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Abstract: In the context of higher education, the wide availability of data gathered by universities
for administrative purposes or for recording the evolution of students’ learning processes makes
novel data mining techniques particularly useful to tackle critical issues. In Italy, current academic
regulations allow students to customize the chronological sequence of courses they have to attend to
obtain the final degree. This leads to a variety of sequences of exams, with an average time taken to
obtain the degree that may significantly differ from the time established by law. In this contribution,
we propose a mixture hidden Markov model to classify students into groups that are homogenous in
terms of university paths, with the aim of detecting bottlenecks in the academic career and improving
students’ performance.

Keywords: educational data mining; higher education; latent class model; learning analytics; mixture
hidden Markov model; multichannel sequence data

1. Introduction

In the context of higher education, the wide availability of administrative data has
significantly grown in the last decade, making learning analytics techniques particularly
useful to face critical issues, and providing insights that can benefit students, teacher staff,
and policy makers. In this setting, educational data mining is a discipline that has recently
emerged in the broader research area of data mining, with the aim of developing methods
for the analysis of all information arising in the educational context [1], that is, information
gathered both for administrative purposes and for recording the evolution of learning
processes, or data coming from innovative learning evaluation techniques (for details see
http://www.educationaldatamining.org/, accessed date: 18 January 2022). By combining
tools and solutions belonging to the scientific areas of computer science, education, and
statistics, educational data mining techniques allow us to understand students’ behaviour,
to facilitate the growth of their knowledge and to improve their skills, but also to design
better and smarter ways of teaching. For a review of the possible applications and the
huge amount of works published in such settings, see, among others, [2–5], and references
therein.

In Italy, academic regulations provide that the final degree is awarded after a series
of courses, at the end of which it is compulsory to take the related exam. The courses that
characterise the plan of study of a degree program are divided into basic courses properly
linked to the educational objectives (in terms of skills and knowledge) of the bachelor’s
or master’s degree, additional courses that must be chosen from a broader set that still
characterises the course of study, and a residual small part of free choice courses. Each
student presents a plan of exams distributed along a certain time period established by law
(three years for bachelor’s degree programs and two years for master’s degree programs).
However, academic regulations also allow students to customise the chronological sequence
of attended courses and to postpone the related exams with respect to the plan. This leads
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to many different sequences of taken exams with related different times to complete the
study plan, which can often go beyond the lawful term (i.e., three or two years). In such
a context, identifying career paths that are particularly virtuous in terms of degree grade
and time to qualification, as well as courses representing “bottlenecks” in the students’
careers, is especially relevant for the university management in order to plan and optimise
the degree programs and improve the academic guidance services.

The literature presents various papers on this particular topic. Campagni et al. [6]
analysed academic student careers using a geometrical approach that combines sequential
pattern analysis and cluster analysis. Their approach makes it possible to compare the
observed student careers with an ideal and to correlate them with exam performance, so as
to assess if a degree program is well structured. Bacci et al. [7] analysed the performance
of academic students in the first year through a semi-parametric item response theory
model that jointly accounts for the observed exam performances and for the information
on the postponed exams; individual characteristics are also included in the model. Their
work focuses on first-year exams and does not explicitly account for the chronological
sequence of enrolled exams. Campagni et al. [8] applied a cluster analysis to assess how
the performance during the first year affects academic career during the following years.
Berens et al. [9] proposed an algorithm that combines logit regression modelling, neural
networks modelling, and decision trees to predict the potential dropout of academic pupils,
using institutional administrative data gathered on their careers. Pelaez et al. [10] follow
a model-based approach: they implement a hierarchical clustering on latent class trees
to identify at-risk students that could benefit from supplemental instruction programs.
Wong and Yip [11] compare various decision tree algorithms to classify students according
to abilities, diligence, motivation, and activity in order to predict their performance.

In this contribution, we propose a methodological approach to study the entire chrono-
logical sequence of exams taken by students, with the aim of identifying homogenous
groups (latent classes) of students and detecting problematic exams for each latent class;
individual covariates are also accounted for in the clustering process. With respect to the
above cited works, our proposal takes into account all the exams of the degree program
and the observed chronological sequence of taken exams; moreover, with respect to the
works [6,8,11] we adopt a model-based approach.

The study is based on a cohort of students enrolled in the bachelor’s degree program
in Business Economics of the University of Florence (Italy) in the year 2012 and followed up
to the year 2018. The data at issue present the typical structure of multichannel or multidi-
mensional sequence data, where the term “sequence” refers to each single course planned
in the degree program and consists of an ordered set of binary states (i.e., exam taken or
not yet taken) that are observed in certain time occasions. Time occasions correspond to
the exam sessions (eight exam sessions by year) and the observed state at a given time
reflects if the related exam has been taken at that occasion or before. Sequences have an
individual-specific length, depending on the time a student takes to conclude the degree
program. It is worth observing that in the Italian academic archives failed exams may
not be registered; thus, the distinction between not taken and taken but failed exams is
not available. In what follows, the expression “taken” implies “taken and passed” exam,
whereas “not taken” stands for “not taken or taken but failed” exam.

