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Abstract: This research work focuses on machine-learning-assisted prediction of the corrosion
behavior of laser-powder-bed-fused (LPBF) and postprocessed Inconel 718. Corrosion testing data of
these specimens were collected and fit into the following machine learning algorithms: polynomial
regression, support vector regression, decision tree, and extreme gradient boosting. The model
performance, after hyperparameter optimization, was evaluated using a set of established metrics:
R2, mean absolute error, and root mean square error. Among the algorithms, the extreme gradient
boosting algorithm performed best in predicting the corrosion behavior, closely followed by other
algorithms. Feature importance analysis was executed in order to determine the postprocessing
parameters that influenced the most the corrosion behavior in Inconel 718 manufactured by LPBF.

Keywords: selective laser melting; Inconel 718; machine learning; corrosion prediction; extreme
gradient boosting

1. Summary

Inconel 718, a prominent member of the nickel-based superalloy family, is known
for its strength, fatigue life, structural stability at elevated temperatures, and corrosion
resistance [1–5]. Consequently, it is widely adopted in the aerospace and oil and gas
industries [6–10]. This material meets the demands of the manufacturing industry by
being amenable to casting, welding, and forming but continues to pose challenges during
machining. As investigated by Amigo et al., In718 produces smoother finished parts when
using oil-based emulsion rather than cryogenic cooling [11]. Apart from the traditional
manufacturing methods, selective laser melting has become a popular additive manufactur-
ing technology by which geometrically complex parts of this material are produced [12–16].
As a demonstration of this fact, replicative octahedral structures of different sizes have been
manufactured using the LPBF technique by Ochoa et al. [17]. Further, this printed part has
been tested for compressive loads using FEM simulation and validated using experimental
testing for the purpose of aerospace light weighting. Laser powder bed fusion (LPBF) in-
volves the layer-by-layer melting of metallic powder that consolidates to form the required
solid present in the design [18–21]. After the printing process is completed, surface and
heat treatments are carried out in order to smoothen the part and enhance microstructural
homogeneity [22–26]. As this manufacturing technique allows better geometric freedom
than the subtractive and mass-containing techniques, it is used for the fabrication of equip-
ment used in oil and gas processing industries. A few examples are mud motor modules,
subsurface valve components, and pump manifolds. Since the drilling and extraction
environment contains high-pressure and high-temperature chlorides and contaminants,
the material tends to disintegrate due to corrosion. Corrosion testing plays a vital role
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in the quality assessment of these parts [27–29]. A persistent challenge in this domain
is to design corrosion testing techniques that produce accurate, industry-relevant results
and thereby aid in lifetime extension. Electrochemical corrosion measurement is one of
the established methods that performs testing under a simulated environment consisting
of the tested material and the environment [30–33]. Potentiodynamic polarization (PD)
measures the electrochemical activity in the cell, indicating the corrosion activity present in
the material–environment combination [34–36]. The evolution of the corrosion potential is
an important indicator in the understanding of long-term corrosion of the metallic alloy.
Electrochemical impedance spectroscopy (EIS) analysis measures the stability of the passive
layer formed when a material is exposed to an aggressive environment [37–39]. These two
testing methods, put together, give us a picture of the rate at which the material is likely to
corrode and the nature of the protective layer formed over the surface of materials upon
reacting with the environment.

