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Abstract: We describe a new minimum extent, persistent surface water classification for reaches of
four major rivers in the Peruvian Amazon (i.e., Amazon, Napo, Pastaza, Ucayali). These data were
generated by the Peruvian Amazon Rural Livelihoods and Poverty (PARLAP) Project which aims to
better understand the nexus between livelihoods (e.g., fishing, agriculture, forest use, trade), poverty,
and conservation in the Peruvian Amazon over a 35,000 km river network. Previous surface water
datasets do not adequately capture the temporal changes in the course of the rivers, nor discriminate
between primary main channel and non-main channel (e.g., oxbow lakes) water. We generated
the surface water classifications in Google Earth Engine from Landsat TM 5, 7 ETM+, and 8 OLI
satellite imagery for time periods from circa 1989, 2000, and 2015 using a hierarchical logical binary
classification predominantly based on a modified Normalized Difference Water Index (mNDWI)
and shortwave infrared surface reflectance. We included surface reflectance in the blue band and
brightness temperature to minimize misclassification. High accuracies were achieved for all time
periods (>90%).

Dataset: https://doi.org/10.5683/SP3/SLF3PS

Dataset License: CC BY 4.0

Keywords: Peru; Landsat; PARLAP; Amazon; Napo; Pastaza; Ucayali

1. Summary

Surface freshwater mapping at different temporal (e.g., single or multiple time peri-
ods) and spatial scales (e.g., local to global) provides key baseline information to better
understand human activities that both benefit from (e.g., ecosystem services), and that
impact (e.g., impoundment) these ecosystems. Given the wealth of long-term continuous
spaceborne Earth observation systems (e.g., Landsat series, Copernicus, PlanetScope, etc.)
in orbit, satellite imagery has been the preferred method to map surface freshwater over
large geographical areas (e.g., [1–3]). For example, Ref. [1] generated a 30 m pixel size global
water cover dataset for 2000 and 2010 from Landsat TM/ETM+ and HJ-1 satellite imagery
through a combination of pixel-based (spectral) and object-based analysis. Other global
data sets such as ESA’s Land Cover CCI [4] include water as one of the multi-temporal
land cover classes, but the output is provided at a pixel size of 300 m. Recently, Ref. [3]
produced a global surface water cover dataset using the Landsat top-of-the-atmosphere
reflectance archives for the period of March 1984–Oct 2015 with Google Earth Engine. The
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classification was based on an expert system taking into account the multi-temporal and
multispectral aspects of the imagery producing surfaces of water occurrence, maximum
extent, seasonality, recurrence, and transitions. A recently updated version includes data
up to the year 2020 [5]. However, as shown by [6,7] the high discrepancy between freely
available freshwater datasets and in some cases inaccuracy, presents a challenge when
determining which dataset to choose for specific applications. Additionally, large-extent
fine spatial scale datasets such as the 2.5 million square kilometer riverscape classification
at 2.5 m spatial resolution for Europe [8] do not yet exist for South American rivers.

The Peruvian Amazon Rural Livelihoods and Poverty (PARLAP) Project [9] is an effort
aiming to better understand the nexus between livelihoods (e.g., fishing, agriculture, forest
use, trade), poverty, and conservation in the Peruvian Amazon over a 35,000 km river
network (Napo, Amazon, Pastaza and Ucayali basins) [10]. River basins were selected to
reflect heterogeneity in environmental conditions, economic activities, history, and indi-
geneity of its peoples. In the absence of roads, settlements are concentrated along rivers,
and river reaches in each basin were the focus of community and household surveys. The
character of surface water around communities is a key environmental feature, specifi-
cally of primary and non-main river features (e.g., oxbow lakes), which can be indicative
of the available habitat for fish and other aquatic species along the active channel and
floodplain, respectively.

