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Abstract: Graphene nanoplatelets (GnPs) are promising candidates for gas sensing applications
because they have a high surface area to volume ratio, high conductivity, and a high temperature
stability. The information provided in this data article will cover the surface and structural prop-
erties of pure and chemically treated GnPs, specifically with carboxyl, ammonia, nitrogen, oxygen,
fluorocarbon, and argon. Molecular dynamics and adsorption calculations are provided alongside
characterization data, which was performed with Raman spectroscopy, X-ray photoelectron spec-
troscopy (XPS), and X-ray diffraction (XRD) to determine the functional groups present and effects of
those groups on the structural and vibrational properties. Certain features in the observed Raman
spectra are attributed to the variations in concentration of the chemically treated GnPs. XRD data
show smaller crystallite sizes for chemically treated GnPs that agree with images acquired with
scanning electron microscopy. A molecular dynamics simulation is also employed to gain a better
understanding of the Raman and adsorption properties of pure GnPs.

Keywords: graphene nanoplatelets; spectroscopy; molecular modeling; chemical treatment

1. Introduction

The growing global concern for environmental pollution due to its negative impact
on the Earth’s climate and human health has led to an increased need for gas sensors
with useful properties such as a high sensitivity and selectivity. These properties are
crucial for identifying and removing harmful airborne contaminants from the environment.
Graphene and its derivatives, such as graphene oxide, reduced graphene oxide, and carbon
nanotubes, have been extensively researched for gas sensing applications due to their high
surface area [1–4]. The selective chemical treatment of graphene makes them attractive for a
variety of high-impact applications such as aerospace polymer reinforcement [5,6], electrical
metrology [7–9], and gas sensing applications. For the latter, metal oxide semiconductors
have been demonstrated to be advantageous due to their low cost, high sensitivity, and
ease-of-fabrication; however, some of their drawbacks are poor selectivity, a short life span,
and a high operability temperature [10].

Graphene nanoplatelets (GnPs) have become an alternative to graphene because
of their potential for large-scale production while retaining properties such as excellent
thermal and electrical conductivities, a high mechanical rigidity, a high aspect ratio, and
light weight. GnP sheets often aggregate into flakes consisting of weakly interacting
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monolayer sheets due to strong van der Waals attractions and strong hydrophobicity, and
their functionalization leads to enhanced adsorption of target molecules (see Figure 1).
GnPs have the same honeycomb structure as graphene, wherein the carbon atoms are
arranged in a hexagonal ring with an atomic distance of 1.42 Å. # Each carbon atom is
connected to three other neighboring carbon atoms via three σ-bonds and one π-bond
(# Though not an SI Unit: This unit is permitted for expressing data by the International
Committee for Weights and Measures (CIPM) and the National Institute of Standards
and Technology). Recently, research studies have reported the addition of GnPs to other
materials (e.g., metal oxides and polymers) to form nanocomposites in order to enhance
their gas sensing abilities [11–13].
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Figure 1. Diagram showing functional groups (ammonia, fluorocarbon, hydroxyl, and carboxyl)
attached to the edges of one graphene nanoplatelet sheet consisting of approximately four layers of
graphene. The approximate interlayer distance (d) is 3.35 Å.

In this report, a broad assessment of commercially acquired pure (untreated) and
chemically treated GnPs was completed using a combination of numerical and experimental
methods. For the numerical methods, molecular dynamics and adsorption simulations were
performed. Experimental methods include electrical characterization, scanning electron
microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and
X-ray diffraction (XRD) to identify the extent of functional group presence in each type of
sample along with how such a presence affects the GnPs’ surface properties. Example data
acquired with Raman spectroscopy suggest the introduction of n-type doping when GnPs
are chemically treated (35% by carboxyl functional group weight, defined as 35 g COOH per
100 g graphitic material). The effects of the full variety of functional groups on structural
properties are also discussed. Untreated GnP-based devices were simulated with COMSOL
∂ version 5.6 software to provide numerical support for expected behaviors (∂ Instruments,
and materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement
by the National Institute of Standards and Technology or the United States government,
nor is it intended to imply that the materials or equipment identified are necessarily the
best available for the purpose).

