
����������
�������

Citation: Bonds, D.; Koziel, J.A.;

De, M.; Chen, B.; Singh, A.K.;

Licht, M.A. Dataset Documenting the

Interactions of Biochar with Manure,

Soil, and Plants: Towards Improved

Sustainability of Animal and Crop

Agriculture. Data 2022, 7, 32.

https://doi.org/10.3390/

data7030032

Academic Editor: Jamal

Jokar Arsanjani

Received: 1 February 2022

Accepted: 25 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Data Descriptor

Dataset Documenting the Interactions of Biochar with Manure,
Soil, and Plants: Towards Improved Sustainability of Animal
and Crop Agriculture
Darcy Bonds 1 , Jacek A. Koziel 2,* , Mriganka De 3,4 , Baitong Chen 2 , Asheesh K. Singh 3 and
Mark A. Licht 3

1 Department of Horticulture, Iowa State University, Ames, IA 50011, USA; dgbonds@iastate.edu
2 Department of Agriculture and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;

baitongc@iastate.edu
3 Department of Agronomy, Iowa State University, Ames, IA 50011, USA; mriganka.de@mnsu.edu (M.D.);

singhak@iastate.edu (A.K.S.); lichtma@iastate.edu (M.A.L.)
4 Department of Biological Sciences, Minnesota State University, Mankato, MN 50011, USA
* Correspondence: koziel@iastate.edu

Abstract: AbstractPlant and animal agriculture is a part of a larger system where the environment,
soil, water, and nutrient management interact. Biochar (a pyrolyzed biomass) has been shown to
affect the single components of this complex system positively. Biochar is a soil amendment, which
has been documented for its benefits as a soil enhancer particularly to increase soil carbon, improve
soil fertility, and better nutrient retention. These effects have been documented in the literature. Still,
there is a need for a broader examination of these single components and effects that aims at the
complementarity and synergy attainable with biochar and the animal and crop-production system.
Thus, we report a comprehensive dataset documenting the interactions of biochar with manure,
soil, and plants. We evaluated three biochars mixed with manure alongside both manure and soil
controls for improvement in soil quality, reduction in nutrient movement, and increase in plant
nutrient availability. We explain the experiments and the dataset that contains the physicochemical
properties of each biochar–manure mixture, the physicochemical properties of soil amended with
each biochar–manure mixture, and the biomass and nutrient information of plants grown in biochar–
manure mixture-amended soil. This dataset is useful for continued research examining both the short-
and long-term effects of biochar–manure mixtures on both plant and soil systems. In addition, these
data will be beneficial to extend the findings to field settings for practical and realized gains.

Dataset: Submitted to be published as a supplement to this paper in the journal Data.

Dataset License: CC-BY.

Keywords: carbon cycling; nutrient cycling; soil amendment; manure; biochar; corn; maize; soybeans; fertilizer

1. Summary

Plant and animal agriculture is a part of a larger system where the environment, soil,
water, and nutrient management interact. Biochar (a pyrolyzed biomass) has been shown
to affect the single components of this complex system positively. These effects have been
documented in the literature. Over 40 published reviews and papers document interactions
between biochar and soil, focusing primarily on decontamination [1], amendment of soil
properties [2], and carbon sequestration [3]. Only half of these published papers and
reviews discuss the interactions between biochar and manure, highlighting organic waste
composting systems [4], greenhouse gas emissions [5], and manure decontamination [6].
About fifteen reviews and papers explore the relationship between biochar and plants,
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mainly discussing detoxification [7], nutrient dynamics [8], and crop productivity [9]. Still,
there is a need for a broader examination of these single components and effects that
aims at the complementarity and synergy attainable with biochar and the animal and
crop-production system.

Recently, we provided a more comprehensive story concerning the interactions be-
tween a system in which biochar, soil, manure, and plants are involved and interact-
ing [10,11]. We explored the possibility of a holistic approach, i.e., using a biochar–manure
mixture as fertilizer in soil-plant systems. Specifically, we focused on improving nutrient
recycling, solving livestock odor problems, and increasing crop yields (Figure 1) [10,11].
This proposed concept can be classified as a Technology Readiness Level 2 or Level 3 [12],
as the concept of this study has been validated and proven through its supported experi-
ments [10,11]. Scaling up, demonstration, and proven effectiveness in greater number of
field-case studies is still needed.
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However, the experimental design for [10,11] contained a wider scope of environmen-
tal and agronomic data that were not included in these published works apart from some
discussion of potentially beneficial trends. Thus, we are publishing this dataset so that the
data not included in the published work will become available for consideration concerning
these emerging trends, which could improve sustainable practices in environmental, crop
agriculture, and animal systems.

