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Abstract: Publicly available RNA-sequencing (RNA-seq) data are a rich resource for elucidating the
mechanisms of human disease; however, preprocessing these data requires considerable bioinfor-
matic expertise and computational infrastructure. Analyzing multiple datasets with a consistent
computational workflow increases the accuracy of downstream meta-analyses. This collection of
datasets represents the human intracellular transcriptional response to disorders and diseases such
as acute lymphoblastic leukemia (ALL), B-cell lymphomas, chronic obstructive pulmonary disease
(COPD), colorectal cancer, lupus erythematosus; as well as infection with pathogens including Borrelia
burgdorferi, hantavirus, influenza A virus, Middle East respiratory syndrome coronavirus (MERS-
CoV), Streptococcus pneumoniae, respiratory syncytial virus (RSV), severe acute respiratory syndrome
coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We
calculated the statistically significant differentially expressed genes and Gene Ontology terms for
all datasets. In addition, a subset of the datasets also includes results from splice variant analyses,
intracellular signaling pathway enrichments as well as read mapping and quantification. All analyses
were performed using well-established algorithms and are provided to facilitate future data mining
activities, wet lab studies, and to accelerate collaboration and discovery.

Dataset: https://zenodo.org/record/4757764; DOI:10.5281/zenodo.4757764.

Dataset License: CC-BY.

Keywords: transcriptomics; RNA-sequencing; autoimmune diseases; cancer; pathogens; bacteria;
viruses; data preprocessing

1. Summary

The number of publicly available RNA-sequencing (RNA-seq) datasets is increasing,
and we expect this momentum to continue. However, comprehensive results from statisti-
cal analyses such as differential gene expression are not consistently available in public
transcriptomics repositories such as the Gene Expression Omnibus (GEO). Additionally,
in the subset of cases where multiple differentially expressed gene (DEG) lists from dif-
ferent experiments are available, directly comparing them is difficult due to the differing
parameters, assumptions, and biases present within each of the preprocessing algorithms
(e.g., trimming, mapping, quantification; see sampling of pipelines and methods) [1–5].
A survey of the literature confirms that transcriptomic preprocessing pipelines utilize a
variety of underlying statistical models, further complicating comparison between two
datasets processed by different pipelines.

Our motivation for publishing these preprocessed public datasets was to make the
results from these computational methods accessible to facilitate hypothesis generation, as
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well as for subsequent analysis and interpretation by researchers. In particular, to aid those
who may not have the necessary computational infrastructure or expertise to perform this
work. The specialized bioinformatic expertise required to successfully preprocess and
analyze RNA-seq data can pose a significant barrier for some research groups. To complete
an RNA-seq analysis, researchers must find relevant studies, collect the necessary metadata,
quantify read mapping, calculate the DEGs, perform Gene Ontology (GO) enrichment,
and compute significant signaling pathways. In addition, it is not uncommon to read and
write over one terabyte of data while completing a large meta-analysis, which can exceed
the computational capacity available to some researchers. The results from preprocessing
and analyzing datasets such as those presented in the current study can save researchers
both time and resources by easily retrieving genes, biological functions, pathways, and/or
splice variants that are significantly affected during a given disease or condition. These
biological entities could be further evaluated to identify potential biomarkers and disease
mechanisms that can be exploited to improve diagnosis or treatment of disease, and to
increase the speed of research in these fields.

Although the scope of the current study is to report the results of various computa-
tional methods on public datasets, we are unable to accurately interpret the data in all of
the pathologies for which we have preprocessed data. This makes it imperative that the
research community reviews the genes, functions, and pathways that were identified.

Combining multiple individual datasets in a meta-analysis increases the statistical
power of the derived results by increasing the signal-to-noise ratio. Multiple previous
studies have shown that removing background noise makes it easier to gain additional
insight on the underlying biological mechanisms that play a role in any given system [6–8].
Specific examples of prior meta-analyses that revealed novel results from existing data
include Kori and Arga identifying 18 previously unknown cervical cancer receptors [9],
Patel et al. discovering that the accepted transcriptional profile of Alzheimer’s disease only
applies to the temporal lobe, with distinct gene expression patterns appearing in other
areas of the Alzheimer’s-diseased brain [10], and Zhang et al. finding evidence that CD-38,
LAG-3, and interferon-1 stimulated genes are linked to the progression to AIDS after HIV
infection [11].