The literature about the analysis of sequence data distinguishes two main approaches,
both of them aimed at studying how sequences of categorical (e.g., binary) states change
along time: the optimal matching approach and the latent variable modelling approach.
Optimal matching (for an exhaustive review see [12]; see also [13] for a recent generalisation
for multichannel sequence data), usually associated with cluster analysis, is a model-free
data-driven approach based on dissimilarity measures between sequences. The main aim
of optimal matching consists of finding typical and atypical patterns in state sequences.
Optimal matching represents a satisfactory approach to describe and explore the (usually
complex) structure of sequence data; however, it does not allow inferences to be made.
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As opposed to the optimal matching, model-based approaches embed the analysis of
sequence data in a probabilistic framework with benefits in terms of the generalisability of
results. In such a context, latent variable models for longitudinal data represent a wide class
of models [14,15], which provides several alternatives to properly take into account the main
characteristics of sequence data, that is, (i) serial dependence or autocorrelation (i.e., the
correlation between the responses of the same individual), (ii) unobserved heterogeneity
in the individuals (i.e., variability in the data that is due to unobservable individual
characteristics), and (iii) the dependence of the observed data on covariates.

Latent variable models account for unobserved heterogeneity by means of random
effects at the individual level. Random effects can have a continuous or a discrete distri-
bution and can be time-constant or time-varying. The discreteness assumption presents
several advantages with respect to continuity. First, it avoids unnecessary distributional
assumptions and it substantially reduces the computational effort, which is commonly
encountered to maximise the log-likelihood function in the presence of complex data struc-
tures. Moreover, treating unobserved heterogeneity as a continuous random effect is not
satisfactory when clustering individuals in homogenous groups is of interest in the study,
as in the present contribution. Models assuming the discreteness of latent variables are also
known as latent variable mixture models [16,17].

In the class of latent variable mixture models, we consider the mixture growth
models [18–20] and the Hidden Markov (HM; or latent Markov) models [21,22]. Mix-
ture growth models adopt time-constant random effects (i.e., random intercept and random
slopes) that identify the time trajectories shared by individuals belonging the same group.
In contrast, in the HM models a finite, and usually small, number of time-varying random
effects is introduced to explain the generation process of the sequence of observed states.
These random effects, usually known as hidden or latent states, are assumed to follow a
first-order Markov chain. Individuals are allowed to move from a hidden state to another
along the time and those that belong to the same hidden state at a certain time point have
the same probability of manifesting a certain observed state. For the aim of this contribu-
tion, HM models are more suitable than mixture growth models, as they take into account
the realistic possibility that an individual changes their own state, as their academic career
gradually advances. For other works that adopt HM-based approaches in the educational
setting, see, among others, [23–25].

An interesting generalization of the basic HM model is represented by the Mixture HM
(MHM) model [26–29], which characterizes the concomitant presence of both time-varying
(as in the basic HM model) and time-constant (as in the basic latent class model; [30,31])
discrete random effects. Time-varying effects deal with the unobserved heterogeneity
that changes over time, whereas time-constant effects take into account the presence of
unobservable groups, or latent classes, of individuals in the population sharing time-
constant homogenous characteristics, with each of these groups following a specific HM
model. Membership to latent classes may be assumed to depend on individual covariates,
as in the concomitant variables approach [32,33].

In this contribution, the approach we adopt is based on the formulation and estimation
of an MHM model with concomitant variables. In detail, the model we propose is composed
of three parts: (i) an HM sub-model to account for the serial dependence as well as the
time-varying unobserved heterogeneity, (ii) a latent class sub-model to deal with the time-
constant unobserved heterogeneity, and (iii) a multinomial logit sub-model to deal with the
dependence of latent class membership on individual characteristics.

The remainder of the paper is organised as follows. In Section 2, the structure of data
is described, whereas a detailed description of the adopted methodological approach is
illustrated in Section 3. In Section 4, we provide details about the model specification and
we also describe and discuss results related to the model estimation. Finally, Section 5
reports the main conclusions.
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2. Data Description

The analysis proposed here is based on a cohort of 290 students enrolled in the
bachelor’s degree program in Business Economics of the University of Florence (Italy) in
the year 2012 and followed up to the year 2018. The degree course is structured along a
period of three years, during which any student has to attend twenty-two courses and to
take the corresponding final tests. For a preliminary descriptive analysis of this cohort of
students see [34].

The analyses presented in this contribution were performed on courses that were
taken by at least ten students. A total number of 28 courses were therefore included. For
the sake of parsimony, only results related to the six first-year courses are shown here
(complete results are available from the authors upon request), which are all compulsory
and consist of: Accounting, Mathematics, and Private Law, scheduled at the end of the
first semester of the first year, and Management, Microeconomics, and Statistics, scheduled
at the end of the second semester of the first year. Indeed, previous studies (see, among
others, Ref. [7]) confirm that the performance of freshmen in the first year of their academic
life is of primary relevance to predict the final results in terms of both university final grade
and time to qualification.

As outlined in the Introduction, we are here mainly focused on the chronological
sequences of courses (rather than on the exam grade points), with each sequence charac-
terised by a dichotomous observed state, denoting if the exam has been taken at a certain
exam session (or before) or not; eight exam sessions are available every year.

From a theoretical point of view, exams related to courses scheduled in the first year
are expected to be taken in one of the eight exam sessions of the first year (i.e., sessions 1
to 8), exams related to courses scheduled in the second year are expected to be taken in
one of the eight sessions of the second year (i.e., sessions 9 to 16), and similarly, exams
related to courses scheduled in the third year are expected to be taken in one of the eight
sessions of the third year (i.e., sessions 17 to 24). However, as in the Italian university
system students can freely decide when to take an exam, in practice we often observe
that certain exams tend to be postponed, mainly when they are perceived as particularly
difficult. The most evident effect of the attitude to postponing exams is that many students
take exams also after the third academic year and, then, the actual duration of a three-year
degree course is much longer than the three years formally scheduled in the student’s
degree program. For example, 20.7% of the students enrolled in Business Economics in
2012 (60 out of 290 students) had not yet graduated at the end of the year 2018, that is, six
years after enrolment.