The data collected from this investigation of the interactions between the soil, plant,
biochar, and manure elements of an agricultural system revealed a positive impact. Specifi-
cally, soil composition of organic matter, C, N, P, and K significantly increased [10]. Ad-
ditionally, an increase of organic matter and C in the soil was observed in the green-
house setting without affecting plant nutrient uptake [11]. While only swine manure was
used [10,11], it would be interesting to consider manure from different types of animal
production and manure-management systems and the effects on a biochar–manure mixture.
In the future, studies investigating the interactions between these factors in a field setting
over a longer period of time, with the inclusion of the manure type variable, will reveal
more about these animal and crop-production systems.

2. Data Description

This dataset is organized as a spreadsheet with a total of six sheets (Table 1). The first
sheet defines abbreviations and terms used throughout the dataset as well as a brief sum-
mary of each successive sheet. The second sheet contains the physicochemical properties of
the control treatments and manure–biochar mixtures before soil application. The third sheet
contains the soil physicochemical of the control and experimental treatments. The fourth
sheet contains the data and calculations necessary to determine the nutrient efficiency ratio
for each nutrient analyzed in corn (Zea mays L.)/soybean (Glycine max L.) biomass. The
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fifth sheet contains initial biomass data taken before biomass physicochemical analysis.
The sixth sheet contains the amount of each macro/micronutrients found in corn/soybean
biomass. In this dataset, the character ‘S’ denotes a sample of soil containing a soybean
plant, and the character ‘C’ denotes a sample of soil containing a corn plant.

Table 1. Summary of content organized in (Supplementary Material ‘Biochar_Manure_Soil_
Plant_Interactions.xlsx’) data set for Midwest soil, treatments, and plants.

Sheet Name Content Description

READ_ME Treatment abbreviation guide
Sheet navigation guide

Initial Treatment Data

Moisture content
Organic matter content
Nitrate and ammonium content
Mineral/nutrient content
pH
Carbon/Nitrogen ratio

Soil Data

Total exchange capacity
pH
Organic matter content
Anion content
Cation content
Cation base saturation
Extractable minors
Nitrate and ammonium content
Carbon/Nitrogen profile

Nutrient Efficiency Ratio
Units of yield
Units of elements in tissue
Nutrient efficiency ratio

Biomass Data

Biomass weight
Plant growth stage
Nitrogen content
Phosphorus content

Plant Data Nutrient content of plant biomass

2.1. READ_ME

This sheet lists the treatment symbols and abbreviations used throughout the dataset
spreadsheet (Treatment Abbreviation Guide) as well as a brief outline of the successive
sheets along with method and equation citations (Sheet Guide). Table 2 provides a guide of
what content can be found in the ‘READ_ME’ sheet.

Table 2. Summary and guide of content in the ‘READ_ME’ sheet.

Content Location

Experimental treatment abbreviation key Top left textbox
Greenhouse treatment abbreviation key Top right textbox

Sheet navigation guide Bottom textbox

2.2. Initial Treatment Data

This sheet contains the physicochemical properties of manure control and tested
manure–biochar mixtures along with calculated averages and standard deviations among
replicates before their use in the experiment. The properties of pure swine manure not
mixed with biochar (M) are located in Columns B and C, with averages and standard
deviations in columns D and E. Due to a lab error, the manure control group only contains
two replicates as opposed to the three replicates of the other experimental treatments. The
properties of swine manure mixed with red oak biochar (MRO) are located in Columns F
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through H, with averages and standard deviations in Columns I and J. The properties of
swine manure mixed with highly alkaline porous corn stover biochar (MHAP) are located
in Columns K through M, with averages and standard deviations located in Columns N
and O. The properties of swine manure mixed with highly alkaline porous corn stover
biochar (MHAPE) engineered with iron are located in Columns P through R, with averages
and standard deviations located in Columns S and T. Table 3 provides an example of what
content can be found in the ‘Initial Treatment Data’ sheet.

Table 3. An example of the content that can be found in the ‘Initial Treatment Data’ sheet. More
detailed information for all replicates is included in (Supplementary Material ‘Biochar_Manure_Soil_
Plant_Interactions.xlsx’).

Physicochemical Characteristic M MRO MHAP MHAPE

Moisture (% wet) - 21.1 57.5 50.9
LOI Organic Matter (% wet) - 43.4 30.2 26.5

NH4-N (% wet) 0.1 0.01 0.02 0.5
NO3-N (% wet) 0 0 0 0
Mn (ppm wet) 35.4 62.4 60.9 261.0

pH - 9.9 9.7 7.6
Carbon–Nitrogen Ratio - 46.6 26.4 12.7

The authors would like to stress the importance of standardization and its place in the
use of this data for agriculture applications. Initiatives, such as the International Biochar
Initiative (IBI) [13] and the European Biochar Certificate [14], are examples of available
frameworks for biochar standardization aiming for established guidelines for feedstock,
process, basic elemental content, and thresholds for targeted toxics.

