. For this purpose, the KDD’99 dataset described above is adopted. We used
five million connections for learning purposes in the offline phase, and 300 K connections
are used to test the overall OFCOD’s performance. To ensure the generalization ability
of the proposed framework, the five million connections used in the offline phase are
sampled to randomly generate four different datasets including 10% (500 K), 20% (1 M),
50% (2.5 M), and 100% (5 M) connections. The number of clusters that scores the best
results are obtained at 52.

Figure 15 shows the TPR and FPR corresponding to each dataset. The figure shows
that, the more available data for the offline phase of the framework, the better performance
(i.e., increasing TPR and decreasing FPR). This can be justified due to ability of the proposed
framework to build clusters with near perfect separable hyperplanes which facilitates the
anomaly detection tasks. On the other hand, even with the availability of only relatively
small subsets (e.g., 10% (500 K) and 20% (1 M)), the OFCOD framework is able to learn
from the new queries and adjust the cluster centroids incrementally.

Data 2021, 6, 1 18 of 20

 80

 85

 90

 95

 100

10% 20% 50% 100%
 0

 2

 4

 6

 8

 10

 12

T
PR

 %

FP
R

 %

Selected percentage of the KDD’99 dataset

TPR
FPR

Figure 15. Scalability evaluation when applying OFCOD to detect intrusions/outliers from the
KDD’99 dataset.

4. Conclusions

In this paper, an efficient and effective clustering-based outlier detection framework
called OFCOD, that enables online detection of outliers, is presented. The framework
includes two stages: offline stage and online stage. We optimize the offline stage calcu-
lations in order to enhance the clustering performance in outlier detection. Online stage
achieves fast responsiveness to queries and reinforces the adaptive nature of the proposed
framework. The experimental results show that the proposed framework outperforms the
traditional clustering-based algorithms in terms of the detection rate and the false positive
rate. In addition, it efficiently detects novel outliers in the real-time without any extensive
calculations. The obtained results are very promising, paving the road for future research
in different directions. Applying the proposed framework on distributed datasets located
at different network sites for global outliers computation is one of these directions.

Author Contributions: Conceptualization, A.E., H.R. and A.M.S.; methodology, A.E.; software, H.R.;
validation, A.E. and H.R.; formal analysis, A.E. and H.R.; writing—review and editing, A.E., H.R.
and A.M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this study are openly available in: https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.

Acknowledgments: The authors would like to thank the Deanship of Scientific Research in Prince
Sattam Bin Abdelaziz University, KSA for his support during the stages of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simon, H.; Hongxing, H.; Graham, W.; Rohan, B. Outlier Detection Using Replicator Neural Networks. In Data Warehousing and

Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2002; pp. 170–180.
2. Gagniuc, P.; Ionescu-Tirgoviste, C.; Radulescu, C.H. Automatic Growth Detection of Cell Cultures through Outlier Techniques

using 2D Images. Int. J. Comput. Commun. 2013, 8, 407–415. [CrossRef]

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99
http://dx.doi.org/10.15837/ijccc.2013.3.466

Data 2021, 6, 1 19 of 20

3. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3.
4. Markus, B.; Hans-Peter, K.; Raymond, N.; Jörg, S. LOF: Identifying Density-based Local Outliers. SIGMOD Rec. 2000, 29, 93–104.
5. Lei, C.; Mingrui, W.; Di, Y.; Elke, R. Online Outlier Exploration Over Large Datasets. In Proceedings of the KDD ’15, 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; ACM:
New York, NY, USA, 2015; pp. 89–98.

6. Howsalya, D.; Devi, I. Outlier Detection Algorithm Combined with Decision Tree Classifier for Early Diagnosis of Breast Cancer.
Int. J. Adv. Eng. Technol. 2009, 7, 93–98.

7. Jianhua, G.; Wei, H.; Billy, W. Real time traffic flow outlier detection using short-term traffic conditional variance prediction.
Transp. Res. Part C Emerg. Technol. 2014, 50, 160–172.