Here we developed a minimum extent persistent surface water classification along
reaches of the four major rivers (i.e., Amazon, Napo, Pastaza, and Ucayali) investigated by
the PARLAP project, using Landsat satellite imagery with a 30 m pixel size, representing
circa 1989, 2000, and 2015. Different from other surface water classification methodologies,
we implemented a hierarchical ruleset predominantly based on a modified Normalized
Difference Water Index (mNDWI) and shortwave infrared surface reflectance. Surface
reflectance in the blue band and brightness temperature (BT) were included to minimize
misclassification. Importantly, we differentiate between primary (i.e., main) and non-main
channel water, this distinction is not available from any of the freely available datasets.
Therefore, our surface water layers are distinct from other classifications and are part of
PARLAP’s effort to better establish the link between livelihoods and this vast riverscape.

2. Data Description

The multi-temporal surface water classifications are available for download from the
PARLAP Dataverse [11] in ESRI shapefile format (Figure 1). The datasets are projected in
UTM 18S WGS84. The attribute tables of the layers indicate whether the polygons belong
to the main channel or non-main channel surface water classes. The non-main channel
designation includes all water bodies not directly connected to the main river channel (e.g.,
oxbow lakes) (Figure 2).
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Figure 1. Map of the extent of surface water classification for the reaches of the four major rivers. 
The polygons represent the focal areas of PARLAP. The white line illustrates the borders of Peru. Figure 1. Map of the extent of surface water classification for the reaches of the four major rivers. The
polygons represent the focal areas of PARLAP. The white line illustrates the borders of Peru.



Data 2022, 7, 6 4 of 13Data 2022, 7, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Field photographs showing examples of the variability of the riverscape. (A) Amazon 
River; (B) confluence of non-main channel water with the Amazon River. A small lake can also be 
seen in proximity; (C) islands exposed during the low water season on the Amazon River; (D) non-
main channel water (Amazon River) near Iquitos; (E,F) Napo River; (G) oxbow lake off the Ucayali 
River main channel; (H) non-main channel water with the Ucayali River in the background; (I,J) 
Ucayali River, (K) Rio Negro (blackwater river) for comparison, (L) Xingu River (clearwater river) 
for comparison. Photographs by C. Abizaid, J.P. Arroyo-Mora, O. Coomes, O. Lucanus, and D. Za-
yonc. 

3. Methods 
The surface water classifications were created for three time periods representing 

circa 1989, 2000, and 2015 from Landsat (TM 5, 7 ETM+, and 8 OLI respectively) satellite 
imagery at a 30 m pixel size for reaches of four rivers of interest in the Peruvian Amazon 
(i.e., Napo, Amazon, Pastaza, Ucayali). The circa 1989 data correspond to the earliest time 
for which imagery was available for the entire study area. The circa 2015 data correspond 
to when PARLAP carried out large-scale community and household surveys in the study 

Figure 2. Field photographs showing examples of the variability of the riverscape. (A) Amazon
River; (B) confluence of non-main channel water with the Amazon River. A small lake can also
be seen in proximity; (C) islands exposed during the low water season on the Amazon River;
(D) non-main channel water (Amazon River) near Iquitos; (E,F) Napo River; (G) oxbow lake off the
Ucayali River main channel; (H) non-main channel water with the Ucayali River in the background;
(I,J) Ucayali River, (K) Rio Negro (blackwater river) for comparison, (L) Xingu River (clearwater
river) for comparison. Photographs by C. Abizaid, J.P. Arroyo-Mora, O. Coomes, O. Lucanus, and
D. Zayonc.

3. Methods

The surface water classifications were created for three time periods representing
circa 1989, 2000, and 2015 from Landsat (TM 5, 7 ETM+, and 8 OLI respectively) satellite
imagery at a 30 m pixel size for reaches of four rivers of interest in the Peruvian Amazon
(i.e., Napo, Amazon, Pastaza, Ucayali). The circa 1989 data correspond to the earliest time
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for which imagery was available for the entire study area. The circa 2015 data correspond
to when PARLAP carried out large-scale community and household surveys in the study
area (2014–2016), and circa 2000 an intermediate period in-between. Due to the overall
length of time (30 years), imagery from multiple satellites was necessary. Landsat TM 5 was
in operation from March 1984–June 2013 [12], Landsat 7 ETM+ has been in operation since
April 1999 but suffered a Scan Line Corrector failure in June 2003 [13], and Landsat 8 has
been in operation since February 2013 [14]. For practical purposes and for relating to other
PARLAP field data, these surface water layers are organized into the five regions as shown
in Figure 1. The combined area across the river basins examined here is 113,691 km2.