2. Data Description
2.1. Molecular Dynamics Simulations

Investigating the phonon properties requires calculating the dynamical matrix directly
from molecular dynamics (MD) simulations. The dynamical matrix in Equation (1) was
constructed by evaluating the displacements of atoms during the MD simulation using
fluctuation–dissipation theory while taking into account the anharmonicity of phonons [14].

P-GnPs have six atoms in their primitive unit cell, therefore resulting in a total number
of 18 phonon branches. As shown in Figure 2a, each type of optical phonon branch
(longitudinal (LO), transverse (TO), and out-of-plane (ZO)) is split thrice, as is each acoustic



Data 2022, 7, 38 3 of 16

phonon branch (longitudinal (LA), transverse (TA), and out-of-plane (ZA)). The terms
“longitudinal” and “transverse” imply that the carbon atoms are displaced in directions
parallel and perpendicular to the wavevector (q) of the phonons and in plane of the
platelet, respectively. The term “out-of-plane (Z)” implies the carbon atoms are displaced
in directions perpendicular to the plane of the platelet.
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Figure 2. Calculated phonon dispersion relation of P-GnPs showing the (A) LO (black), TO (green),
ZO (cyan), LA (orange), TA (yellow), and ZA (purple) phonon branches. (B) The LO (black) and TO
(green) phonon branches are the only ones that contribute to the observed D, G, and 2D Raman peaks.

The phonon dispersion curves (LO, TO, ZO, LA, TA, and ZA) of trilayer graphene are
plotted with respect to the Brillouin zone points (namely Γ, M, and K) and shown in Figure 2.
However, emphasis is placed on the in-plane optical vibrational modes at the Γ and K
points (LO and TO) shown in Figure 2B because they play a crucial role in studying the
Raman spectra of P-GnPs. At the Γ-point, optical modes include the B2g and E2g vibrational
modes, whereas the acoustic modes are composed of E1u and A2u modes. The E2g doubly
degenerate mode is Raman active. The E2g mode at the Γ-point (TO + LO modes) and the
A1g mode at the K-point (TO mode) are the Raman G and D peaks, whose experimental
data will be shown in a later section. The E2g mode at the Γ-point of P-GnPs evolves into
E2g = 2E2g + E1u, while the A1g mode at the K-point evolves into A1g = 2E + A1g [15,16].
Frequencies of the various modes and their values, around both the G and K points, are
provided in a later section.

2.2. Adsorption Simulations

The simulated untreated (P) GnP-based gas sensor consists of three parts: the sub-
strates (Si/SiO2), the electrodes (Au), and the active layer (P-GnPs with NO2 and CO as
target molecules). The detailed parameters of these elements are shown in Table 1, with
many values being available in the public domain [17–22]. The base resistance of the un-
treated GnP-based sensor was determined via ambient air exposure, yielding a resistance
of about 2.13 × 103 Ω, well within reason for such a system [23]. Figure 3 shows the
adsorption and desorption of NO2 and air, respectively.
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Table 1. Properties of the various elements of the simulated P-GnP-based sensor. Includes references
for some of the values [21,22].

Material Width (m) Length (m) Thickness
(m)

Electrical
Conductivity

(S/m)

Relative
Permittivity

Si 9 × 10−3 6 × 10−3 1 × 10−3 1 × 103 11.7

SiO2 9 × 10−3 6 × 10−3 3 × 10−5 1 × 10−10 3.9

Au 1.5 × 10−3 1.7 × 10−3 2 × 10−5 5 × 107 6.9

P-GnPs 6.5 × 10−3 6.0 × 10−3 2 × 10−5 766.87 37.9
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Figure 3. (A) Adsorption simulation involving NO2. (B) Desorption of air from the surface of the
simulated P-GnP-based gas sensor.