8. Xiaodan, X.; Huawen, L.; Minghai, Y. Recent Progress of Anomaly Detection. Complexity 2019, 2019, 1–11. [CrossRef]
9. Jatindra, P.; Sukumar, N. An Outlier Detection Method Based on Clustering. In Proceedings of the 2011 Second International

Conference on Emerging Applications of Information Technology, Kolkata, India, 19–20 February 2011; pp. 253–256.
10. Chawla, S.; Gionis, A. k-means-: A Unified Approach to Clustering and Outlier Detection; SDM: Bethesda, MD, USA, 2013.
11. Kanishka, B.; Bryan, M.; Chris, G. Algorithms for Speeding Up Distance-based Outlier Detection. In Proceedings of the KDD ’11,

17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August
2011; pp. 859–867.

12. Xu, X.; Li, H.L.; Yao, M. A Comparison of Outlier Detection Techniques for High-Dimensional Data. Int. J. Comput. Intell. Syst.
2018, 11, 652–662. [CrossRef]

13. Bendechache, M.; Tari, A.K.; Kechadi, M. Parallel and distributed clustering framework for big spatial data mining. Int. J. Parallel
Emergent Distrib. Syst. 2019, 34, 671–689. [CrossRef]

14. Santhi, P.; Bhaskaran, V.M. Improving the Efficiency of Image Clustering using Modified Non Euclidean Distance Measures in
Data Mining. Int. Comput. Commun. 2014, 9, 56–61.

15. Kamal, M.; Harsh, S.; Gursharanjeet, K. Comparative Analysis of Outlier Detection Techniques. Int. J. Comput. Appl. 2014,
97, 12–21. [CrossRef]

16. Ricardo, C.; Davoud, M.; Arthur, Z.; Jörg, S. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier
Detection. ACM Trans. Knowl. Discov. Data 2015, 10, 5:1–5:51.

17. Edwin, K.; Raymond, N. Finding Intensional Knowledge of Distance-Based Outliers. In Proceedings of the VLDB ’99, 25th
International Conference on Very Large Data Bases, Edinburgh, UK, 7–10 September 1999; Morgan Kaufmann Publishers Inc.:
San Mateo, CA, USA, 1999; pp. 211–222.

18. Amol, G.; Srinivasan, P.; Eric, O. Fast mining of distance-based outliers in high-dimensional datasets. Data Min. Knowl. Discov.
2008, 16, 349–364.

19. Tang, B.; He, H. A Local Density-Based Approach for Local Outlier Detection. arXiv 2016, arXiv:1606.08538.
20. Su, S.; Xiao, L.; Zhang, Z.; Gu, F.; Ruan, L.; Li, S.; He, Z.; Huo, Z.; Yan, B.; Wang, H.; et al. N2DLOF: A New Local Density-

Based Outlier Detection Approach for Scattered Data. In Proceedings of the 2017 IEEE 19th International Conference on High
Performance Computing and Communications, Bangkok, Thailand, 18–20 December 2017; pp. 458–465.

21. He, Z.; Xu, X.; Deng, S. Discovering Cluster Based Local Outliers. Pattern Recognit. Lett. 2003, 2003, 9–10. [CrossRef]
22. Jiang, S.; An, Q. Clustering-Based Outlier Detection Method. In Proceedings of the 2008 Fifth International Conference on Fuzzy

Systems and Knowledge Discovery, Shandong, China, 18–20 October 2008; Volume 2, pp. 429–433.
23. Rizk, H.; Elgokhy, S.; Sarhan, A. A hybrid outlier detection algorithm based on partitioning clustering and density mea-

sures. In Proceedings of the Tenth International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt,
23–24 December 2015, pp. 175–181.