The classifications were carried out in Google Earth Engine using the USGS Landsat
Surface Reflectance Tier 1 imagery collection [15]. As commonly seen in the tropics [16],
the study area is prone to extensive cloud clover. The pixel QA bands were used to mask
out clouds in order to generate a median surface reflectance product for each period.
The QA bands are available as one of the metadata bands produced during standard
Landsat processing and represent the pixel quality attributes generated from the CFMASK
algorithm [17]. The median reflectance composites represent the 1985–1989, 1999–2000,
and 2014–2015 periods. The differences in the length of time are the minimum number
of years needed to generate a cloud-free composite for the entire study area. Tables 1–3
describe the optical and thermal bands from the three Landsat satellites. Figure 3 illustrates
the relative spectral responses of the optical bands. Importantly, as surface reflectance
products, the images had undergone an atmospheric compensation to remove the effects of
the atmosphere (e.g., scattering, absorption).

Classification was based on a hierarchical, binary logical ruleset that took into con-
sideration surface reflectance, and brightness temperature (BT). Our final products rep-
resent the minimum extent of persistent surface water. Each component of the ruleset is
described below.

Table 1. Band information for Landsat TM 5 [18].

Band Wavelength Range (µm) Resolution (m) Designation

1 0.45–0.51 30 Blue
2 0.52–0.60 30 Green
3 0.63–0.69 30 Red
4 0.76–0.90 30 NIR
5 1.55–1.75 30 SWIR1
6 10.40–12.50 120 (30) * Thermal infrared
7 2.08–2.35 30 SWIR2

* The thermal infrared band is resampled from the 120 m spatial resolution it was acquired at to 30 m pixels.

Table 2. Band information for Landsat 7 ETM+ [18].

Band Wavelength Range (µm) Resolution (m) Designation

1 0.45–0.52 30 Blue
2 0.52–0.60 30 Green
3 0.63–0.69 30 Red
4 0.77–0.90 30 NIR
5 1.55–1.75 30 SWIR1
6 10.40–12.50 60 (30) * Thermal infrared
7 2.09–2.35 30 SWIR2
8 0.52–0.90 15 Panchromatic

* The thermal infrared band is resampled from the 60 m spatial resolution it was acquired at to 30 m pixels.
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Table 3. Band information for Landsat 8 OLI and TIRS [18].

Band Wavelength Range (µm) Resolution (m) Designation

1 0.43–0.45 30 Coastal aerosol
2 0.45–0.51 30 Blue
3 0.53–0.59 30 Green
4 0.64–0.67 30 Red
5 0.85–0.88 30 NIR
6 1.57–1.65 30 SWIR1
7 2.11–2.29 30 SWIR2
8 0.50–0.68 15 Panchromatic
9 1.36–1.38 30 Cirrus

10 * 10.60–11.19 100 Thermal infrared 1
11 * 11.50–12.51 100 Thermal infrared 2

* Bands 10 and 11 are part of the Thermal Infrared Sensors (TIRS), and bands 1–9 are part of the Operational Land
Imagery (OLI).
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Figure 3. Relative spectral responses of the multispectral bands from Landsat TM 5 (A), 7 ETM+ (B),
and 8 OLI (C).