In the following, Figures 1–3 show the distribution of the cohort of students along the
period 2012–2018, separately for each first-year course. For each exam session (ts1, . . . , ts48
on the x-axis of plots), the proportion of students that have taken the final test is depicted
through a purple rectangle and the complementary proportion of students that have not
yet taken the exam is depicted through a green rectangle.

As shown in Figure 1, postponing exams involves shares of students that are partic-
ularly relevant for certain courses. On one hand, Accounting and Management do not
present any particular problem, as the majority of students takes the related exams within
the end of the first academic year (exam sessions 1 to 8). On the other hand, Mathematics,
Private Law and Microeconomics present a long tail of postponements, thus students that
are still enrolled at the end of the period of follow up have not yet taken these exams.

In Figure 2, the chronological sequences of first-year courses are shown according to
some baseline individual characteristics, that is, gender (males vs. females; top panel), type
of high school (HS; middle panel), and HS final grade (values in the range 60–100; bottom
panel).
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First year exams, n = 290

Figure 1. Observed state chronological sequences of first-year exams. Legend: exam taken (purple
rectangle); exam not yet taken (green rectangle).

Variable HS type distinguishes among schools that provide a strong theoretical back-
ground, such as humanistic and scientific HS (52.1% of individuals), and schools that are
mainly oriented to the needs of the job context and provide practical skills, mainly in
accounting; in this latter case, we separate technical HS (28.3%) and vocational HS or others
(e.g., foreign language HS; 19.7%). No significant difference is observed between females
and males, whereas both the HS type and the HS final grade suggest an association with
the tendency to postpone exams. In detail, students coming from a vocational or other type
of HS, followed by colleagues from a technical HS, show a slower trend in Mathematics
and Statistics with respect to students coming from a humanistic or scientific HS.

In order to investigate the effect of the chronological sequences of exams on the
final academic results, the observed sequences of first-year courses are shown in Figure 3,
distinguished according to the status at the end of the follow-up period (graduated, still
enrolled, or retired), the exams grade point average (values in the range 18–30), and the
average elapsed time from enrolment to the last taken exam (in days).

At the end of the year 2018, 78.6% of students (228 out of 290) enrolled in 2012 had
completed the degree program, whereas the remaining 21.4% were still enrolled or retired.
The main relevant differences in terms of exam chronological sequences between these two
sub-groups of students are the longer times for still-enrolled (or retired) students to take the
final test of Mathematics, followed by Private Law and Microeconomics and, at a certain
distance, Statistics. A similar scenario is observed with respect to the exams grade point
average and the time to the last taken exam; in both cases 25% of the worst performers (i.e.,
students with an exams grade point average less than the first quartile or with a time to
the last exam higher than the third quartile) show longer sequences (green rectangles in
Figure 3) for Mathematics, Private Law, Microeconomics, and Statistics.
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Figure 2. Observed state sequences of first-year exams, by gender (top), HS type (middle), and HS
final grade (bottom). Legend: exam taken (purple rectangle); exam not yet taken (green rectangle).
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Figure 3. Observed state sequences of first-year courses, by status at the end of the follow-up period
(top), exams grade point average (middle), and average time to the last exam (bottom). Legend:
exam taken (purple rectangle); exam not yet taken (green rectangle).

3. Mixture Hidden Markov Models for Sequence Data

HM models represent a nice frame to analyse longitudinal and sequence data, because
they account in a proper way for some specificities of issues with the data, such as auto-
correlation between observations, measurement error, and unobserved heterogeneity. The
unobserved heterogeneity refers to the part of variability in the longitudinal data that is due
to subject-specific latent (i.e., unobservable) factors. For the ease of the reader, the notation
adopted in the model equations is summarised in Table A1 reported in Appendix A.

Let yij = (yi1j, . . . , yitj, . . . , yiTj)
′ denote the sequence of observed values (or observed

states) for individual i (i = 1, . . . , n) on variable (or channel) j (j = 1, . . . , J) in discrete time
occasions 1, . . . , T. In what follows, the case of categorical variables is explicitly consid-
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ered. In addition, to account for the part of unobserved heterogeneity that changes over
time a discrete time-varying latent variable Uit is introduced, denoting the unobservable
(hidden or latent) state of individual i at time t. Therefore, a sequence of hidden states
Ui = (Ui1, . . . , Uit, . . . , UiT)

′, whose actual manifestation is provided by vectors yij for all
channels j, is available for each individual.

The multivariate HM model [21,22] is based on two main assumptions. First, each
observed variable yitj for individual i at time t is conditionally independent of yi,t−1j, yi,t−2j,
. . . , yi2j, yi1j and of each yitj′ , with j′ 6= j = 1, . . . , J, given the hidden state Uit = ut at
time t. This is called the local independence assumption and is a typical assumption
characterising the wide class of latent variable models [14,15] to which the HM models
belong. Second, the latent variable Uit is assumed to follow a first-order Markov chain with
state space {1, . . . , H}, that is, Uit is conditionally independent of Uit−2, Uit−3, . . . , Ui2, Ui1,
given Uit−1. In other words, according to these two assumptions, the association between
states observed on the same individual at different times is captured by the latent process;
in turn, the latent state at any time depends on the latent state at the previous time (see
path diagram in Figure 4). In addition, value ut assumed by Uit lies in the discrete space
{1, . . . , H}. In the absence of any theoretical suggestion about the value of H, the number
of hidden states is usually assumed to be equal to the number of response categories
of variable yitj or, alternatively, it may be selected through information criteria, such as
AIC [35] and BIC [36] indices.