24. Elbasiony, R.M.; Sallam, E.A.; Eltobely, T.E.; Fahmy, M.M. A hybrid network intrusion detection framework based on random
forests and weighted k-means. Ain Shams Eng. J. 2013, 4, 753–762. [CrossRef]

25. Edwin, K.; Raymond, N.; Vladimir, T. Distance-based Outliers: Algorithms and Applications. Vldb J. 2000, 8, 237–253.
26. Maria, K.; Anastasios, G.; Apostolos, P.; Kostas, T.; Yannis, M. Efficient and Flexible Algorithms for Monitoring Distance-based

Outliers over Data Streams. Inf. Syst. 2016, 55, 37–53.
27. Justin, Z. Privacy preserving K-medoids clustering. In Proceedings of the 2007 IEEE International Conference on Systems, Man

and Cybernetics, Montreal, QC, Canada, 7–10 October 2007.
28. Shaukat, K.; Masood, N.; Shafaat, A.; Jabbar, K.; Shabbir, H.; Shabbir, S. Dengue Fever in Perspective of Clustering Algorithms.

J. Data Min. Genom. Proteom. 2015, 6, 3.
29. Jaing, M.F.; Tseng, S.S.; Su, C.M. Two-phase Clustering Process for Outliers Detection. Pattern Recogn. Lett. 2001, 22, 691–700.

[CrossRef]
30. Nirmal, S. Comparative Study between K-Means and K-Medoids Clustering Algorithms. J. Classif. 2019, 6, 839–844.
31. Budiaji, W.; Leisch, F. Simple K-Medoids Partitioning Algorithm for Mixed Variable Data. Algorithms 2019, 12, 1–15. [CrossRef]
32. Archana, S.; Yadav, A.; Rana, A. K-means with Three different Distance Metrics. Int. J. Comput. Appl. 2013, 67, 13–17.
33. Victoria, H.; Jim, A. A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2004, 22, 85–126.
34. Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [CrossRef]
35. Anna, K.; Michael, G. A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes. Data

Min. Knowl. Discov. 2010, 20, 259–289.

http://dx.doi.org/10.1155/2019/2686378
http://dx.doi.org/10.2991/ijcis.11.1.50
http://dx.doi.org/10.1080/17445760.2018.1446210
http://dx.doi.org/10.5120/17026-7318
http://dx.doi.org/10.1016/S0167-8655(03)00003-5
http://dx.doi.org/10.1016/j.asej.2013.01.003
http://dx.doi.org/10.1016/S0167-8655(00)00131-8
http://dx.doi.org/10.3390/a12090177
http://dx.doi.org/10.1016/j.eswa.2008.01.039

Data 2021, 6, 1 20 of 20

36. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
37. Wolberg, W.; Street, W.; Mangasarian, O. UCI Repository of Machine Learning Databases: Breast Cancer Wisconsin (Diagnostic) Data

Set; UCI: Irvine, CA, USA, 1998.
38. KDD’99: The KDD Intrusion Detection Dataset. 1999. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html (accessed on 20 December 2020).
39. Zheng, B.; Yoon, S.; Lam, S. Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector

machine algorithms. Expert Syst. Appl. 2014, 41, 1476–1482. [CrossRef]
40. Shanxiong, C.; Maoling, P.; Hailing, X.; Sheng, W. An anomaly detection method based on Lasso. Clust. Comput. 2017, 22.

[CrossRef]

http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.1016/j.eswa.2013.08.044
http://dx.doi.org/10.1007/s10586-017-1255-z

	Introduction
	Proposed Framework
	The Offline Stage
	Data Preprocessing and Parameters Initialization
	Launching Clustering
	Finding Outlier Clusters
	Identify Probable Outliers inside Cluster
	Assigning Outlier Factor
	Removing Outliers from the Dataset

	The Online Stage

	Results and Discussion
	The Offline Stage of the Proposed Framework
	The Online Stage of the Proposed Framework
	The Effect of the Number of Clusters k
	The Effect of the Number of Top Outliers Queried
	The OFCOD Performance When Varying the Test Set
	The OFCOD Response Time
	Comparative Evaluation
	Scalability Evaluation

	Conclusions
	References