3.1. Surface Reflectance

Unlike many other large bodies of freshwater such as the African and North American
Great Lakes, or clearwater and blackwater tributaries of the Amazon such as the Rio Xingu,
and Rio Negro, respectively, the main channels of the rivers mapped in this dataset are
considered whitewater rivers. An important characteristic of whitewater rivers is the
high sediment load (see Figure 2) which impacts the surface reflectance (Figures 4 and 5).
Water is known to be a low signal target, absorbing most of the solar irradiance across
wavelengths. High sediment loads increase reflectance in the visible and near-infrared
(NIR) bands which can lead to confusion with some terrestrial land covers. Across the
surface water in the study area, a range of turbidities can be seen, from relatively clear,
small lakes to the high sediment-laden main channels.
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Figure 4. Example spectral signature of the Amazon River main channel south of Iquitos illustrating 
the comparatively high reflectance in all but two shortwave infrared (SWIR) bands. The clearer non-
main channel Amazon River surface water example resembles the spectra of the Xingu River, Brazil, 
a large clearwater tributary of the Amazon, and the Rio Negro, a large blackwater tributary of the 
Amazon, both included here for comparison. The spectrum shown from the Xingu is from an image 
acquired at the start of the low-water season when the water is clear [6]. Water strongly absorbs in 
wavelengths from the NIR onwards [19] resulting in low reflectance. 

Figure 4. Example spectral signature of the Amazon River main channel south of Iquitos illustrating
the comparatively high reflectance in all but two shortwave infrared (SWIR) bands. The clearer
non-main channel Amazon River surface water example resembles the spectra of the Xingu River,
Brazil, a large clearwater tributary of the Amazon, and the Rio Negro, a large blackwater tributary
of the Amazon, both included here for comparison. The spectrum shown from the Xingu is from
an image acquired at the start of the low-water season when the water is clear [6]. Water strongly
absorbs in wavelengths from the NIR onwards [19] resulting in low reflectance.

For open water delineation, the original formulation of NDWI [20] was developed as
Equation (1):

NDWI =
ρGreen − ρNIR
ρGreen + ρNIR

(1)

where ρ denotes surface reflectance.
Other previous formulations of NDWI (e.g., [21]) using a NIR and SWIR band instead

were developed for assessing water content in plant canopies or as defined by [22] replace
the NIR band with a SWIR band in Equation (1) for open water mapping.

In order to account for the range of turbidities encountered in the study area (Figure 4),
a modified Normalized Difference Water Index (mNDWI) based on [20] was calculated
from the green, red, and NIR bands according to Equation (2):

mNDWI =
ρNIR − ρRed
ρGreen

× 100 (2)

where ρ is the surface reflectance in the NIR, red, or green bands of the respective sensors
(Figure 3). The value of 100 is a scaling factor. The mNDWI from Equation (2) is the first
level in the hierarchical ruleset (see Section 3.3).
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In our ruleset, the threshold of mNDWI from Equation (2) varied by time period. For
example, for the earliest period from TM 5 (circa 1989) the mNDWI threshold was set to
<150 (Figures 5 and 6, Table 4).
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Figure 5. (A) Subset of the TM 5 surface reflectance mosaic of the Amazon River including the city
of Iquitos displayed as a SWIR2:NIR:Green composite. The main channel of the Amazon River
can be seen as a lighter blue compared to the low reflectance (dark) clearwater in the small lakes;
(B) mNDWI; (C) surface water as delineated by the mNDWI threshold (mNDWI < 150) prior to
refinement, a true colour (Red:Green:Blue) composite is shown as the background for context. With
the mNDVI threshold of 150, some pixels representing the city of Iquitos are misclassified as water;
(D) surface reflectance in the SWIR2 band. The land and water pixels are clearly separable; (E) surface
reflectance in the blue band.
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and (C) 8 OLI.

Table 4. Thresholds of mNDWI, ρBlue, and ρSWIR2 for the three-time periods from the three
Landsat sensors.