Yi11, . . . , Yi1J Yi21, . . . , Yi2J

Ui1
�
�
�>

Ui2

6

-

6
�
�
�>

- · · ·

· · ·

-

YiT1, . . . , YiTJ

UiT

6
�
�
�>

Figure 4. Path diagram of the multivariate HM model.

According to these assumptions, the manifest probability of the observed sequence of
data is formulated as

p(Yij = yij) = ∑
u

p(yij|Ui = u)p(Ui = u)

=
H

∑
u1=1

. . .
H

∑
uT=1

[
p(yi1j|Ui1 = u1)p(Ui1 = u1)·

·
T

∏
t=2

p(yitj|Uit = ut)p(Uit = ut|Ui,t−1 = ut−1)

]
, (1)

where p(yitj|Uit = ut) is the conditional probability of the observed state given the hidden
state (emission probability), p(Ui1 = u1) is the initial probability of starting from the
hidden state u1, and p(Uit = ut|Ui,t−1 = ut−1) is the transition probability of moving
from hidden state ut−1 to hidden state ut; we assume that emission probabilities and
transition probabilities are constant over time (time-homogeneity assumption). As usual in
the HM models, the first-order Markov chain process, expressed by transition probabilities
p(Uit = ut|Ui,t−1 = ut−1), in which the hidden state at time t depends only on the hidden
state at time t− 1, allows us to account for the autocorrelation that characterises repeated
measures on the same individuals (longitudinal data). Moreover, the relationship between
hidden states and observed states, represented by emission probabilities p(yitj|Uit = ut),
accounts for the measurement error.

A generalisation of the HM model that, in addition to autocorrelation and measure-
ment error, also allows us to account for the time-constant unobserved heterogeneity in
the population, is represented by the Mixture HM (MHM) model [26–29]. The MHM is
based on the assumption that the population is composed of unobservable groups (latent
classes, [30,31]) of individuals sharing time-constant homogenous characteristics, with each
of these groups following a specific HM model. Formally, we introduce a time-constant
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latent variable Vi having a discrete distribution with K support points v1, . . . , vK and related
mass probabilities (or weights) π1 = p(Vi = v1), . . . , πK = p(Vi = vK). Hence, the model
in Equation (1) generalises as

p(Yij = yij) =
K

∑
k=1

πk

[
∑
u

p(yij|Ui = u, Vi = vk)p(Ui = u)

]
. (2)

It is worth noting that emission probabilities in the mixture generalisation of HM
models are specific to the latent class vk (other than of the latent state u). In addition, mass
probabilities π1, . . . , πK in the above formulation are the same for all individuals. However,
according to the concomitant variable approach [32,33], one may assume that these weights
depend on some time-constant (or concomitant) individual characteristics. Denoted by Xi
the vector of individual characteristics and by x its observed manifestation, probability
πk = P(Vi = vk), is replaced in Equation (2) by πk(xi) = p(Vi = vk|Xi = x), which is
explained through a multinomial logit model as follows

logit[πk(xi)] = log
πk(xi)

π1(xi)
= β0 + x′i β1 k = 2, . . . , K, (3)

where β0 is the constant term and β1 is the vector of regression coefficients describing the
effect of covariates on the (logarithm of the) probability of belonging to latent class k with
respect to latent class 1.

The HM-type models are usually estimated through the maximisation of the log-
likelihood function

` =
n

∑
i=1

J

∑
j=1

log p(Yij = yij),

with p(Yij = yij) defined as in Equation (1) for the HM model and in Equation (2) for the
MHM model. To maximise the log-likelihood function, numerical optimisation approaches
are necessary, such as the Expectation-Maximization (EM; [37]) algorithm. Functions
that efficiently implement the maximisation process of ` are available in the R package
seqHMM [38,39] and details on the related algorithms are provided in [40]. Here, it is
worth outlining that, to avoid the problem of local maxima that is typical of mixture
models, we suggest to repeat the estimation process a certain number of times with random
starting values.

Similarly to the selection of the number H of hidden states, the choice of the number
K of latent classes may be driven by practical needs (e.g., clustering individuals in three
latent classes to distinguish among the best performers that will get an award, the worst
performers that will be penalised, and intermediate performers); otherwise, the selection of
K can be based on the goodness of fit and the parsimony of the model assessed through
information criteria.

4. Analysis of Student Paths

We applied the MHM model with the concomitant variables described above to the
analysis of the chronological sequences of exams taken by students enrolled in Business
Economics at the University of Florence, described in Section 2. In the following we provide
details of the model specification (Section 4.1) and we report estimates of model parameters,
obtained using the R package seqHMM. We first illustrate and discuss results related to the
HM model (Section 4.2) and, then, we extend the analysis to the MHM with covariates
(Sections 4.3 and 4.4). The discussion of results focuses on the differences among courses in
the tendency to postpone the final tests and on the interpretation of the latent structure of
the student population.
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4.1. Model Specification

To properly formulate the type of models described in Section 3, we define a binary
observed variable yitj = y, with y = 1 if student i takes exam j at time t or before, and y = 0
if student i has not yet taken exam j at time t, being i = 1, . . . , n with n = 290 denoting the
sample size, j = 1, . . . , J with J = 28 denoting the total number of courses, and t = 1, . . . , Ti
with Ti denoting the length of the chronological sequence for individual i. Length Ti is
subject-specific: when a student completes the final tests for all courses scheduled in their
degree program, they exit from the follow up and interrupt their exam sequences. The
theoretical maximum value of Ti for a virtuous student that completes their study plan
within the lawful term is 24 (corresponding to the number of exam sessions scheduled
in three years). In practice, the maximum observable value of Ti is 48, corresponding to
the number of exam sessions scheduled in the years 2012–2018 (follow-up period). Thus,
for each student and each course a sequence of 0 s and 1 s is observed, according to if the
course final test is taken or has not been yet taken at a given exam session. Whenever a
course is not present in the student’s degree program or the related final test has not been
taken in the entire observed period, a sequence of only 0 s is reported.