The data collected from the above experiments can be utilized to build machine
learning (ML) models that predict the corrosion behavior of this material in the tested
environment [40,41]. Machine learning algorithms are capable of performing multiple
tasks, such as regression, classification, clustering, and dimensionality reduction, each
finding its own application in the field of materials science [42–45]. Model development
consists of three important steps: data preprocessing, algorithm adoption, and model
testing and verification [46,47]. Data preprocessing refers to steps involving collection,
cleaning, and organizing raw data. Algorithm adoption involves choosing the right type of
algorithm based on the type of output required. Model testing and verification is the final
step wherein the predictive capability of the model is tested and modified based on the
errors arising. Many researchers are beginning to explore the adoption of ML models for
accelerated material property prediction. Using the support vector regression algorithm
(SVM) and back propagation neural network (BPNN), Wen et al. [48] predicted the rate of
corrosion in steel alloy exposed to a seawater environment. Particle swarm optimization is
used for parametric tuning in the SVM algorithm, and it has consistently outperformed the
BPNN algorithm. LOOCV (leave-one-out cross validation) was adopted to validate the
efficiency of the model. Kamrunnahar et al. [49] predicted the corrosion behavior of metallic
glasses using polarization curves, carbon steel using weight loss data, and titanium alloy
using crevice corrosion data, all collected from available literature. The BPNN network was
able to capture the polarization behavior for a series of metallic glasses from the data of a
single-member alloy. Compositional element details were used to model the corrosion rates
in plain carbon steel and steel alloy. A good agreement was found between the experimental
and estimated results. In another attempt to model the electrochemical behavior of an
alloy system, Gong et al. [50] built machine learning models using several algorithms, such
as k-nearest neighbor, decision tree, random forest, SVM, and gradient boosting decision
tree algorithms. These models were then tested using corrosion data obtained for copper
in a repository environment. The random forest algorithm produced the model closest
to the experimental data. Feature importance analysis showed that sulfide concentration
influenced the corrosion potential the most, and temperature influenced the impedance
behavior the most. A more recent set of machine learning models for EIS analysis was
built by Zhu et al. [51]. Literature data available for the electrical equivalent circuit (EEC)
model for EIS analysis was adopted in the SVM algorithm. After the model “trained”,
it was satisfactorily able to produce an EEC model upon providing the impedance data.
This greatly reduces the human effort required in modelling the EEC. As the literature
survey suggests, machine learning has the potential to grow into a beneficial tool that can
expedite material behavior prediction. Most of these ML approaches are confined to cast
or wrought material and have not been, to the authors’ knowledge, extended to selective-
laser-melted material. Further, when compared with prior research, this study focuses on a
unique form of corrosion data, the results of an electrochemical testing environment. The
motivation for conducting this study is to develop a predictive model that can predict the
corrosion behavior of an LPBF component and mathematically compute the contribution
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arising from each postprocessing treatment in the additive processing cycle. Currently,
as LPBF is being optimized for wide-scale industrial adoption, understanding the role
of postprocessing could facilitate the improvement of the product quality. Although this
method of manufacturing has multiple advantages, it is, presently, expensive [52]. When
machine learning is brought in to complete the prediction, the process becomes expedient,
convenient, and cost-efficient.

In this work, machine learning algorithms were used to predict the electrochemical
behavior of Inconel 718 produced via the additive route. For the purpose of model devel-
opment, data were collected from one of our earlier experiments. Four machine learning
models, decision tree (RF), extreme gradient boosting (XGB), support vector machine
(SVM), and polynomial regression (PR) algorithms, were built using the collected data. The
independent features considered were heat treatment temperature and duration, shot peen-
ing inclination and velocity, and individual input electrical parameter for each test. The
performances of the ML models were evaluated, and the best-performing algorithm was
employed to carry out feature importance analysis. Feature importance analysis performs
the function of ranking the independent features for each of the electrochemical tests. This
analysis is essential for determining the postprocessing parameters that largely influence
the corrosion behavior of LPBF-processed Inconel 718.

2. Data Description

In order to collect data for building the machine learning model, corrosion experiments
were conducted on selective-laser-melted and postprocessed Inconel 718 samples. These
samples were divided into four categories: as built (AB), heat treated (HT), shot peened
(SP), and heat treated with shot peening (HTSP). A detailed description of the experiment
has been reported elsewhere [53]. A brief description of the printing process reported
earlier in our work is provided below (https://www.mdpi.com/2075-4701/10/12/1562
(accessed on 5 May 2021).

The Inconel 718 specimens were printed vertically in small rectangular blocks with
dimensions of 15 mm × 5 mm × 15 mm in an EOS M280 machine. The printer was
equipped with a 200 W YB optical fiber laser with a beam diameter of 100 µm. Using a
layer thickness of 20 µm and a scanning speed of 7 m/s, the blocks were printed with the
5 mm side as the base side. The printing chamber was enclosed in an argon atmosphere in
order to prevent reactions between IN718 powder and the atmosphere. The powder supply
to the printing region is enabled by the upward movement of the powder delivery system.
When the requisite amount of powder is available, the recoater blade spreads the metallic
powder on the build platform. In the equipment utilized for the current experiments, the
recoater blade moved at a speed of 50 mm/s. The laser beam moved along the programmed
path in order to melt the powder in the designed contour. After the current layer was
completed, the next layer was spread again, and this procedure repeated until the object
was printed completely. After the completion of the printing procedure, the build plate
was removed, and the blocks were cut from the plate using a wire-cut electrodischarging
machine.