Period Sensor mNDWI ρBlue (%) ρSWIR2 (%)

1989 TM5 −65–150 >2.0 <3.0
2000 ETM7+ −75–150 >3.5 <3.0
2015 OLI8 −85–160 >3.0 <3.0

To refine the separation of open water from other land cover classes, the next level in
the hierarchical ruleset was a threshold of SWIR2 reflectance (Table 1). As seen in Figure 5,
in order to include the less turbid non-main channel features, the relatively higher threshold
of mNDVI also results in the inclusion of pixels representing larger settlements such as
Iquitos, but the reflectance of the urban areas and water are considerably different in the
SWIR2 band (Figure 5). The third level of the hierarchical ruleset is the reflectance in the
blue band. Water is higher reflectance than the surrounding vegetation in the blue band
(Figure 5), therefore this threshold refined the edges of the detected surface water and
eliminated misclassifications due to topographic shadows.

3.2. Brightness Temperature

The fourth level of the ruleset (predominantly for refinement) was brightness temper-
ature (BT) from the thermal band of the images used in the surface reflectance mosaics.
For Landsat TM 5 and 7 ETM+ this is band 6 (10.4–12.5 µm). Landsat 8 TIRS has two
longwave infrared bands (bands 10 and 11); here we used band 10 (10.6–11.19 µm). While
these longwave infrared (LWIR) bands were acquired at 120 m (TM 5), 60 m (7 ETM+),
or 100 m (TIRS) pixel sizes, in the surface reflectance collections accessed through Google
Earth Engine, they have been resampled to 30 m through cubic convolution [15]. Brightness
temperature considers an emissivity (ε) of 1 and represents the temperature a blackbody
(i.e., theoretical perfect emitter and absorber of radiation) would be if observed at the same
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wavelength. Emissivity is a measure of the efficiency of a material to emit radiation in
comparison to a blackbody and is a fundamental property of materials in the LWIR (i.e.,
thermal) region according to Kirchoff’s Law Equation (3):

E = εσT4 (3)

where E is the total amount of energy emitted (i.e., flux density) by a material (per unit
time, per unit area) at a specific temperature (T) and σ is the Stefan-Boltzmann constant
(5.67 × 10−8 W m−2 K−4). Emissivity is unitless ranging from 0–1, with values closer
to 1 representing material more similar to a blackbody at the wavelength of observation.
Materials differ in their ε values across wavelengths; liquid water generally has an ε > 0.97
with minimal effect of turbidity in the LWIR [23–26]. While LWIR energy emission is
generally considered to be a surface property, in water bodies up to the top 100 µm may
comprise the volume contributing to the emission [25]. For the surface water classifications,
the BT threshold was set to less than 298 K for all datasets. The majority of the urban pixels
had a BT > 300 K.

3.3. Final Ruleset

The final hierarchical binary ruleset is shown in Figure 7 where a-c are the time period
specific thresholds for each term (see Table 4):
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Figure 7. The hierarchical ruleset for classifying persistent surface water. a–c represent the time
period specific thresholds for mNDVI, SWIR2 reflectance, and Blue reflectance, respectively, for the
three datasets (see Table 4).

3.4. Generation of Vector Datasets

The binary surface water classifications were exported as images in GeoTiff format
from Google Earth Engine and converted to a vector (polygons) data type in ArcMap 10.5
(ESRI, Redlands, CA, USA) for clean-up. Polygons representing the non-main channel
water were manually extracted into a separate shapefile and polygons were dissolved into a
single aggregate polygon layer. For polygons that comprised the main channel, topological
rules of Must Not Have Gaps and Must Not Overlap [27] were applied. The main channel
polygons were also dissolved into a single aggregate polygon layer.

3.5. Validation

Validation points were created in Google Earth Engine through visual interpretation
of the corresponding cloud-free Landsat mosaics. A total of 445 water and 445 land points
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were generated for each of the three time periods across all basins. Edge pixels representing
the boundaries between classes were avoided. Tables 5–7 illustrate the confusion matrices
for the three time periods. High accuracies were achieved for all time periods (>90%). The
misclassifications result from points where the river is too narrow to have been included in
the final classification.

Table 5. Confusion matrix for the persistent surface water classification from Landsat TM 5 (circa
1989). OA is the overall accuracy.