The goal of the current study was to produce lists of DEGs and GO terms for each target
dataset together with statistically significant splice variants, and signaling pathways, and
quantification results for subsequent analysis and interpretation by the research community.
We used the ARMOR automated analytical workflow as well as custom scripts to preprocess
and analyze samples across various targeted infectious diseases as well as other human
diseases and conditions. For infectious diseases, we queried for samples quantifying the
host response to Borrelia burgdorferi, hantavirus, influenza A virus, MERS, respiratory
syncytial virus, Streptococcus pneumoniae, SARS-CoV, and SARS-CoV-2. We also targeted
non-infectious diseases and conditions that include acute lymphoblastic leukemia, B-
cell lymphomas, chronic obstructive pulmonary disease, colorectal cancer, and lupus
erythematosus. Our primary focus was on datasets from humans or human-derived
cell lines, with a small number of datasets from mice or murine cell lines. Providing
consistently preprocessed RNA-seq datasets for secondary analysis and research minimizes
the bioinformatics barrier, enabling researchers to perform preliminary and/or in depth in
silico analyses.

The public availability of these analytical results supports the findable, accessible,
interoperable, and reusable (FAIR) guidelines [12]. Our study preprocessed the raw data
from 31 public datasets and makes the results from each publicly available. We are not
aware of any prior report that contributes the results from such a large number of prepro-
cessed RNA-seq datasets in a single study. Unfortunately, some meta-analyses that have
been performed only report cherry-picked genes and pathways from the DEG list and
do not consistently publish the complete lists of genes, functions, and/or pathways that
were generated during the meta-analysis. Though we do not provide a comprehensive
interpretation of these preprocessed results in this study, the files that were generated
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by this study contain lists from which additional downstream work can be done. In an
attempt to provide some validation to our work, we have included several examples from
published research that support the results from our preprocessing workflow. We expect
that our efforts to compile and preprocess these datasets will fuel future experiments to
develop novel targeted diagnostics and/or treatments.

2. Data Description

The initial component of this data processing workflow required the manual searching
and curation of appropriate metadata associated with each study to better inform our
analytical design. Although this metadata review process was labor intensive, we believe
it augments the value of the results. As such, we greatly appreciate the existing minimal
information standards for Minimum Information about a Next-Generation Sequencing
Experiment (MINSEQE) and Minimum Information for Biological and Biomedical Inves-
tigations (MIBBI) [13]. We highly recommend continued improvement and adherence to
such standards.

Overall, we preprocessed and analyzed 31 datasets consisting of over 1250 samples
(Table 1). The results from these analyses are reported in over 200 files that contain
significant changes in gene expression (EdgeR files), Gene Ontology terms (Camera files),
splice variants (DRIMSeq files), intracellular signaling pathways (SPIA files), and/or
read mapping/quantification (Salmon files). We estimate that this work required over 25
terabytes of data being read and written throughout the workflow, hundreds of person-
hours, and thousands of CPU-hours to complete.

We have provided a few examples of genes identified as significant by our analysis
which have been reported in prior studies. We include these to validate the accuracy of our
approach and to reiterate the value that these data contain.

For the DEG analysis of pre-treatment Borrelia burgdorferi infection vs. healthy controls,
several of the top 10 significant DEGs identified in the current study have been previously
associated with Lyme disease. Specifically, CoQ10 was shown to be an effective supplemen-
tal treatment for chronic Lyme Disease patients’ fatigue [14], suggesting that the blockage
of CoQ10A, a gene which had a log2 fold change (logFC) of −1.8 and a false-discovery
rate-corrected p-value (FDR) of 1.22 × 10−12 in our results, could be a pathogenic mecha-
nism of B. burgdorferi. Though no direct connection has been made between B. burgdorferi
and LEMD3, a rheumatology review considered both LEMD3 mutation and B. burgdorferi
infection as sources of painful, scleroderma-like disorders [15]. This indicates that the
classic Lyme disease symptom of joint pains may originate from the downregulation of
LEMD3 (logFC = −1.68, FDR = 1.31 × 10−12) during infection. Mutations in C19orf12
result in hereditary neuropathies of paraspasticity and Silver Syndrome [16], suggesting
that the neuropathic symptoms of B. burgdorferi infection may result at least partially from
the downregulation of C19orf12 (logFC = −2.6, FDR = 1.20 × 10−11).

