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Abstract: In this paper, an integrated mapping of the georeferenced data is presented using the
QGIS and GMT scripting tool set. The study area encompasses the Bolivian Andes, South America,
notable for complex geophysical and geological parameters and high seismicity. A data integration
was performed for a detailed analysis of the geophysical and geological setting. The data included
the raster and vector datasets captured from the open sources: the IRIS seismic data (2015 to 2021),
geophysical data from satellite-derived gravity grids based on CryoSat, topographic GEBCO data,
geoid undulation data from EGM-2008, and geological georeferences’ vector data from the USGS.
The techniques of data processing included quantitative and qualitative evaluation of the seismicity
and geophysical setting in Bolivia. The result includes a series of thematic maps on the Bolivian Andes.
Based on the data analysis, the western region was identified as the most seismically endangered
area in Bolivia with a high risk of earthquake hazards in Cordillera Occidental, followed by Altiplano
and Cordillera Real. The earthquake magnitude here ranges from 1.8 to 7.6. The data analysis
shows a tight correlation between the gravity, geophysics, and topography in the Bolivian Andes.
The cartographic scripts used for processing data in GMT are available in the author’s public GitHub
repository in open-access with the provided link. The utility of scripting cartographic techniques for
geophysical and topographic data processing combined with GIS spatial evaluation of the geological
data supported automated mapping, which has applicability for risk assessment and geological
hazard mapping of the Bolivian Andes, South America.
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1. Introduction
1.1. Background

For many problems in Earth sciences, cartographic datasets are the key sources for
spatial analysis and visualisation. Spatial data have a great potential for many applications
in various fields, such as geophysics, geology, and the environment. However, the most
important issue in the mapping workflow consists of finding the effective algorithms of
processing the multi-source and heterogeneous spatial data. In this paper, the integrated
use of the techniques of the Geographic Information System (GIS) and the Generic Mapping
Tools’ (GMTs) cartographic scripting tool set for processing geospatial data is proposed.

Spatial data include two major types of format, often used in a mapping workflow:
raster and vector. The fundamental differences in their structure entail various means of
their handling and processing. The use of scripts for processing cartographic data brings
significant improvements to the mapping process [1–5]. Examples of such applications in-
clude the modules of GMT for cartographic tasks of data visualisation. Effective processing
of geospatial data by scripts is especially important for large datasets with global Earth
coverage [6–9]. The console-based data processing using scripts enables increasing the ac-
curacy and speed of data processing in cartographic analysis and plotting. Therefore, using
advanced geospatial software and tools is also of major importance in many GIS-related
applications that include geospatial data processing, e.g., machine learning in GIS [10–14],
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data retrieval, exploration and processing [15–17], spatial data formatting, handling and
compression [18–21], and geographic data modelling and analysis [22–24].

Raster data and images are often derived from remote sensing (RS) sources such as
satellite images. Examples of using raster data in geographic studies include satellite
imagery, for instance Sentinel-1 and 2A, used for mapping the high-resolution spatio-
temporal dynamics of land use and land cover [25,26]. The wide use of the Landsat
TM/ETM+ by ESA for geological and land cover mapping is explained by data availability
and global coverage [27–29]. The aerial Google Earth or the commercial geospatial data
providers operating of large-scale aerial data for detailed mapping. More examples of raster
data sources include hyperspectral imagery, InSAR largely used in geology [30,31], or
LiDAR used for geomorphic computations or vegetation canopy height [32,33]. Important
data sources for topographic mapping are derived from the SRTM DEM.

Using raster data as a source of information are often a case for land cover mapping
and landscape analysis [34–36]. Scanned raster images in bitmap formats (jpg, bmp, tiff)
provide another source of information aimed at retrospective data analysis for geospatial
reconstructions [37,38]. Used as georeferenced raster layers in GIS, archived historical maps
can be utilised as data sources for evaluating landscape dynamics and serve as an auxiliary
source for geologic analysis and mineral resource management. Technically, processing
raster data is based on the analysis of pixels on the image and, if necessary, the steps of
vectorisation [39–41]. In the advanced cases, the RS data can be processed using machine
learning techniques.