Water-Reference Land-Reference User’s Accuracy (%)

Water-classification 424 0 100
Land-classification 21 445 95.5

Producer’s Accuracy (%) 95.2 100 OA = 97.3

Table 6. Confusion matrix for the persistent surface water classification from Landsat 7 ETM+ (circa
2000). OA is the overall accuracy.

Water-Reference Land-Reference User’s Accuracy (%)

Water-classification 415 0 100
Land-classification 30 445 93.7

Producer’s Accuracy (%) 93.2 100 OA = 96.6

Table 7. Confusion matrix for the persistent surface water classification from Landsat 8 OLI (circa
2015). OA is the overall accuracy.

Water-Reference Land-Reference User’s Accuracy (%)

Water-classification 416 0 100
Land-classification 29 445 93.9

Producer’s Accuracy (%) 93.5 100 OA = 96.7

4. User Notes

Unlike [7,8] which are surface water datasets created at a high spatial resolution (<5 m),
the datasets described here were generated at a pixel size of 30 m. The implication of this
moderate spatial resolution is that smaller water bodies, such as small rivers and creeks
narrower than the pixel size are not included. Similarly, narrow rivers or streams with thick
vegetation cover restricting the view of the satellites could not be classified resulting in an
underestimation of the total area of surface water. In addition, due to the high frequency
of cloud cover in the region, in order to generate a cloud-free mosaic, multiple years are
considered in each period; small temporal scale changes in the course of the rivers during
those periods may not be represented. The use of higher spatial resolution, and higher
temporal frequency imagery (see Section 5) would improve upon the detection of these
small water bodies.

5. Discussion and Conclusions

To improve upon our results, further research examining the potential of monthly or
quarterly high spatial resolution basemap mosaics (3.7 m resolution) suitable for machine
vision analysis, or surface reflectance mosaics from the Planet Dove constellation for recent
(from 2016 onwards) time periods should be examined. These data would increase the
number of small non-main channel water bodies and narrow creeks that could be resolved
(e.g., [28]). For example, Ref. [29] showed a significant decrease in the Lake Powell reservoir
surface area between 2019 and 2021 from PlanetScope imagery classified in Google Earth
Engine on a bi-weekly basis. Such high temporal resolution data may also be beneficial in
the Peruvian Amazon to track rapid changes during the inundation of the floodplain in
the high water season. As shown by [30], such imagery used in combination with in situ
river gauge data, a semi-automated river flow estimation could be derived. Nevertheless,
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for long-term records of historical change (i.e., prior to the availability of high spatial
resolution satellite imagery) in locations without aerial or satellite photography, moderate
resolution satellite imagery continues to be a source of valuable information about changes
in the landscape.

Author Contributions: Conceptualization, M.K.; methodology, M.K. and J.P.A.-M.; validation, M.K.;
formal analysis, M.K., J.P.A.-M.; writing—original draft preparation, M.K., J.P.A.-M. and O.T.C.;
writing—review and editing, M.K., J.P.A.-M, O.T.C., Y.T. and C.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Japan Society for the Promotion of Science (23243045;
26245032; 18H05312; 20K20332; 18KK0042), the Social Sciences and Humanities Council of Canada
(435-2015-0520; 430-2016-00974), and the Arts and Science Tri-Council Bridge Funding Program at
the University of Toronto. The APC was funded by the Natural Sciences and Engineering Research
Council (NSERC) Canada.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available for download from: https://doi.org/10.568
3/SP3/SLF3PS (accessed on 2 January 2022).

Acknowledgments: We thank three anonymous reviewers for their comments which helped improve
the manuscript and D. Zayonc and O. Lucanus for providing field photographs.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Liao, A.P.; Chen, L.J.; Chen, J.; He, C.Y.; Cao, X.; Chen, J.; Peng, S.; Sun, F.D.; Gong, P. High-resolution remote sensing mapping of

global land water. Sci. China-Earth Sci. 2014, 57, 2305–2316. [CrossRef]
2. Malthus, T.J.; Hestir, E.L.; Dekker, A.G.; Brando, V.E. The case for a global inland water quality product. In Proceedings of

the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5234–5237.
[CrossRef]

3. Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef]

4. Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.;
Kirches, G.; et al. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA Land
Cover CCI. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; pp. 1–6.