Figure 4 shows the resistance of the sensor exposed to NO2 and CO, with concentra-
tions varying between 10 mol/m3 and 70 mol/m3 at room temperature. When NO2, an
oxidizing gas, is adsorbed on the surface of the P-GnPs, electrons are transferred to the gas,
increasing the hole concentration in the P-GnPs and resulting in a resistance drop in the
sensor. The simulation yields an opposite behavior for CO [24]. The initial resistance of the
sensor is re-established after exposure to ambient atmospheric conditions.

The percent difference between the resistance of the sensor in air and that in the target
gas is defined as the sensitivity of the sensor. The response and recovery cutoff times are
defined by a threshold value of 90% of the corresponding equilibrium value after the target
gas has been injected (or removed) from the chamber [25]. Time-dependent sensitivity data
are presented in Figure 5, where the exposure gas concentration ranges from 10 mol/m3 to
40 mol/m3. The sensor was predicted to achieve response and recovery times of about 10 s
during such exposures.
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and (B) CO at room temperature.

The sensitivity for each gas is also monitored as a function of concentration in Figure 6.
As the concentration of NO2 increased from 10 mol/m3 to 70 mol/m3, the sensitivity
gradually increased from 23% to 84%, whereas the sensitivity for the CO case increased
from 60% to 212%, indicating that CO is more reactive with the sensor.
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Figure 6. Sensitivity of simulated P-GnP-based sensors exposed to NO2 and CO at room temperature.

Interactions between the NO2 molecules and P-GnPs were turned on and the total
system was equilibrated for 0.5 ns to adsorb the molecules. The number of adsorbed
molecules were obtained by counting the number of molecules that are in a region of
height 5 Å above the P-GnPs. The Lorentz–Bertholet combination rules (εij =

√
εiiε jj and

σij =
1
2
(
σii + σjj

)
) were used to calculate the Lennard-Jones potential parameters describing

interactions between the P-GnPs and NO2. Nominally, εij and σij are the interaction energy
and distance between particles i and j, respectively.

Finally, the adsorption energy is defined as Ea = Ebonded −
(
EGnP−P − ENO2

)
, where

the first term is the total energy of the adsorbed system, the second term is the energy
of P-GnP, and the last term is the energy of the NO2 molecule. The adsorption energy of
NO2 on P-GnP was found to be about −35.5 kJ/mol (or −0.368 eV per molecule), with the
negative value implying that adsorption has taken place and was an exothermic reaction.
Also, our data show that 28 NO2 molecules were adsorbed on the P-GnP sheet.

To get a better understanding of the observed adsorption properties, the Langmuir
model is implemented for the case of NO2. The steady state solution for a single-species
Langmuir model is

θi =
pi

pi + Pi (LD)exp
[
−Ei
kBT

] (1)

The model in Equation (1) uses p as the partial pressure (with the fractional form
multiplied by the total atmospheric pressure) of the gas species. If one defines kB as the
Boltzmann constant and T as the temperature (K), then the term P(LD) can denote the
Langmuir desorption pressure, unique to each of the gas species, with the form

PLD =
kBT(
h2

2πmkBT

)3/2 (2)

All parameters except for the partial pressure are approximately known, so to estimate
the latter, the concentration may be converted by comparing the number of particles of NO2
with those from the constituents of air. Doing this for 10 mol/m3 gives a partial pressure
fraction of about 0.18 (assuming standard temperature and pressure at 101,325 Pa). With
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all of these components known and used in Equation (1), there is an approximate coverage
of 2.2%.

2.3. Diagnostic Electrical Measurement

The I–V characteristics of the P-GnP samples were determined within the range
of −0.1 V to 0.1 V at room temperature. These data are shown in Figure 7. The average
resistance of the P-GnPs was found to be 0.2 Ω, yielding a conductivity of about 766.87 S/m.Data 2022, 7, x FOR PEER REVIEW 16 of 16 
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2.4. Morphology of Untreated and Chemically Treated GnPs