2.3. Soil Data

This sheet contains the physicochemical properties along with calculated averages
and standard deviations of baseline soil (Row 3), soil from soil columns (Rows 5 through
33), as well as greenhouse pots containing corn (Rows 35 through 68) and soybean (Rows
70 through 103) plants. Properties of untreated soil (SOIL) are located in Rows 11 through
15, Rows 35 through 40, and Rows 70 through 75. Properties of soil treated with swine
manure and no biochar (M) are located in Rows 5 through 9, Rows 42 through 47, and
Rows 77 through 82. Properties of soil treated with manure and red oak biochar (MRO) are
located in Rows 17 through 21, Rows 49 through 54, and Rows 84 through 89. Properties
of soil treated with manure and highly alkaline porous corn stover biochar (MHAP) are
located in Rows 23 through 27, Rows 56 through 61, and Rows 91 through 96. Properties of
soil treated with manure and highly alkaline porous corn stover biochar engineered with
iron (MHAPE) are located in Rows 29 to 33, Rows 63 through 68, and Rows 98 through 103.
Table 4 provides an example of what content can be found in the ‘Soil Data’ sheet.

Table 4. An example of the content that can be found in the ‘Soil Data’ sheet. More detailed
information for all replicates is included in (Supplementary Material ‘Biochar_Manure_Soil_Plant_
Interactions.xlsx’).

Sample ID
Total Exchange

Capacity
(ME/100 g)

pH Organic
Matter (%)

Mehlich
III (ppm)

Ca
(ppm)

Ca
(%, Base

Saturation)

Fe
(ppm)

NO3-N
(ppm)

Carbon–Nitrogen
Ratio

Baseline 18.0 7.6 2.8 29 2296 63.9 137 7.1 11.1
M 16.6 7.5 3.2 58 1994 60.2 484 33.7 13.4

SOIL 17.1 7.5 3.0 36 2149 62.8 506 15.1 10.8
MRO 16.7 7.5 3.3 51 2022 60.4 459 18.8 11.3

MHAP 15.8 7.5 3.4 43 1919 60.8 447 22.2 11.9
MHAPE 16.9 7.3 3.4 39 2038 60.4 475 36.8 12.6



Data 2022, 7, 32 5 of 9

2.4. Nutrient Efficiency Ratio

Nutrient efficiency ratio is found by dividing the units of yield (found in Column C),
or total biomass, by the units of the element of interest found in the harvested plant tissue
(found in Columns F through L). Nutrient efficiency ratios were calculated for the three
manure–biochar treatments along with the two experimental controls for both corn (found
in Rows 5 through 24) and soybean (found in Rows 29 through 48) trials. Individual nutrient
efficiency ratios along with calculated averages and standard deviations were recorded for
nitrogen (Columns N through P), phosphorus (Columns Q through S), potassium (Columns
T through V), calcium (Columns W through Y), magnesium (Columns Z through AB), sulfur
(Columns AC through AE), and carbon (Columns AF through AH). Table 5 provides an
example of what content can be found in the ‘Nutrient Efficiency Ratio’ sheet.

Table 5. An example of the content that can be found in the ‘Nutrient Efficiency Ratio’ sheet. More
detailed information for all replicates is included in (Supplementary Material ‘Biochar_Manure_Soil_
Plant_Interactions.xlsx’).

Pot ID Biomass (g) N (g in Tissue) N (NER)

C1 3.0 0.06 47.8
C2 4.2 0.06 68.0
C3 3.4 0.05 64.9
C4 2.8 0.04 78.1
S1 1.7 0.06 29.1
S2 0.9 0.05 19.7
S3 1.0 0.04 27.0
S4 0.8 0.04 21.6

2.5. Biomass Data

This sheet contains initial biomass data taken before corn (Columns A through K)
and soybean (Columns M through R) plant nutrient analysis, including the mass of bag
+ biomass (Columns C and O) and biomass alone with calculated averages and standard
deviations for experimental treatments and controls (Columns D through F and Columns P
through R). Additional data were collected for corn plants, specifically corn plant growth
stage at the time of nutrient analysis, along with calculated averages for each pot and each
experimental treatment (Columns G through J) and the standard deviation of experimental
treatment averages (Column K). Table 6 provides an example of what content can be found
in the ‘Biomass Data’ sheet.