Table 1 illustrates some possible situations: line 1 refers to a student that is still enrolled
at the end of the follow-up period and has taken the exam of Accounting at the third exam
session (ts3); line 2 refers to the same student that has never taken the exam of Mathematics
in the period 2012–2018; the last line refers to a student that completed the exams scheduled
in their degree program in ts24 (i.e., 3 years after the enrollment at the degree course) and
has taken the exam of Mathematics at the second exam session (ts2).

Table 1. Example of exam sequences.

Student Exam Status ts1 ts2 ts3 . . . ts24 ts25 . . . ts48

1 Accounting enrolled 0 0 1 1 1 1 . . . 1
1 Mathematics enrolled 0 0 0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Mathematics graduates 0 1 1 1 1 NA . . . NA

Sequences of 0 s and 1 s represent the observed states, which are interpreted as
probabilistic manifestations of a certain number of hidden states. More precisely, we
assume that student i at any time point may belong to one of two hidden states (i.e., H = 2):
state ut = 1 denotes a low propensity to take exams at time t and state ut = 2 denotes a
high propensity to take exams at time t. Note that all students belong to state 1 at enrolment
and tend to move towards state 2 as they take exams.

As concerns the specification of the mixture part of the MHM model in Equation (2),
we refer to the main stream of literature on mixture models ([16,41], Chap. 6, and references
therein) from which emerges that, in the choice of the number K of latent classes, BIC
should be preferred to other indices, mainly AIC, because it applies to the log-likelihood a
larger penalty for additional parameters in comparison with other criteria and, then, tends
to select more parsimonious models. In detail, BIC is computed through the usual formula,
as

BIC = −2 log ˆ̀ + #par · log N,

where ˆ̀ is the estimated maximum log-likelihood, #par is the number of free model param-
eters, and N is the number of observations. With the data at issue, N is defined as the sum
of observations (values 0 or 1) for all individuals at all time occasions for each channel, that
is, N = ∑n

i=1 Ti.
In addition, mass probabilities of the mixture components are formulated in accor-

dance with the multinomial logit model in Equation (3) by accounting for the following
baseline individual characteristics: gender (reference category: female), HS type (refer-
ence category: humanistic or scientific HS), and HS final grade (quantitative variable;
minimum = 60, maximum = 100).
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The HM component of the estimated model allows an in-depth analysis of the perfor-
mance of students on single courses, whereas the mixture component detects groups of
students with homogenous behaviours in terms of the observed chronological sequences
of taken exams and propensity to postpone exams. Finally, the introduction of baseline
individual variables affecting the latent class weights allows us to adopt the proposed
model for predictive purposes.

4.2. Hidden Markov Model

We first estimated an HM model (Equation (1)) with H = 2 hidden states. Coherently
with that outlined in the previous section, the estimated initial probability of belonging
to state 1 is equal to 1 and that of belonging to state 2 is equal to 0, that is, p̂(Ui1 = 1) = 1
and p̂(Ui1 = 2) = 0, for i = 1, . . . , n. Moreover, we observe a strong persistency within the
hidden states, as shown by the estimated transition probabilities, collected in the following
matrix:(

p̂(Uit = 1|Ui,t−1 = 1) p̂(Uit = 2|Ui,t−1 = 1)
p̂(Uit = 1|Ui,t−1 = 2) p̂(Uit = 2|Ui,t−1 = 2)

)
=

(
0.945 0.0551
0.000 1.000

)
. (4)

At the beginning of the follow-up period (i.e., at the enrolment to the degree course)
any student belongs to state 1 and then moves towards state 2. The regression from state 2
to state 1 is not possible (p̂(Uit = 1|Ui,t−1 = 2) = 0.000), whereas the transition from state 1
to state 2 is slow: the estimated probability of moving from state 1 to state 2 equals 5.51%
at any time point.

The most interesting piece of information in the HM model comes from the estimate
of emission probabilities, which represent the probability of taking a certain exam at any
time point, given the hidden state: the lower p̂(Yitj = 1|uit), the higher the tendency to
postpone exam j. From a theoretical perspective, we expect emission probabilities close
to 1 for the exams of first-year courses, because these courses are compulsory (i.e., they
are present in the plan of study of all students) and are scheduled at the beginning of the
follow-up period (i.e., the first academic year, corresponding to exam sessions ts1 to ts8).
Therefore, if students respect the chronological sequence of exams scheduled in their study
plan, we expect to observe, for the first-year exams, sequences of just a few 0 s (or none) at
the very beginning of the follow-up period, followed by 1s for the following time points.
More precisely, if we consider an ideally virtuous student that takes all of their exams in
three years (i.e., in the exam sessions from ts1 to ts24), this optimal situation corresponds
to theoretical emission probabilities for the first-year exams in the range

0.708 ≤ p̂(yitj|Uit = ut) ≤ 1.000,

with values 1.000 and 0.708 denoting the proportion of 1s in the sequences of those exams
that are taken in the first and in the last exam session of the first academic year, respectively
(i.e., exam sessions ts1 and ts8). Obviously, the theoretical emission probabilities that refer
to exams of courses scheduled at the second and third academic year are smaller. More
precisely, for the second-year exams we expect

0.375 ≤ p̂(yitj|Uit = ut) ≤ 0.667,

where 0.667 is the superior limit that refers to exams taken in ts9 (i.e., the first exam session
of the second year) and 0.375 is the inferior limit that refers to exams taken in ts16 (i.e., the
last exam session of the second year). Similarly, theoretical emission probabilities for the
third year exams are expected in the range

0.042 ≤ p̂(yitj|Uit = ut) ≤ 0.330.