SEM images were obtained and are shown in Figure 8 [26,27] ∂. The SEM images of
P-GnPs show that the platelets are randomly stacked on each other, forming aggregates, a
behavior that suggests a strong hydrophobicity and van der Waals interaction.
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Figure 8. SEM images are shown for (A) P-GnPs, (B) GnPs-NH3, (C) GnPs-A, (D) GnPs-COOH,
(E) GnPs-CF, (F) GnPs-N, (G) GnPs-O, and (H) GnPs-35COOH. All images have a 10 µm scale bar.
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It was observed that, when compared with P-GnPs, the chemically treated GnPs were
generally fragmented and of smaller lateral sizes, which can be attributed to the dielectric
barrier discharge plasma method employed in the synthesis of the chemically treated
samples [28]. For instance, during graphene oxide (GO) synthesis, research has shown
that acids and oxidizing agents can break the GO sheets into smaller lateral sizes when
exposed for a long oxidation time [29,30]. The SEM image of the GnPs-35COOH shows
that the platelets become smaller to form conglomerates, and this lateral shrinking may be
attributable to the edges becoming delaminated as well as a sufficiently high concentration
of oxygen-containing functional groups in the sample.

2.5. Raman Spectra of Untreated and Chemically Treated GnPs

The vibrational properties of untreated and chemically treated GnPs were investigated
by Raman spectroscopy. Three major peaks and one minor peak were observed in the
Raman spectra of the untreated and chemically treated GnP samples shown in Figure 9,
namely the D peak (between 1349 cm−1 and 1357 cm−1), which indicates the presence of dis-
order in the sp2-bonded carbon lattice [31]; the G peak (between 1580 cm−1 and 1583 cm−1),
attributed to the in-plane stretching vibration of the sp2 bonded carbon atoms [32]; the
2D peak (between 2707 cm−1 and 2723 cm−1), which originates from the combination of
two Raman A1g modes; and lastly the 2D’ peak, representing a second order mode of the
D’ peak [33]. The Raman spectra of GnPs-COOH, GnPs-35COOH, GnPs-A, GnPs-NH3,
GnPs-N, GnPs-O, and GnPs-CF show an increase in the D band intensities compared to
P-GnPs, indicating the formation of defects in the structures. In addition, the observed D’
peak in all chemically treated GnP samples’ spectra may be attributed to the presence of
the functional groups introduced and is activated by two-phonon double resonance Raman
scattering involving one longitudinal optical (LO) phonon near the gamma (Γ) point [34].
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Figure 9. Raman spectra are shown for (A) GnPs-A (blue), GnPs-O (yellow), GnPs-N (orange), GnPs-
NH3 (cyan), GnPs-CF (purple), and P-GnPs (black). The D, G, D’, 2D, and 2D’ peaks are labeled as
such. (B) Raman spectrum shown for GnPs-COOH. (C) Raman spectrum shown for GnPs-35COOH,
with additional labels for the D + D’ peak. Note the ratio ID/IG is nearly unity, a feature not seen
with other chemically treated GnPs, but this may be because of differences in product quality.

However, the D’ peak merges with the G peak, forming the G + D’ in the Raman
spectrum of GnPs-35COOH as shown in Figure 9c. This is because of the G-band peak
broadening, indicating a higher degree of disorder in the structure compared to the low
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density chemically treated GnP samples. The Raman spectrum of GnPs-35COOH is char-
acterized by intense D and broad 2D peaks. The increase in intensity of the D peak of
GnPs-35COOH in relation to the D peak of the GnPs with low density chemical treatment
indicates an increase in the amount of the structural disorder. Also, the appearance of the
D + D’ peak in the GnPs-35COOH spectrum could indicate more sp3-hybidized carbon
relative to sp2-hybridized carbon.

One consequence of doping with the functional groups is that a significant increase in
the average value of ID/IG occurs with respect to the concentration of doping introduced
as shown in Table 2. This phenomenon could be one reason GnPs-35COOH has the highest
ID/IG average value (about 0.93, nearly 3 times as high as the other species’ values). The
ID/IG average values of the low density chemically treated GnPs change by a small amount
(i.e., from about 0.25 for untreated to roughly 0.3–0.35 for most of these species). The
most significant change was observed in the ID/IG average of GnPs-35COOH, which
was about 0.93. A significant Raman shift is not observed in the G peak frequency of all
the chemically treated GnP samples, indicating the functional groups introduced are not
causing a significant amount of strain within the structure. As seen in Figure 9c, there is
an observable redshift in the 2D peak frequency of GnPs-35COOH which confirms the
introduction of electron doping when carboxyl is introduced. The frequency of the 2D band
is expected to shift to lower frequencies upon n-type doping in graphene based on earlier
research studies [35,36]. Also, a slight decrease in the I2D/IG value of GnPs-35COOH was
observed, which confirms the n-type behavior of GnPs-35COOH [37,38].