5. European Commission’s Joint Research Centre; UN Environment; Google. Global Surface Water Explorer. Available online:
https://global-surface-water.appspot.com/ (accessed on 7 December 2021).

6. Kalacska, M.; Arroyo-Mora, J.P.; Lucanus, O.; Sousa, L.; Pereira, T.; Vieira, T. Deciphering the many maps of the Xingu River
Basin—An assessment of land cover classifications at multiple scales. Proc. Acad. Natl. Sci. USA 2020, 166, 1–55. [CrossRef]

7. Kalacska, M.; Lucanus, O.; Sousa, L.; Arroyo-Mora, J.P. High-Resolution Surface Water Classifications of the Xingu River, Brazil,
Pre and Post Operationalization of the Belo Monte Hydropower Complex. Data 2020, 5, 75. [CrossRef]

8. Demarchi, L.; van de Bund, W.; Pistocchi, A. Object-Based Ensemble Learning for Pan-European Riverscape Units Mapping
Based on Copernicus VHR and EU-DEM Data Fusion. Remote Sens. 2020, 12, 1222. [CrossRef]

9. Coomes, O.T.; Takasaki, Y.; Abizaid, C.; Arroyo-Mora, J.P. Environmental and market determinants of economic orientation
among rain forest communities: Evidence from a large-scale survey in western Amazonia. Ecol. Econ. 2016, 129, 260–271.
[CrossRef]

10. Webster, K.; Arroyo-Mora, J.P.; Coomes, O.T.; Takasaki, Y.; Abizaid, C. A cost path and network analysis methodology to calculate
distances along a complex river network in the Peruvian Amazon. Appl. Geogr. 2016, 73, 13–25. [CrossRef]

11. Kalacska, M.; Arroyo-Mora, J.P.; Coomes, O.; Takasaki, Y.; Abizaid, C. Multi-Temporal Surface Water Classification for Four Major
Rivers from the Peruvian Amazon [data], Scholars Portal Dataverse, V1. 2021. Available online: https://dataverse.scholarsportal.
info/dataset.xhtml?persistentId=doi:10.5683/SP3/SLF3PS (accessed on 2 January 2022).

12. USGS. Landsat 5. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5 (accessed on
7 December 2021).

13. USGS. Landsat 7. Available online: https://www.usgs.gov/landsat-missions/landsat-7 (accessed on 7 December 2021).
14. USGS. Landsat 8. Available online: https://www.usgs.gov/landsat-missions/landsat-8 (accessed on 7 December 2021).

https://doi.org/10.5683/SP3/SLF3PS
https://doi.org/10.5683/SP3/SLF3PS
http://doi.org/10.1007/s11430-014-4918-0
http://doi.org/10.1109/igarss.2012.6352429
http://doi.org/10.1038/nature20584
https://global-surface-water.appspot.com/
http://doi.org/10.1635/053.166.0118
http://doi.org/10.3390/data5030075
http://doi.org/10.3390/rs12071222
http://doi.org/10.1016/j.ecolecon.2016.06.001
http://doi.org/10.1016/j.apgeog.2016.05.008
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP3/SLF3PS
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP3/SLF3PS
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5
https://www.usgs.gov/landsat-missions/landsat-7
https://www.usgs.gov/landsat-missions/landsat-8


Data 2022, 7, 6 13 of 13

15. Earth Engine Catalogue. USGS Landsat 8 Surface Reflectance Tier 1. Available online: https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR#description (accessed on 7 December 2021).

16. Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [CrossRef]
17. Department of the Interior; USGS. Landsat 4-7 Collection 1 Surface Reflectance Code LEDAPS Product Guide V3; USGS: Sioux Falls,

SD, USA, 2020.
18. USGS. What Are the Band Designations for the Landsat Satellites? Available online: https://www.usgs.gov/faqs/what-are-

band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products (accessed on 7 December 2021).
19. Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens.