In practice, the tendency to postpone an exam with respect to the study plan leads
to emission probabilities smaller than the inferior limits defined above (e.g., 0.708 for the
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first-year exams). Estimates of emission probabilities of first-year courses are shown in
Table 2.

Table 2. HM model: Estimated emission probabilities (only first-year courses).

Course Hidden State Emission Prob.

Accounting
State 1 0.864
State 2 0.982

Mathematics
State 1 0.319
State 2 0.607

Private law
State 1 0.411
State 2 0.774

Management
State 1 0.714
State 2 0.987

Microeconomics
State 1 0.400
State 2 0.829

Statistics
State 1 0.523
State 2 0.907

Emission probabilities related to hidden state 2 are systematically higher than emission
probabilities related to hidden state 1. This result, together with the estimates of initial and
transition probabilities, is coherent with the interpretation of state 1 as proper of students
having a low propensity to take exams (i.e., a high propensity to postpone) and state 2 as
proper of students having a high propensity to take exams, at any time point.

Students in state 2 present high values of the emission probabilities for the first-year
courses, with the remarkable exception of Mathematics, the estimated emission probability
of which is equal to 60.7%. The situation is definitely worse for students in state 1: the
most problematic exam is still Mathematics, with an emission probability equal to 31.9%;
Microeconomics and Private Law follow, with emission probabilities equal to 40.0% and
41.1%, respectively. The tendency to postpone is only slightly lower, but still important, for
the course of Statistics, with an emission probability equal to 52.5%.

A similar situation occurs also for the courses of the second and third year. Here, it
is worth outlining the critical case of the Macroeconomics course, which is a compulsory
course scheduled at the second year. The estimated emission probability is equal to 0.005
for students in state 1 and 0.023 for students in state 2, thus denoting a clear tendency for
students to postpone the exam of Macroeconomics well beyond the lawful term.

4.3. Mixture Hidden Markov Model

The HM model described in the previous section is extended to a MHM model to
account for the unobserved heterogeneity in the students’ propensity to take exams. As
clarified in Section 4.1, the choice of the number of mixture components of the MHM model
is driven by the BIC. More precisely, a sequence of MHM models without concomitant
variables (Equation (2)) is estimated for increasing values of K, from 1 (corresponding
to the HM model) to 10. As shown in Table 3, values of BIC index become smaller as K
increases, even if the relative reduction in BIC between consecutive K values (column delta
in Table 3) falls below 1% as K increases from 5 to 6. Then, the value K = 5 is retained for
the subsequent analysis.
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Table 3. MHM models for K = 1, . . . , 10: maximum log-likelihood ˆ̀, number of free model parame-
ters, BIC values, relative difference between consecutive BIC values (delta).

K ˆ̀ # par. BIC delta

1 −93,482.0 58 187,497.2 –
2 −88,708.0 117 178,491.6 −0.048
3 −86,138.3 176 173,894.7 −0.026
4 −84,680.2 235 171,520.8 −0.014
5 −82,988.5 294 168,679.9 −0.017
6 −82,127.9 353 167,501.0 −0.007
7 −81,204.7 412 166,197.0 −0.008
8 −80,145.0 471 164,620.1 −0.009
9 −79,074.0 530 163,020.5 −0.010
10 −78,774.5 589 162,963.9 −0.000

Given K = 5, the MHM model with concomitant variables, defined as in
Equations (2) and (3), is estimated. The cohort of students is almost uniformly distributed
among the five latent classes (Table 4): class 1 collects the highest proportion of individuals
(27.9%), followed by class 5 (23.1%); on the other hand, the smallest class is class 3, with
14.8% of students. Note that the class membership probabilities shown in Table 4 are
obtained by averaging the estimates of subject-specific weights πk(xi).

Table 4. MHM model with concomitant variables: Average estimated class membership probabilities,
number of students, estimated transition probabilities from state 1 to state 2.

Class 1 Class 2 Class 3 Class 4 Class 5

Avg. class prob. (π̂k(xi)) 0.279 0.169 0.148 0.172 0.231
# of students 81 49 43 50 67

p̂(Uit = 2|Ui,t−1 = 1) 0.067 0.056 0.057 0.049 0.049

A synthetic representation of the five latent classes is provided by the transition
probabilities, which resemble those discussed for the HM model (see matrix in Equation (4)),
but with some differences among latent classes in the transition from state 1 to state 2
(Table 4, last line). Students in class 1 show a probability of transition from state 1 to state
2 equal to 6.7% against the 4.9% of students allocated in classes 4 and 5. This difference
is well outlined in Figure 5, where the estimated sequence of hidden states is displayed
for each latent class: distributions of students in state 1 for classes 4 and 5 show a positive
skewness that is more pronounced with respect to the other classes, mainly class 1.

Additional details about the latent class characteristics are provided by the estimated
emission probabilities of the MHM model. In Table 5, the emission probabilities of the
first-year courses are shown; these probabilities are class-specific.

Latent class 1 depicts a substantially satisfactory situation, with emission probabilities
for state 1 higher than the corresponding probabilities referring to the entire cohort (com-
pare with Table 2) and emission probabilities for state 2 equal to 1 or very close to 1. The
main difficulties in taking the final test are encountered with Microeconomics and Statistics
courses (estimated emission probability for state 1 equal to 55.5% and 69.1%, respectively).