Table 2. The average intensity ratios of D and G (ID/IG), 2D and G (I2D/IG) peaks and Raman
positions of the D, G, and 2D peaks for untreated and chemically treated GnPs.

Samples Band D
(cm−1)

Band G
(cm−1)

Band 2D
(cm−1) ID/IG I2D/IG

GnPs-P 1354 ± 3.3 1581 ± 1.1 2722 ± 2.5 0.25 ± 0.10 0.58 ± 0.10

GnPs-NH3 1355 ± 2.2 1582 ± 1.4 2722 ± 2.3 0.36 ± 0.01 0.51 ± 0.05

GnPs-A 1356 ± 2.2 1583 ± 0.2 2723 ± 1.4 0.34 ± 0.01 0.53 ± 0.03

GnPs-COOH 1354 ± 2.0 1581 ± 1.7 2721 ± 3.7 0.33 ± 0.03 0.52 ± 0.03

GnPs-35COOH 1350 ± 5.4 1581 ± 1.8 2708 ± 5.4 0.93 ± 0.04 0.41 ± 0.04

GnPs-CF 1356 ± 1.4 1582 ± 0.7 2723 ± 3.3 0.29 ± 0.02 0.50 ± 0.07

GnPs-N 1355 ± 1.0 1581 ± 0.9 2720 ± 1.0 0.36 ± 0.03 0.50 ± 0.02

GnPs-O 1357 ± 0.6 1583 ± 0.3 2724 ± 1.7 0.32 ± 0.01 0.52 ± 0.02

2.6. X-ray Photoelectron Spectra of Untreated and Chemically Treated GnPs

The surface composition of the untreated and chemically treated GnPs was analyzed
using XPS. As an example, Figure 10 gives the high-resolution C 1s, O 1s, N 1s, and F 1s
spectra for a dozen different samples acquired from three distinct vendors, as summarized
in Tables 3 and 4. The C 1s spectra are fit with peaks corresponding to the following
bonding environments: C=C (sp2-bonded carbon atoms), C-C (sp3-bonded carbon atoms),
C=O (carbonyl), C-N, C-O, and C-F. A pi–pi* shake-up peak is also visible. These data give
a general assessment of the quality of the materials, with some of the treatments being
directly comparable, such as the oxygen-, carboxyl-, and ammonia-treated GnPs. We may
conclusively say that some forms of treatment result in compositions that are up to an
order of magnitude different, judging by the total counts for certain bonds. These data also
provide verification of the valuable information attainable with this spectroscopy, namely
the composition information and bonding types. The O 1s peak is particularly large (by up
to an order of magnitude stronger) for the carboxyl 35% treated samples compared with
the other chemically treated GnPs [39].
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Figure 10. XPS spectra of a dozen different samples whose ranges were selected based on the type
of chemical treatment performed. There are twelve distinct GnP types from three different vendors
(as labeled in the corresponding tables) with the following treatments: (a) pristine (b) nitrogen,
(c) carboxyl (7%), (d) fluorine, (e) oxygen, (f) ammonia, (g) carboxyl (35%), (h) argon, (i) carboxyl,
(j) oxygen (different vendor), (k) ammonia (different vendor), and (l) fluorocarbon.

Table 3. Tabulated composition percentages determined from XPS spectra of materials acquired from
Vendor 1.

Percentage Compositions for Vendor 1 (US Research Nanomaterials)

Component Untreated GnP
sp2 C 51.2
sp3 C 25.6
C-N 10.2
C=O 4.9

O-C-O 2.5
O 1s 2.4
N 1s 3.2
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Table 4. Tabulated composition percentages from XPS spectra of materials acquired from Vendors 2
and 3. Prominent or treatment-specific elements are examined with XPS in Figure 10.