Our results for Respiratory Syncytial Virus (RSV) identified a handful of gene products
that are suspected to be critical to the patient response during RSV infection. Specifically,
González-Sanz et al. demonstrated that interferon-stimulated gene 15 (ISG15; logFC = 4.2,
FDR = 3.20 × 10−41) has a strong anti-viral effect in vitro and suggest that the same effects
may be part of the human innate immune response in vivo [17]. IFIT1 (logFC = 5.04, FDR
= 6.54 × 10−40), IFIT2 (logFC = 4.78, FDR = 5.85 × 10−39), and IFIT3 (logFC = 4.87, FDR =
4.92 × 10−39) are all proteins that have an anti-viral effect on RSV [18], indicating that their
upregulation during infection is likely a protective measure against the virus. During viral
infections, PARP9 (logFC = 2.99, FDR = 1.45 × 10−38) and DTX3L (logFC = 2.21, FDR = 9.92
× 10−27) form a complex to induce interferon hyper-responsiveness without toxicity [19].

Our B-cell lymphoma preprocessed dataset also yielded DEGs that have been identi-
fied in previous wet-lab experiments. CXCL9 (logFC = 11, FDR = 4.31 × 10−141) has been
shown to promote the progression of diffuse large B-cell lymphoma by starting a cascade
that upregulates oncogenes such as CCND1 (logFC = 2.23, FDR = 1.08 × 10−22) [20]. Upreg-
ulated VCAM1 (logFC = 7.85, FDR = 2.29 × 10−120) is associated with a poor prognosis for
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patients with non-Hodgkin’s lymphomas and is under investigation as a serum biomarker
for disease progression assessment [21].

Due to the varying origins of the RNA-sequencing data we preprocessed, our results
may contain background noise that potentially reflects laboratory artifacts, differences
in protocols, or other biases. Although human error is also a possibility, meta-analyses
generally reduce the statistical “noise” of outlier samples by “drowning them out” by
including large numbers of samples in the process. We also performed quality control
on the sample data before any statistical analysis was started. Additionally, our chosen
bioinformatic workflow implements a false-discovery rate (FDR) multiple hypothesis
correction on all initial p-values, effectively reducing the occurrence of false-positives.
Overall, we feel that the impact of any noise or error on our statistical analyses has been
minimized.

The statistically significant findings from each of these datasets could be further
analyzed by performing Boolean comparisons of DEGs, GO terms, and pathways. Such
an analysis would identify entities that are unique to a given dataset or shared between
multiple datasets. The results from such meta-analyses could then be used to generate
testable hypotheses and design robust validation experiments in the wet lab. The data
generated in this work can facilitate more in-depth data mining activities that enable
biomarker identification, improving understanding of disease, and the repurposing of
existing drugs. We anticipate that making these preprocessed RNA-seq datasets publicly
available will ensure that scientific data remains findable, accessible, interoperable, and
reusable (FAIR), while simultaneously fueling collaboration, innovation, and discovery.
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Table 1. Summary of preprocessed datasets.

Disease/Disorder Organism Tissue Type Sample Type # of Studies # of Samples GEO Identifier EdgeR, Camera,
DRIMseq Salmon SPIA

Acute Lymphoblastic
Leukemia (ALL) Homo sapiens Blood and bone

marrow Total RNA 1 10 GSE162894 [22] Yes Yes Yes

B-cell Lymphomas Homo sapiens B-cells mRNA 7 322

GSE153437 [23]
GSE130751 [24]
GSE110219 [25]
GSE95013 [26]
GSE62241 [27]
GSE50514 [28]
GSE45982 [29]

Yes Yes Yes

Borrelia burgdorferi Homo sapiens PBMC mRNA 1 97 GSE63085 [30] Yes Yes No

Chronic Obstructive
Pulmonary Disease (COPD) Homo sapiens Lung tissue mRNA 1 189 GSE57148 [31] Yes No No