A summary of the experimental conditions is presented in Table 1.

Table 1. Experimental conditions.

Specimen Conditions AB, HT, SP, HTSP

Corrosion testing methods used Potentiodynamic polarization, electrochemical
impedance spectroscopy

Postprocessing used Heat treatment, shot peening
Testing environment 3.5 wt% NaCl environment

Mode of corrosion tested Aqueous, general corrosion
Data source Gamry 600+, electrochemical workstation software

Corrosion plots used PD, Bode, Nyquist

https://www.mdpi.com/2075-4701/10/12/1562
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The postprocessing conditions are summarized in Table 2.

Table 2. Postprocessing conditions.

Parameter Value

Heat treatment temperature 980 ◦C
Heat treatment duration 15 min
Shot peening inclination 45◦

Shot peening velocity 70 m/s

The specimens, thus printed, postprocessed, and categorized, were tested for general
corrosion using an electrochemical method. The data from these tests represented the
overall corroding tendency and passivation strength of the specimen. After running the
tests four times to ensure reproducibility, data pertaining to PD and EIS analysis were
collected in all four specimen conditions. Two of the electrochemical parameters that
represented the corrosion activity in the PD test were Icorr and Epit. A lower Icorr represented
lesser corrosion, and a higher Epit value represented improved passivating behavior. This
trend was reflected by the HTSP specimen, with Icorr and Epit values of 0.04 µA/cm2

and 570 mV, respectively. The as-built specimen, offering the least corrosion resistance,
possessed an Icorr value of 0.21 µA/cm2 and an Epit value of 220 mV. In the EIS testing, the
passivation strength of the protective film was measured using the impedance of the film.
It was found to be the least in the as-built specimen at 235 kΩ and the highest in the HTSP
specimen at 682.2 kΩ. Heat treatment and shot peening, both forms of postprocessing,
contributed to the enhancement of corrosion resistance of the selective-laser-melted Inconel
718. The laves phase distribution was reduced by the heat treatment process, thereby
reducing the chromium depletion in the matrix. The high surface roughness of the samples,
usually found in selective-laser-melted parts, was greatly reduced due to the shot peening
process that consequently reduced the pitting tendency of the material.

2.1. Model Building
Database

The experimental electrochemical results thus obtained from the tests were categorized
as Tafel plot, Bode plot, and Nyquist plot. The curves pertaining to these plots consisted of
individual data points. For each individual input data point, a corresponding output data
point was generated. In this manner, datasets formed for each sample condition was created.
These datasets were utilized for model generation and corrosion behavior prediction.

2.2. Feature Selection

While building a predictive model, it is important to select the input features that
contribute to the target variable the most [54–56]. All the present variables might not
influence the outcome, and hence, the most causative parameters need to be carefully
picked to improve the predictive capability of the model. In the current model, the postpro-
cessing parameters and input parameters for each test were taken as independent variables.
The target parameters also varied for each test, and these parameters are presented in
Tables 3–5.

Table 3. Independent features for the PD plot.

Independent Parameters for the Tafel Plot

Sample
Condition

Heat Treatment
Temperature (◦C)

Heat Treatment
Duration (Min)

Shot Peening
Velocity (m/s)

Shot Peening
Inclination (Degrees) Voltage (Volts)

AB 0 0 0 0 −4.77 × 10−1

HT 980 15 0 0 −4.74 × 10−1

SP 0 0 70 45 −4.27 × 10−1

HTSP 980 15 70 45 −4.71 × 10−1

Dependent parameter—current (amps).
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Table 4. Independent features for the Bode plot.

Independent Parameters for the Bode Plot

Sample
Condition

Heat Treatment
Temperature (◦C)

Heat Treatment
Duration (min)

Shot Peening
Velocity (m/s)

Shot Peening
Inclination (Degrees) Frequency (Hz)

AB 0 0 0 0 79,450
HT 980 15 0 0 63,140
SP 0 0 70 45 50,200

HTSP 980 15 70 45 39,890

Dependent parameter—phase angle (degrees).

Table 5. Independent features for the Nyquist plot.