Percentage Compositions for Vendor 2 (Cheaptubes)

Component Nitrogen
Treated

Carboxyl (7%)
Treated

Fluorine
Treated

Oxygen
Treated

Ammonia
Treated

Carboxyl (35%)
Treated

sp2 C 65.9 62.3 68.3 56.8 55.1 46.7

sp3 C 19.7 20.2 14.2 17 19.3 11.3

C-O 5.6 8.6 8 12.3 12.7 13.7

C=O 3.4 3.2 3.2 5.9 5.6 7.7

O-C=O 1.6 2 2 3.3 2.9 5.9

O 1s 3.7 3.7 3.8 3.8 3.6 13.8

F 1s - - 0.6 - - -

N 1s trace trace - 0.9 0.7 1

Percentage Compositions for Vendor 3 (Graphene Supermarket)

Component Argon
Treated

Carboxyl
Treated

Oxygen
Treated

Nitrogen
Treated

Ammonia
Treated

Fluorocarbon
Treated

sp2 C 66 68.4 64 67.6 67.6 72.6

sp3 C 17.6 8 21.5 15.7 14 6

C-O 7.1 8.5 4.3 7.5 6.3 6.8

C=O 3 5.3 4 3.1 6.1 4.9

O-C=O 2.3 5.4 1.3 1.9 2.3 3.2

C-F – – – – – 2

O 1s 4 4.3 4.8 4.2 3.7 3.4

F 1s – – – trace – 1.1

N 1s – trace – trace trace –

2.7. X-ray Diffraction Spectra of Untreated and Chemically Treated GnPs

The structural quality of untreated and chemically treated GnPs was determined by
XRD. The (002), (100), (004), (221), and (110) reflections were observed in the XRD patterns
of P-GnPs, GnPs-COOH, GnPs-A, GnPs-NH3, GnPs-N, GnPs-O, and GnPs-CF shown in
Figure 11, where each of the peaks represents the planes in the hexagonal crystal lattice
of GnPs. The high intensity peak found at 38◦ 2θ is from the powder sample holder in
the Thermo Scientific X-ray diffractometer utilized in collecting the spectra. The high
intensity (002) reflection found between 26.36◦ 2θ and 26.71◦ 2θ in the XRD pattern of
P-GnPs, GnPs-COOH, GnPs-A, GnPs-NH3, GnPs-O, GnPs-N, and GnPs-CF confirms a
high degree of crystallinity of the samples [40]. The (002) reflections of the untreated and
chemically treated GnP samples correspond to an interlayer spacing (d002) of 0.34 nm which
was calculated using Bragg’s formula; the value was found to agree well with the d002
value of graphite [18]. This result suggests that the functional groups present do not cause
significant strain within the structure or lattice expansion.

d002 =
nλ

sin θ
(3)
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Figure 11. XRD spectra are shown for (A) P-GnPs (black), GnPs-NH3 (green), GnPs-A (cyan), GnPs-
CF (blue), GnPs-N (red), GnPs-O (purple), and GnPs-COOH (orange). The various diffraction
peaks are labeled accordingly. (B) The weaker XRD signal warranted a separate analysis of the
GnPs-35COOH.

However, the XRD spectra of GnPs-35COOH show a lower intensity and broader
peaks, indicating a low structural quality and highly disordered GnP sheets. The in-plane
(La) and out-of-plane distances along the c-direction (Lc), and other relevant length scales
are shown in Table 5. Based on the (100) peak, the approximate lattice constant (a) was
calculated to be around 0.23 nm, which is slightly smaller than the typically reported value.
This may be due to the slightly higher diffraction angle observed here and reflects possible
errors from calibration. Based on the (002) peak, the corresponding lattice constant c was
calculated to be 0.67 nm, much closer to the widely accepted value. This leads to a unit
cell volume of about 0.0306 nm3. It is important to note that this corresponds most closely
to graphite, indicating that the crystallites are still bonded by van der Waals forces. Some
values were calculated from the full width half maximum (FWHM) values of the (100) and
(002) peaks using the Scherrer equation [41]. The data show that the crystallite sizes of the
chemically treated GnP samples became smaller, which agrees with the SEM data presented
earlier. Also, GnPs-35COOH was observed to have a smaller crystallite size compared to
the GnPs-COOH, GnPs-A, GnPs-NH3, GnPs-O, GnPs-N, and GnPs-CF samples, suggesting
a distortion or delamination of the edges to a large extent. Table 5 also displays the overall
number of layers along the c-direction (Nc) [42] in the GnPs’ aggregates, calculated using
the relation Nc = Lc