Table 6. An example of data that can be found in the ‘Biomass Data’ sheet. More detailed in-
formation for all replicates is included in (Supplementary Material ‘Biochar_Manure_Soil_Plant_
Interactions.xlsx’).

Pot ID Biomass (g) Plant Growth Stage

C1 3.0 V6
C2 4.2 V6
C3 3.4 V6
C4 2.8 V6
S1 1.7 -
S2 0.9 -
S3 1.0 -
S4 0.8 -

2.6. Plant Data

This sheet contains the elemental nutrient content of analyzed biomass for all pots and
all experimental treatments. Data for plants grown in untreated soil are located in Rows
4 through 9. Data for plants grown in soil treated with swine manure only are located in
Rows 10 through 15. Data for plants grown in soil treated with swine manure and red oak
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biochar are located in Rows 16 through 21. Data for plants grown in soil treated with swine
manure and highly alkaline porous corn stover biochar are located in Rows 22 through 27.
Data for plants grown in soil treated with swine manure and highly alkaline porous biochar
engineered with iron are located in Rows 28 through 33. Amounts of nitrogen, phosphorus,
potassium, calcium, magnesium, sulfur, and carbon were recorded as percentages for both
corn (Columns B through H) and soybean (Columns R through X), along with calculated
treatment averages and standard deviations. Amounts of boron, iron, manganese, copper,
zinc, aluminum, and sodium were recorded as parts per million for both corn (Columns
I through O) and soybean (Columns Y through AE), along with treatment averages and
standard deviations. Table 7 provides an example of what content can be found in the
‘Plant Data’ sheet.

Table 7. An example of data that can be found in the ‘Plant Data’ sheet. More detailed information for
all replicates is included in (Supplementary Material ‘Biochar_Manure_Soil_Plant_Interactions.xlsx’).

Pot ID N (%) P (%) K (%) B (ppm) Fe (ppm) Mn (ppm)

C1 2.09 0.14 2.56 11.90 50.20 37.70
C2 1.47 0.13 2.34 12.40 47.20 40.80
C3 1.54 0.15 2.41 14.30 58.50 50.30
C4 1.28 0.15 2.41 15.10 38.90 41.70
S1 3.44 0.20 2.31 44.50 69.90 93.10
S2 5.08 0.30 2.45 39.70 77.90 102.00
S3 3.70 0.25 2.51 38.90 62.50 89.10
S4 4.62 0.32 2.49 39.30 72.80 107.00

3. Methods

Properties of the biochars used in this experiment were described in detail in [10].
Briefly, three biochars were used: corn stover autothermal alkaline porous (HAP, pH = 9.2),
corn stover autothermal porous Fe-engineered (HAPE, pH = 5.4), and red oak (RO,
pH = 7.5). Conventional fast pyrolysis (for RO) and autothermal pyrolysis (for HAP and
HAPE) was used as described in detail by Polin et al., 2019 [15] and Rollag et al., 2020 [16].
The biochar properties, such as C (fixed and total), total N, ash content, moisture, and
volatile matter, were determined with methods described elsewhere [17]. Swine manure
collected from deep-pit storage was incubated for four weeks before the creation of the
biochar–manure mixtures. Following assembly of each mixture, there was another four-
week incubation period [10,11]. A well-drained Hanlon soil was used. Hanlon soils are of
coarse-loamy texture and the mesic Cumulic Hapludoll order [10,11].

The first part of this experiment concerned a soil column study investigating inter-
actions between biochar, manure, and soil. A more detailed account of the experimental
methods for this investigation can be found in [10]. Briefly, the mixture of biochar and
manure moisture, total C, total N, organic matter, NO3-N, NH4-N, and plant-available
P/K/other nutrients were analyzed by standard methods [18–26].

As shown in Figure 2, a soil column was filled for each experimental replicate contain-
ing a soil control, manure control, or biochar–manure mixture evaluated in the experiment.
Soil columns were leached periodically over a period of thirty days. Leachate was collected
in sample jars and stored and analyzed for physicochemical properties along with the soil.

The second part of this experiment involved a greenhouse study exploring the interac-
tions between biochar, manure, soil, and corn and soybean plants. A more detailed account
of the experimental methods for this investigation can be found in [11]. Briefly, the plant
growth stage for corn and soybean maturity was determined by standard methods [27,28].

Four replicates of each control and biochar–manure mixture investigated were used to
grow both corn and soybean plants. Plants were watered with deionized water every other
day over a period of nine weeks. Plant biomass was then harvested, dried, and analyzed
for nutrient content, nutrient-use efficiency, and other physicochemical properties. Soil
was also analyzed for physicochemical properties with standard methods [18–26]. Figure 3
shows the concept diagram illustrating the design of the experiment [11].
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