Values of emission probabilities related to latent classes 2 and 3 are close to those
estimated for class 1, with two remarkable exceptions. Students in class 2 encounter extreme
difficulties in taking the final test of Private Law: the estimated emission probabilities are
the smallest, being equal to 0.00% for students in state 1 and 46.1% for students in state
2. Similarly, class 3 collects students having difficulty in taking Mathematics (emission
probabilities: 26.9% for state 1 and 65.6% for state 2).

However, the worst performances are generally observed for students in latent class 4,
whose emission probabilities are smaller than the values for the entire cohort (compare with
Table 2) for all first-year courses. Poor estimates are generally obtained also for latent class
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5, which reports emission probabilities for Private Law (states 1 and 2) and Mathematics
(state 1) smaller than those—already very small—of class 4. It is worth noting the really
good performance on Management, whose emission probability for state 1 is the highest
(80.2%) with respect to the other latent classes.
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Figure 5. MHM model with concomitant variables: Sequences of hidden states by latent class.

Table 5. MHM model with concomitant variables: Estimated emission probabilities by latent class
(only first-year courses).

Course Hidden State Class 1 Class 2 Class 3 Class 4 Class 5

Accounting
State 1 0.962 0.933 0.914 0.593 0.929
State 2 1.000 1.000 1.000 0.904 1.000

Mathematics
State 1 0.739 0.626 0.269 0.049 0.013
State 2 0.972 0.962 0.656 0.245 0.363

Private law
State 1 0.770 0.000 0.658 0.322 0.241
State 2 1.000 0.461 0.998 0.767 0.725

Management
State 1 0.760 0.734 0.746 0.504 0.802
State 2 1.000 0.981 0.981 0.958 1.000

Microeconomics
State 1 0.555 0.553 0.487 0.155 0.322
State 2 0.972 0.968 0.851 0.600 0.800

Statistics
State 1 0.691 0.616 0.575 0.137 0.620
State 2 1.000 0.974 0.934 0.280 0.994
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Finally, a class-specific analysis of students’ overall performances in terms of propor-
tion of graduates at the end of the follow-up period, exams grade point average, and time
to the last exam is useful to best characterise the latent classes (Table 6).

Table 6. Performance of students at the end of the follow-up, by latent class: students’ status
(proportion), exams grade point average (average values for all students and only for graduates),
time to the last exam (average values for all students and only for graduates).

Variable Class 1 Class 2 Class 3 Class 4 Class 5 All

Status
Enrolled 0.037 0.102 0.093 0.560 0.299 0.207
Graduated 0.963 0.898 0.907 0.440 0.672 0.786
Retired 0.000 0.000 0.000 0.000 0.030 0.007

Exams grade point avg. (all) 25.7 24.5 24.9 23.2 23.9 24.5
Exams grade point avg. (grad.) 25.8 24.6 25.1 23.3 24.2 24.9
Time to the last exam (all) 1287.8 1556.1 1409.4 1876.9 1741.1 1557.5
Time to the last exam (grad.) 1281.0 1499.5 1362.3 1797.7 1661.2 1462.0

The descriptive statistics reported in Table 6 confirm latent class 1 as the class of best
performers and latent classes 4 and 5 as the classes of worst performers. As concerns class 1,
almost all students (96.3% versus 78.6% of the entire cohort) completed the degree program
at the end of the year 2018, with an exams grade point average higher than the overall
average (25.7 vs. 24.5), and with times shorter than the average (1287 vs. 1557).

Classes 2 and 3 show similar profiles, with a high proportion of graduates (around
90%) and a relatively small proportion of still enrolled students (around 10% vs. 20.7% of
the entire cohort), and with exams grade point averages and times aligned with the average
of the entire cohort.

Students allocated in latent classes 4 and 5 have overall performances definitely worse
than the entire cohort; more than one half of students in class 4 were still enrolled, and
one third of students in class 5 were still enrolled or retired at the end of the year 2018;
moreover, the exam grade point averages are smaller than the average of the entire cohort
and times are longer than the average.

We may depict students in latent class 1 as “the best performers”, students in classes
2 and 3 as “intermediate performers”, and students in classes 4 and 5 as “the worst
performers”. Specific differences between classes 2 and 3, as well as between classes 4 and
5, have to be searched for the variable difficult in taking specific exams, such as Private
Law for students in latent class 2 and Mathematics for students in latent class 3.

4.4. Effect of Concomitant Variables

In this section, regression coefficients of the multinomial logit sub-model defined in
Equation (3) are discussed; estimates are shown in Table 7, together with their standard
errors, t statistics and related p values. In addition, to make the interpretation of these
coefficients easier and the baseline characteristics of the latent classes clearer, Table 8
provides the average values of the concomitant variables in each latent class.

Statistically significant differences (Table 7) between classes 2, 3, 4, and 5 versus class 1
(“the best performers”) are due to the HS type (vocational HS or other type of HS versus
humanistic or scientific HS) and the HS final grade. In detail (Table 8), the proportion of
students coming from a vocational or other HS reaches the minimum value (4.9%) in class
1, whereas it is definitely larger for the other classes, ranging from 16.3% (class 2) to 30.0%
(class 4). Similarly, in terms of HS final grade, the highest average grade is observed in
class 1 (82.1), whereas the lowest is observed in class 4 (66.3), followed by class 5 (73.5).
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Table 7. Multinomial logit sub-model for latent class membership (reference is class 1): Estimated
regression coefficients with standard errors, t statistics, and p-values.