Independent Parameters for the Nyquist Plot

Sample
Condition

Heat Treatment
Temperature (◦C)

Heat Treatment
Duration (min)

Shot Peening
Velocity (m/s)

Shot Peening
Inclination (Degrees)

Impedance
{Real} (Ohm)

AB 0 0 0 0 27.59
HT 980 15 0 0 31.05
SP 0 0 70 45 26.97

HTSP 980 15 70 45 27.42

Dependent parameter—impedance {imaginary} (ohm).

2.3. Model Development

A series of models were built for the four specimen conditions, namely, AB, HT,
SP, and HTSP, for the three electrochemical plots in four different algorithms. The train,
validation, and test data split adopted are as follows: train data set = 70% (to train the
model behavior), validation data set = 15% (for hyperparameter tuning), test data set =
15% (for unbiased evaluation of the model performance). The number of data points used
for model building was 29,100. Scikit-learn library was used for algorithm adoption, and
the programming was carried out in Python language. A brief mathematical basis of each
algorithm is provided in the following section.

2.3.1. Polynomial Regression

Polynomial regression (PR) [57,58] is a special case of linear regression where a poly-
nomial equation is fitted on the data with a curvilinear relationship between the target
variable and the independent variables. The features consist of all polynomial combinations
of the features with a degree less than or equal to the specified degree.

Yi = θ0 + θ1xi + θ2xi
2 + θ3xi

3 + . . . + θnxi
n + ε (1)

where ε is the error. Similar to linear regression, the objective is to minimize the ordinary
least squares sum.

Minimizing the function:
{
1
2

*Σi(Y − Σjθjxi
j)2} (2)

2.3.2. Support Vector Regression

Support vector regression (SVR) is a supervised regression algorithm with the ad-
vantage of controlling the deviation between the actual and predicted values to find an
appropriate hyperplane to fit the data [59]. Unlike linear regression, SVR minimizes the
squared sum of coefficients of the model.

Minimizing the function:

[1/2 ∗ (θ0
2 + θ1

2 + θ2
2 + θ3

2 + . . . + θn
2) + C ∗ Σ|ζi] (3)

Constraining,
|Y − Σθixi| < ε + |ζi| (4)



Data 2021, 6, 80 6 of 16

where ε is the maximum deviation or the margin length, |ζ| is the absolute deviation from
the margin, and C is the regularization parameter. To capture the nonlinear relationship,
the RBF kernel is employed. If the original feature space is represented by the vector,
X = [x1,x2,x3,...,xn], then for any two datapoints A and B, the transformed feature space,
φ(X), follows the condition,

φT(A)φ(B) = exp(−γ||A − B||2
2) (5)

where ||.||2 is the L2 norm and γ is the scaling parameter. The RBF kernel decreases
with distance and ranges between zero (when ||A − B||2 tends towards infinity) and one
(when A = B), which gives a ready interpretation as a similarity measure. Because of the
nonlinearity introduced by the RBF kernel, the curve is linear in the φ(X) feature space.

2.3.3. Decision Tree

Decision tree regression (DT) is a supervised regression algorithm that learns the set
of decision rules for segmenting the features [60]. After segmenting the feature space, a
constant piecewise approximation, such as the local average, is used for the prediction. The
decision tree is built by recursive partitioning, with the root node (as the first parent) as
the complete training dataset and the split data as the child nodes. These child nodes can
be further split, considering them as new parent nodes. The node splitting is performed
based on the mean squared error minimization. When a node S is split into A and B, the
split value is determined as follows.

Minimizing the function:

[1/NA ∗ ΣA(Y− ŶA)
2 + 1/NB ∗ ΣB(Y− ŶB)

2] (6)

where
ŶA = 1/NA ∗ ΣAYi (7)

ŶB = 1/NB ∗ ΣBYi (8)

The split value is obtained by minimizing the total mean squared loss of child
nodes A and B, with the prediction in each of the child nodes as the sample mean of
the respective node.

2.3.4. Extreme Gradient Boosting

Extreme gradient boosting (XGB) is a tree-based boosting ensemble method [61]. It
is an evolved form of the boosting algorithm [62] formulated for enhanced predictive
performance through optimization [63]. The objective function is given by the sum of loss
function and regularization term as expressed using Equation (9).

L(ϕ) = ∑i l(yi, pi)+∑k Ω ( fk) (9)

where, l = loss function representing the difference between actual value (yi) and predicted
(pi) value, and the regularization term Ω (fk) is given by

Ω (fk) = γT + (0.5) ((λ) (w2)) (10)

where T is the number of trees, w is the leaf weight, γ is the pruning index, and λ is the
scaling factor of the weights.