2021, 13, 623. [CrossRef]
20. McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote

Sens. 1996, 17, 1425–1432. [CrossRef]
21. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.

Environ. 1996, 58, 257–266. [CrossRef]
22. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.

Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]
23. Davies, J.A.; Robinson, P.J.; Nunez, M. Field determinations of surface emissivity and temperature for Lake Ontario. J. Appl.

Meteorol. Climatol. 1971, 10, 811–819. [CrossRef]
24. Okwen, R.; Pu, R.; Cunningham, J. Remote sensing of temperature variations around major power plants as point sources of heat.

Int. J. Remote Sens. 2011, 32, 3791–3805. [CrossRef]
25. Handcock, R.N.; Torgersen, C.E.; Cherkauer, K.A.; Gillespie, A.R.; Tockner, K.; Faux, R.N.; Tan, J. Thermal infrared remote

sensing of water temperature in riverine landscapes. In Fluvial Remote Sensing for Science and Management; Carbonneau, P.,
Piegay, H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012.

26. Tavares, M.H.; Cunha, A.H.F.; Motta-Marques, D.; Ruhoff, A.L.; Cavalcanti, J.R.; Fragoso, C.R.; Martín Bravo, J.; Munar, A.M.;
Fan, F.M.; Rodrigues, L.H.R. Comparison of Methods to Estimate Lake-Surface-Water Temperature Using Landsat 7 ETM+ and
MODIS Imagery: Case Study of a Large Shallow Subtropical Lake in Southern Brazil. Water 2019, 11, 168. [CrossRef]

27. ESRI. Geodatabase Topology Rules and Topology Error Fixes. Available online: https://desktop.arcgis.com/en/arcmap/10.7
/manage-data/editing-topology/geodatabase-topology-rules-and-topology-error-fixes.htm (accessed on 7 December 2021).

28. Cooley, S.; Smith, L.S.; Stepan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet
CubeSat Imagery. Remote Sens. 2017, 9, 1306. [CrossRef]

29. Kimball, R. Measuring the Bathtub Ring: Calculating Reservoir Surface Area Changes in the Colorado River Basin. 2021.
Available online: https://www.planet.com/pulse/measuring-the-bathtub-ring-calculating-reservoir-surface-area-changes-in-
the-colorado-river-basin/ (accessed on 13 December 2021).

30. Junqueira, A.M.; Mao, F.; Mendes, T.S.G.; Simoes, S.J.C.; Balestieri, J.A.P.; Hannah, D.M. Estimation of river flow using CubeSats
remote sensing. Sci. Total Environ. 2021, 788, 147762. [CrossRef] [PubMed]

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR#description
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR#description
http://doi.org/10.1080/01431160010006926
https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products
https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products
http://doi.org/10.3390/rs13040623
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1016/S0034-4257(96)00067-3
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1175/1520-0450(1971)010&lt;0811:FDOSEA&gt;2.0.CO;2
http://doi.org/10.1080/01431161003774723
http://doi.org/10.3390/w11010168
https://desktop.arcgis.com/en/arcmap/10.7/manage-data/editing-topology/geodatabase-topology-rules-and-topology-error-fixes.htm
https://desktop.arcgis.com/en/arcmap/10.7/manage-data/editing-topology/geodatabase-topology-rules-and-topology-error-fixes.htm
http://doi.org/10.3390/rs9121306
https://www.planet.com/pulse/measuring-the-bathtub-ring-calculating-reservoir-surface-area-changes-in-the-colorado-river-basin/
https://www.planet.com/pulse/measuring-the-bathtub-ring-calculating-reservoir-surface-area-changes-in-the-colorado-river-basin/
http://doi.org/10.1016/j.scitotenv.2021.147762
http://www.ncbi.nlm.nih.gov/pubmed/34022571

	Summary 
	Data Description 
	Methods 
	Surface Reflectance 
	Brightness Temperature 
	Final Ruleset 
	Generation of Vector Datasets 
	Validation 

	User Notes 
	Discussion and Conclusions 
	References