Estimate Std. Error t-Stat p-Value

Latent class 2
Intercept 3.360 1.471 2.283 0.022
Male 0.124 0.403 0.308 0.758
HS type (ref.: Humanistic or scientific)

Technical −0.801 0.516 −1.552 0.121
Vocational (or others) 1.387 0.677 2.048 0.041

HS final grade −0.049 0.018 −2.807 0.005

Latent class 3
Intercept 2.542 1.513 1.681 0.093
Male 0.225 0.428 0.526 0.599
HS type (ref.: Humanistic or scientific)

Technical 0.769 0.442 1.739 0.082
Vocational or others 2.301 0.681 3.381 0.001

HS final grade −0.048 0.018 −2.708 0.007

Latent class 4
Intercept 5.686 1.380 4.119 0.000
Male −0.442 0.409 −1.081 0.280
HS type (ref.: Humanistic or scientific)

Technical 0.287 0.458 0.626 0.531
Vocational or others 1.948 0.675 2.888 0.004

HS final grade −0.081 0.017 −4.880 0.000

Latent class 5
Intercept 5.061 1.351 3.746 0.000
Male −0.990 0.385 −2.571 0.010
HS type (ref.: Humanistic or scientific)

Technical 1.151 0.403 2.859 0.004
Vocational or others 2.427 0.638 3.805 0.000

HS final grade −0.070 0.016 −4.333 0.000

Table 8. Distribution of concomitant individual variables, by cluster.

Variable Class 1 Class 2 Class 3 Class 4 Class 5 All

Gender (proportions)
females 0.469 0.388 0.395 0.480 0.642 0.486
males 0.531 0.612 0.605 0.520 0.358 0.514

HS type (proportions)
humanistic or scientific 0.642 0.714 0.419 0.480 0.328 0.521
technical 0.309 0.122 0.349 0.220 0.373 0.283
vocational or others 0.049 0.163 0.233 0.300 0.299 0.197

HS final grade (averages) 82.1 75.9 76.8 66.3 73.5 75.6

Other statistically significant differences (Table 7) refer to class 5 versus class 1 and are
due to student’s gender and technical HS. Indeed, class 5 presents a significant prevalence
of females (64.2% vs. 46.9% in class 1) and students coming from a technical HS (37.3% vs.
30.9% in class 1).

Generally, comparing descriptives of each latent class with those of the entire cohort
(Table 8) reveals that latent class 1 distinguishes students coming from a humanistic or
scientific HS and with a high HS final grade. Moreover, latent class 2 shows a prevalence of
males coming mainly from a humanistic or scientific HS and a small representativeness
of technical HS, whereas in latent class 3 there is a prevalence of males and students from
technical HS. Finally, a considerable proportion of students in classes 4 and 5 come from a
vocational or other HS with a low HS final grade; in addition, class 5 is distinguished from
the entire cohort for a high proportion of females and students coming from technical HS.

5. Conclusions

In this contribution, we proposed an approach based on mixtures of hidden Markov
models to analyse the sequences of exams taken by academic students. We focused on a
cohort of students enrolled in Business Economics at the University of Florence (IT) in the
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year 2012, followed up to 2018. We found five classes of students that are well characterised
in terms of sequence of taken exams and overall academic performance. For instance,
students belonging to class 1 are distinguished by the highest probability of taking exams
according to the sequence scheduled in their plan of study, whereas students in class 4 show
the highest tendency to postpone the exams of the first year, which are well known to be the
most difficult. Correspondingly, students in class 1 complete the degree program in about
three years with the highest final exams grade point average; in contrast, students in class 4
take more than five years to obtain their degree (more than one half were still enrolled at
the end of the follow-up period) with the smallest final exam grade point average.

This type of analysis provides results that are useful to drive the guidance services of
the university. For instance, students in class 2, if compared with those in class 1, reveal
an important deficiency in overcoming the exam of Private Law, whereas students in class
3 show a strong weakness in Mathematics. Thus, specific and distinctive support actions
could be implemented to facilitate the progression of the academic career. On the other
hand, students in class 5 show a generalised criticality in all exams, with the remarkable
exception of Management: therefore, they could be invited to modify their study plan in
order to strength their propensity in this disciplinary area.

The analysis also highlighted a significant effect of the high school (HS) attended, in
terms of typology and final grade, on the allocation of students in the five classes. For
instance, students coming from humanistic or scientific HS have a higher probability to
fall in the classes with the best performances. These results reiterate the importance of
guidance services at the end of the HS period.

Further development of this work will be oriented towards the implementation of a
data mining procedure to suggest student-specific adaptive paths of courses, on the basis
of the exams they have already taken.
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Appendix A

In the following table, the symbols used in the model equations and the related
descriptions are displayed.
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Table A1. Description of model notation.

Symbol Description

i = 1, . . . , n individual (student)
j = 1, . . . , J channel (exam)
t = 1, . . . , Ti time occasion
h = 1, . . . , H discrete state space
k = 1, . . . , K latent class
yitj observed binary state for student i at time t on exam j
yij = (yi1j, . . . , yitj, . . . , yiTj)

′ sequence of observed binary states for student i
on exam j

xi vector of time-constant characteristics for student i
Uit discrete time-dependent latent variable
Vi discrete time-constant latent variable
ut hidden state of Uit at time t
vk support point of Vi for latent class k
p(Ui1 = u1) initial probability of starting from hidden state u1
p(Uit = ut|Ui,t−1 = ut−1) transition probability of moving from

hidden state ut−1 to hidden state ut
πk = p(Vi = vk) mass probability (or weight) of vk
πk(xi) = p(Vi = vk |Xi = x) subject-specific mass probability (or weight) of vk
p(yitj|Uit = ut) conditional probability of observed state

given hidden state
p(yij|Ui = u, Vi = vk) conditional probability of sequence of observed states

given hidden states and latent class
β0, β1 regression coefficients
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