If pi is the prediction at the t-th instance, we add an additional function ft (xi) in order
to minimize the objective function. The objective function at the t-th iteration now becomes

L(t) = ∑i l((yi, pi(t− 1)) + ft(xi)) + Ω ( ft) (11)

The first and second orders derivative of the Taylor approximation function is used to
solve Equation (6) and given as Equation (12).

L(t) = ∑i l(yi, pi(t− 1)) + gi ft (xi) + (0.5) hi ft
2 (xi)) + Ω ( ft) (12)

Eliminating the constants, the equation now becomes
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L(t) = ∑n
i=1 ((gi ft (xi) + (0.5) hi ft

2 (xi)) + Ω ( ft) (13)

As can be seen from Equation (8), the objective function is dependent on the g and h
values and hence becomes the optimization goal for the subsequent tree. In this manner,
every loss function thus becomes optimized. The g and h values are calculated for each
tree and placed in the corresponding leaf, and the values are added together by using the
formula to identify a good tree.

2.4. Hyperparameter Optimization

In order to obtain the best set of parameters that predicts the corrosion behavior closest
to the experimental values, Bayesian optimization is performed over the hyperparameter
space to minimize the root mean square error. Let H represent the overall hyperparameter
space to be searched and h be a vector from the {H} space. Let O be the objective function
to be minimized (i.e., root mean square error (RMSE)). In the Bayesian approach, P(O|h) is
used for hyperparameter sampling and updated iteratively to get h* (best set of hyperpa-
rameters). In the probabilistic view, to calculate the improvement in performance between
two consecutive iterations, the expected improvement metric (EI) is used:

EI =
∫ o∗

−∞
(O*−O) ∗ p(O|h) ∗ dO (14)

where O* is the threshold value or the current best value of the objective function.
According to Bayes rule,

p(O|h) = p(h|O) ∗ (p(O)/p(h)) (15)

p(h) =
∫ ∞

−∞
p(h|O) ∗ p(O) ∗ dO (16)

Here, p (h|O) is the probability of the hyperparameters given the score on the objective
function, which is represented as follows:

p( h|O) = l(h) if O < O* (17)

g(h) if O ≥ O* (18)

On applying this expression, we can infer that EI is directly proportional to l(h)/g(h).
Hence, to maximize EI, more samples need to be drawn from l(h) than g(h). As l(h)
corresponds to O < O*, the objective function is bound to decrease. This algorithm is called
the tree-structured Parzen estimator (TPE). To run this algorithm in a parallel manner, the
asynchronous successive halving algorithm (ASHA) is used for pruning in every iteration.
The least RMSE was obtained by the XGBoost algorithm for the PD, Nyquist, and Bode
plots, and the hyperparameters were optimized using the Optuna package.

Figure 1 represents the optimization process graphically, adopted for the PD modelling.
As can be seen, the objective value approaches the best value more closely as the number
of trials keeps increasing. The individual parameters after the optimization are listed in
Table 6. The model development process flow is presented in Figure 2.
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Table 6. Optimized parameters.

Algorithm Parameters Range

XGB

booster [‘gbtree’, ‘gblinear’, ‘dart’]
reg_lambda [1 × 10−4, 1.0]
reg_alpha [1 × 10−4, 1.0]

n_estimators [10, 100]
learning_rate [1 × 10−4, 1.0]
max_depth [1, 6]

DT

splitter [“best”, “random”]
criterion [“mse”, ”mape”]

Max_features [“auto”, “sqrt”, “log2”]
min_samples_leaf [10, 1000]

max_depth [1, 6]

SVR

kernel [linear’, ‘poly’, ‘rbf’]
C [1.0, 100.0]

gamma [‘scale’, ‘auto’]
epsilon [0.1, 1]

PR degree [1–6]
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3. Methods
3.1. Model Validation