d002
. The data show that GnPs-35COOH have the lowest number of

layers, demonstrating a high degree of exfoliation from graphite. Though the exact nature
of the defect sites on the GnP surfaces are not exactly determinable with these methods,
one could employ the following techniques to determine this: high resolution transmission
electron microscopy and a volumetric adsorption system.
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Table 5. The crystallographic reflections, corresponding full-width at half-maxima (FWHM), inter-
layer distance (d), out-of-plane crystallite sizes (Lc), in-plane crystallite sizes (La), and number of
layers (Nc) are tabulated for P-GnPs, GnPs-COOH, GnPs-35COOH, GnPs-NH3, GnPs-O, GnPs-N,
GnPs-A, and GnPs-CF.

Samples (2θ)◦

(002)

FWHM
(002)
(2θ)◦

(2θ)◦

(100)

FWHM
(100)
(2θ)◦

d002 (nm) Lc (nm) La (nm) NC

GnPs-P 26.50 0.4734 44.56 1.0986 0.3360 17.05 7.73 51

GnPs-NH3 26.54 0.8367 44.64 3.2530 0.3356 9.65 2.61 29

GnPs-A 26.71 0.5326 44.63 4.0596 0.3350 15.15 2.09 45

GnPs-COOH 26.54 0.6214 44.63 4.3000 0.3356 13.04 1.98 39

GnPs-35COOH 26.36 2.5200 43.76 5.31 0.3378 3.200 1.59 9

GnPs-CF 26.54 0.6214 44.63 3.6255 0.3356 13.04 2.34 39

GnPs-N 26.37 0.5030 44.58 3.7426 0.3376 16.00 2.27 47

GnPs-O 26.36 0.6806 44.66 4.9943 0.3376 11.83 1.7 35

3. Methods

Regarding the simulations, both COMSOL software and the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS (Release stable 29 September 2021
update 3)) software package from Sandia National Laboratories [15] were used. ∂ The
computed dynamical matrices are then passed to a post-processing code to evaluate the
vibrational properties.

Dk∝,k′β(q) =
1√

mkmk′
φk∝,k′β(q) (4)

where φk∝,k′β(q) is the force constant coefficient of the system in reciprocal space. LAMMPS
is a MD simulation software code that can model micro-canonical (NVE, meaning constant
energy and constant volume), canonical (NVT, meaning constant volume and constant
temperature), and grand-canonical ensembles of a system of particles in liquid, solid, or
gaseous state using a variety of fields, potentials, and boundary conditions [16].

Simulations were carried out on trilayer graphene using the optimized Tersoff and
Brenner empirical interatomic potential to describe the interactions between the carbon
atoms [17]. The trilayer graphene model represents one pure (untreated) platelet in our
GnPs’ aggregates (P-GnPs), where one flake consists of a short stack of three to six layers
of graphene. The theoretical lattice constant (atheor.) of trilayer graphene was calculated
to be 2.4856 Å using the optimized Tersoff and Brenner empirical potential, which agrees
well with the experimental lattice constant of graphene, 2.46 Å [18]. The lengths of the
simulation box used in the x and y directions are LX = 24.85 Å and LY = 21.52 Å, with a
vacuum region of 35 Å applied in the z direction to avoid interaction between the periodic
images. A time step of 0.002 ps was used during the micro canonical ensemble simulation
(NVE) for proper equilibration of the system with a total run time of 16 ns. Periodic
boundary conditions are employed in the x, y, and z directions to eliminate boundary
effects caused by finite system size.