Colorectal cancer Homo sapiens Colorectal tissue lncRNA 3 44
GSE104836 [32]
GSE124526 [33]
GSE155457 [34]

Yes Partial Yes

Hantavirus Homo sapiens PBMC, HUVEC Total RNA 2 36 GSE133751 [35]
GSE158712 [36] Yes No Yes

Influenza A Homo sapiens A549 mRNA 1 4 GSE147507 [37] Yes No Yes

Lupus Erythematosus Homo sapiens B-cells mRNA 3 335
GSE92387 [38]

GSE118254 [39]
GSE110999 [40]

Yes Yes Yes

Middle East Respiratory
Syndrome Coronavirus

(MERS-CoV)
Homo sapiens Calu-3 mRNA 3 31

GSE139516 [41]
GSE122876 [42]

GSE56192 1
Yes Partial Yes

Streptococcus pneumoniae Homo sapiens,
Mus Musculus

Nasal samples, nasal
lavage,

polymorphonuclear
leukocytes, A549

Total RNA,
mRNA 5 104

GSE150811 1

GSE79595 [43]
GSE116604 [44]
GSE117580 [45]
GSE124949 [46]

Yes Yes Yes
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Table 1. Cont.

Disease/Disorder Organism Tissue Type Sample Type # of Studies # of Samples GEO Identifier EdgeR, Camera,
DRIMseq Salmon SPIA

Respiratory syncytial virus
(RSV) Homo sapiens A549 mRNA 1 4 GSE147507 [37] Yes No Yes

Severe acute respiratory
syndrome coronavirus

(SARS-CoV)
Homo sapiens MRC5 Total RNA 1 15 GSE56192 1 Yes No Yes

Severe acute respiratory
syndrome coronavirus 2

(SARS-CoV2)
Homo sapiens

A549, NHBE, Calu-3,
RUES2-derived lung

cells, M1 + M2
macrophages

mRNA,
scRNA 4 38

GSE147507 [37]
GSE149312 [47]
GSE150708 [48]
GSE153970 [49]

Yes Yes Yes

1 No published study is currently associated with this dataset on NCBI’s GEO.
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3. Methods

The raw data for these experiments have been previously released by the primary
authors and conform to the appropriate ethical oversight to protect patient autonomy
and patient identity. Thirty of the 33 primary RNA-sequencing datasets from which we
gathered samples for meta-analysis have been published in the peer-reviewed literature,
increasing overall confidence that each dataset has acceptable quality.

GEO queries were used to identify all of the relevant publicly available RNA-seq
experiments data from NCBI for each targeted condition. Samples involving drug ex-
periments, treatments, xenografts, irrelevant tissue type, irrelevant disease, or otherwise
unrelated to our disease vs. healthy comparisons were excluded. All samples that had
one or more of these disqualifying attributes were excluded from the dataset prior to our
analysis, meaning that only a subset of the samples from an individual experiment were
represented in our meta-analyses. Healthy control samples were obtained from the same
RNA sequencing projects as the disease samples.

Fastq sequencing files were downloaded from the Sequence Read Archive (SRA)
using sratools. The fastq files, the associated metadata, and a configuration file for each
dataset were then used as input to the Automated Reproducible MOdular Workflow for
Preprocessing and Differential Analysis of RNA-seq Data (ARMOR) workflow [50]. This
workflow uses a configuration file to appropriately set up each python-based snakemake
workflow [51]. Specifically, this workflow trims reads with TrimGalore! [52], calculates
quality control metrics with FastQC [53], maps and quantifies reads to the human GRCh38
transcriptome with Salmon [54], generates DEG lists with edgeR [55], performs GO en-
richment with Camera [56], and calculates significant splice variants with DRIMseq [57].
Together, TrimGalore! and FastQC ensure that only the high-quality regions of sequences
are considered in the statistical analyses performed by downstream modules, and that the
quality of the included regions can be manually confirmed by the researcher at any point
during the analysis. The DEGs from the ARMOR workflow were then used as input to an R
script that implements the signaling pathway impact analysis (SPIA) algorithm to identify
intracellular signaling pathways that were significantly represented by the DEGs [58].
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