Once the models are developed using the different ML algorithms, the predicted
results are compared with the experimental results. For this purpose, the experimental
and predicted curves are drawn together to assess the deviation occurring in each model.
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The closer the curves are, the stronger is the predicting ability of the model. As discussing
the results of each model in all the four experimental conditions is beyond the scope
of this paper, the result of the HTSP condition, the specimen condition that contained
the highest corrosion resistance, is being presented. Models of the other experimental
conditions, namely, AB, HT, and SP, may be found at the following URL: https://github.
com/rohithsrinivaas/Corrosion_Informatics (accessed on 21 May 2021) The experimental
and predicted results of the PD and EIS plots are shown in Figures 3–5. In Figure 2, all the
models are able to perform prediction fairly closely in both the cathodic and anodic regions.
The deviations are more apparent in the region where it dips towards the Ecorr value. As can
be seen in Figure 3d, the XGB model curve remains closest to the experimental data. The
curve fitting of the other models, PR, SVM, and DT, are unable to capture the polarization
behavior accurately. This is because these algorithms are unable to predict the data region
where the shift towards the Ecorr value occurs. In the PR model, as shown in Figure 3a,
as the data are modelled as a smooth polynomial function, the trend change in the Tafel
curve becomes difficult to predict. Similarly in the SVM model shown in Figure 3d, the
kernel used is a continuous and smooth transformation of the input feature space, and
the prediction curve is more of a gradual dip as against the pointed dip in experimental
data. The DT model has slightly better accuracy in capturing the data trend in regions
surrounding the Ecorr value, as depicted in Figure 3c. Though the accuracy is higher, the
predicted curve is a stepwise combination of straight line segments rather than a smooth
curve. This is because the DT algorithm is driven by piecewise constant approximation.
The XGB model is able to predict the data shift region accurately, with a prediction curve
almost the same as the experimental curve. The effect of this can be observed in the
prediction of the Bode and Nyquist plots, as shown in Figures 4c and 5c. The experimental
curves are approximated more as flat lines in this model. In the EIS analysis as well, in
both the Bode and Nyquist plots, the XGB model is able to predict the data more accurately
when compared with the other algorithms. This is due to error minimization that occurs in
every step of model building, otherwise known as the regularization term. This algorithm
“learns” the error or deviation of the previous right and corrects it in the subsequent step.
It also has the additional advantages of parallel tree building and parametric tuning that
optimizes the tree depth and nodes.

The model accuracy is determined by certain established metrics, such as R2, MAE
(mean absolute error), and RMSE (root mean square error). In the potentiodynamic po-
larization testing, it can be seen that R2 is the highest for the XGB model at 0.954. It is
distinctively higher than the other algorithms. The DT algorithm performs the second
best at 0.93. The SVM model has the lowest value at 0.708, representing a poor prediction
capability. This shows that this model cannot satisfactorily calculate the variations occur-
ring during the electrochemical reaction of corrosion. This is in line with the results of the
experimental versus predicted graph depicted for SVM. In the EIS analysis, the Bode plot
prediction has all the algorithms performing almost at the same level, with PR at 0.984,
SVM at 0.989, DT at 0.0.985, and XGB at 0.99. Though the differences are minor, it can be
seen that XGB outperformed the other models. In the prediction for the Nyquist plot too,
it is observed that XGB has the highest R2 score of 0.997 and SVM performs the poorest
at 0.961.

The metrics MAE and RMSE are considered to be better when they are lower. When
comparing these metrics for the PD plot, as shown in Figure 6, SVM has the highest MAE
value of 0.191 and RMSE value of 0.322. Other algorithms performed better with PR at a
MAE value of 0.16 and RMSE value of 0.241. Decision tree has a slightly better score of
0.074 than XGB at 0.077. This is the only metric in which DT outclassed the XGB algorithm.
In the Bode plot prediction, the lowest MAE (1.98) belongs to SVM, closely followed by
XGB at 2.16, as can be seen in Figure 7. The least RMSE score of 2.9 is given by XGB. In the
Nyquist plot prediction as well, the errors of least value was given out by XGB, as presented
in Figure 8. Overall, it is clear that the experimental plots were best matched by the XGB
algorithm, its prediction efficiency reflected in both the comparisons and error analysis.

https://github.com/rohithsrinivaas/Corrosion_Informatics
https://github.com/rohithsrinivaas/Corrosion_Informatics
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3.2. Feature Importance Analysis