For the case of COMSOL simulations, the boundary conditions for the entry and exit
of NO2 and CO molecules are defined as “no slip” (gas velocity is zero at the container
edges). The normal flow velocity was defined for NO2 and CO molecules at the inlet
(Uinlet = 0.05 m/s). The boundary conditions for adsorption are such that the mass of the
NO2 and CO molecules is conserved within the simulation region, though some of the
mass may be distributed in the bulk and on the surface. Additionally, the adsorption and
desorption processes are subject to constraints of both the Navier–Stokes equation and the
convection–diffusion equation.
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A cylindrical chamber of diameter and height, d = h = 0.02 m, was designed to contain
the environment in which the sensor is exposed to NO2 and CO gases. The chamber has
two outlets of radius r = 0.003 m, each located at the bottom of the chamber, and also has
one inlet of radius r = 0.005 m, located at the top of the chamber. The inlet serves as an entry
point for the gases, whereas the two smaller outlets serve as an exit point for the gases. The
sensor was placed in the middle of the chamber to allow for uniform adsorption.

The adsorption properties of NO2 on P-GnPs (consisting of three graphene layers)
were investigated using MD simulations within the LAMMPS software code. A simulation
space was given dimensions of 24.9 Å × 21.5 Å × 60 Å in the x, y, and z directions,
respectively. The P-GnPs was placed at the bottom of the box and the boundary conditions
were set to be periodic in all directions. Fifty NO2 molecules were randomly deposited
inside the simulation space and energy minimization was performed to relax the P-GnP
sheet. Equilibration of the NO2 molecules only was then carried out using the canonical
ensemble (NVT) to uniformly distribute the molecules for 0.1 ns.

For the electrical characterization, four trials of current-voltage (I–V) measurements
were taken using the Alessi REL-4100A analytical probe station with 1 µm resolution in all
directions. ∂ Electrical probes were directly injected into compressed pucks composed of
P-GnPs to allow for the application of electrical current.

The untreated GnPs were acquired from US Research Nanomaterials, Inc., ∂ whereas
GnPs chemically treated with low-density ammonia, carboxyl, argon, nitrogen, oxygen,
and fluorocarbon functional groups were acquired from Graphene Supermarket. ∂ GnPs
treated with nitrogen, carboxyl (7%), fluorine, oxygen, ammonia, and 35% (by weight)
carboxyl were acquired from Cheap Tubes, Inc. ∂ No chemical alterations or modifications
were imposed on the acquired samples.

The scanning electron microscope (SEM) gave information about the morphology of
all GnP species. The Phenom Pure SEM ∂ was used with a magnification that ranges from
20× to 65,000×.

Raman spectroscopy data were recorded on a Renishaw inVia Raman spectrometer
using a 514 nm wavelength excitation laser source, a laser beam quality of 0.65 mm, and a
laser maximum power of 50 mW. ∂ The spectra were collected using a laser exposure time
of 10 s with 10 accumulations to reduce the signal-to-noise ratio.

The XRD spectra of P-GnPs, GnPs-NH3, GnPs-COOH, GnPs-A, GnPs-N, GnPs-O, and
GnPs-CF were collected using the Thermo Scientific ARL EQUINOX 100 X-Ray diffractome-
ter ∂ with Cu K∝ radiation, whereas the XRD spectrum of GnPs-35COOH was collected
using the Philips X’Pert powder X-ray diffractometer, also with Cu K∝ radiation ∂.

XPS measurements were performed using the Kratos Axis Ultra X-ray photoelectron
spectrometer operating at a base pressure of about 2.66 × 10−7 Pa (about 2 × 10−9 Torr).
∂ All samples were analyzed using monochromatic Al K∝ (1486.7 eV) with a spot size of
300 µm × 700 µm. Pass energies of 160 eV and 20 eV were used to collect the survey and
high-resolution core level XPS spectra, respectively. All experimental uncertainties (1σ)
arise from the uncertainty of the instrumentation used for this work.
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