Feature importance analysis is carried out to determine the independent features that
influence the outcome the most. As the XGB model performed best in prediction, this
model is used for feature importance analysis in the PD and EIS experiments. This result
is presented in Figure 9. The potentiodynamic polarization testing relates the material’s
sensitivity to the corrosion process. The results, as can be seen in Figure 9a, show that
the input potential value is the most significant parameter that influences the outcome.
As the polarization current is primarily controlled by the input potential, the corrosion
activity is also dependent on it. The second most influential parameter is the heat treatment
temperature. The temperature of heat treatment plays a dominant role in deciding the
microstructure, which in turn influences the corrosion behavior of the material. As Inconel
718 is a precipitation-strengthened alloy, the distribution and formation of the phases,
such as γ’, γ”, and δ, determine how strong it can remain in an aggressive environment.
The precipitation of laves phase occurring during the melting process tends to deplete
the γ matrix of the chromium content. As discussed in our previous work, the network
of laves phase is reduced due to the heat treatment, and this helps in increasing the
chromium content in the main matrix. This is one of the main reasons heat-treated samples
show an improved corrosion resistance when compared with the as-built sample. A similar
improvement was reported by Luo et al. [64]. Additively manufactured Inconel 718 samples
were subjected to different heat treatments, from 940 to 1020 °C, with double ageing. It
was found that an increase in the heat-treating temperature led to a decreased tendency of
the laves phase to micro-segregate, and this resulted in a noticeable improvement in the
passive layer formation. The passive layer that formed in the as-built specimen quickly
disintegrated, while the heat-treated specimens formed a more strongly adherent layer,
exhibited by the higher Epit values. Li et al. [65] additionally inferred that the fine δ phase
pinning effect on the grain boundary is caused by heat-treating selective-laser-melted
Inconel 718. This effect leads to more electrochemical homogeneity, thereby bringing down
the Icorr value when these samples were tested in a NaCl environment. In other metal
additive manufacturing techniques too, analogous results were found. When heat-treating
electron-beam-smelted samples of Inconel 718, You et al. [14] found that a temperature
of 1150 ◦C increased the pitting resistance due to the higher precipitation of γ’ and γ”.
An increase in the solution-treating temperature also led to a more uniform distribution
of γ’ particles. A judicious conclusion can hence be arrived that heat treatment helps in
establishing a higher corrosion resistance in SLMed material of this alloy.
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When analyzing the feature importance plot for the EIS experiments, it is seen that,
here also, the input electrical parameter influences the outcome the maximum, as can be
seen in Figure 9b,c. Apart from that, it can be seen that the inclination of shot peening is
the second dominant factor. Shot peening is a commonly adopted procedure to introduce
beneficial compressive stresses and reduce the surface irregularities and consequently crack
initiation [66]. The favorable topographical changes introduced in the surface is also an
added advantage of this technique. As EIS testing relates to the strength of the passive
layer, it is highly possible to suggest that a smoother surface, with reduced irregularities,
remains stronger. One shot peening parameter that is directly connected to the resulting
surface level changes is the inclination at which the spherical balls hit the material. It
determines the angle of contact between the peening and work material, area of contact,
and friction levels. If the contact angle is too acute, too much material could be removed,
resulting in dimensional alterations. If the contact angle is too obtuse, it might not be very
effective in smoothening the target material. Hence, an optimum angle of 45◦ is chosen for
the shot peening process. The importance of the angle of inclination in the strength of the
passive layer was correctly identified by the built model in the EIS plots. Hence, it can be
said that the machine learning model not only is capable of predicting the experimental
results accurately but also identified the influential independent parameters appropriately.

4. Conclusions

The present work adopted machine learning to predict the corrosion behavior of In-
conel 718 manufactured by LPBF in both as-built and postprocessed conditions. Data were
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collected from the PD and EIS tests for all the experimental conditions and implemented in
different ML algorithms. The following are the key conclusions of this work:

• Based on experimental data, the relationship between postprocessing techniques
and corrosion resistance was explored using a machine learning approach. The
feasibility of such an approach was demonstrated using four different ML algorithm
namely, Polynomial regression, Support vector regression, Random forest and Extreme
gradient boosting.

• In the development of ML-based models, the XGB algorithm led to the corrosion rate
prediction of the alloy with the highest accuracy at an R2 value of 0.954 in PD testing
and 0.997 in EIS testing.

• In the feature importance analysis, apart from the electrical parameters, heat treat-
ment temperature and shot peening inclination were found to be the most influential
parameters in determining the corrosion resistance of Inconel 718.

Since the optimization of processing and postprocessing parameters is still in the
nascent stage in metal additive manufacturing, data-driven models can help in establishing
the appropriate set of input variables. An effective property predictive model can improve
the understanding of the complex dynamics of electrochemical mechanisms fordeveloping
corrosion-resistant materials in various structural applications.
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