Vector data, on the other hand, are often used to represent geographical information
on the object-based level [42,43]. The information containing ontologies of vector data
is included in the attribute tables of the associated GIS tables or the metadata of the
layers [44]. Vector data sources include, e.g., the vectorised objects as georeferenced layers
in GIS formats (e.g., .shp format of ArcGIS/QGIS). The integration and complementary
use of vector and raster data can be applied in cadastral cartography and LiDAR altimetric
data, providing information for the 3D vector-based models [45]. A special feature of vector
data consists of the object-based structure, which entails points, lines, or polygons formed
by a variety of curves or points with coordinates in a spatial reference format. Thus, vector
objects indicate the boundaries or depict the contours of geographic objects varying in
geometry, form, size, shape, curvature, connectivity, and spatial resolution, which depend
on the map scale [46].

1.2. Study Objectives

This article presents an integrative data-driven cartographic synthesis technique that
enables processing vector geological data and raster geophysical data, while exploring all
the advantages of GIS and GMT applied in one framework. Although existing GISs for
geospatial data processing are widely available, directly using their functionality does not
offer an intuitive, direct control on data handling as in the case of using scripts. In fact,
various GIS software often provide the designed solutions for mapping the workflow. In
contrast, the script-based technique provides more control on data processing.

This study is focused on processing spatial data for cartographic visualisation using
geological, topographic, and geophysical datasets for Bolivia (Figure 1). The integration of
the vector and raster data in a structured way by means of various technical tools supports
the increase of geographical and expert knowledge. Creating such a project with a special
focus on the Bolivian Andes is built upon the data captured from the available open sources.
The study framework is designed to visualise the multi-sources data of various formats.
The presented series of maps is aimed at contributing to monitoring natural resources in a
selected region of the geographically complex region of South America.
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Figure 1. Topographic map of the study area. Visualisation: GMT. Source: author.

2. Materials and Methods

Methods of GIS mapping and geoinformatics passed several epochs from their onset
in the 1970s, including rapid development of computer technologies and progress in spatial
data standards and formats. Besides, the approaches related to remote sensing, Earth obser-
vation, and geological data processing largely use spatial data [27,47,48]. Although these
approaches have advantages in geospatial data processing, those methods are not efficient
enough for processing large datasets in real time, which requires machine-based carto-
graphic data visualisation. Currently, the contemporary methods of spatial data processing
include a high degree of computing and scripting with the recent application of machine
learning, scripting, and programming in geosciences [49–52].

The current study aimed to identify the distribution and magnitude of earthquakes in
the Bolivian Andes in the context of the geologic, geophysical, and topographic situation. The
study was performed using the technical integration of QGIS and GMT scripting tools applied
to Bolivia. The topographic elevation data, geologic provinces and units, as well as seismic
events obtained from the IRIS database were mapped. The five full scripts used in this study
for GMT mapping are available in the GitHub repository of the author with public open-access:
https://github.com/paulinelemenkova/Mapping_Bolivia_GMT_Scripts (accessed on 31

https://github.com/paulinelemenkova/Mapping_Bolivia_GMT_Scripts
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May 2022). The topographic map (Figure 1) was mapped as a background for the IRIS
seismic data. It was derived from the General Bathymetric Chart of the Oceans (GEBCO)
gridded bathymetry and topography dataset [53]. The GEBCO presents consistent and
accurate digital elevation data covering the Earth, largely used in the Earth sciences as a
reliable data source. The unprecedentedly high resolution (15 arc second) of the GEBCO
grid enables using it as a fine cartographic grid both for topographic mapping and as a
background for the overlaying thematic maps [54].

The EGM-2008 [55] digital geoid model was used to show variations in gravity over the
territory of Bolivia that correlate with the topographic map. A general increase of gravity
values is notable in the southwest direction, which coincides well with the geographic
extent of the Central Andes. The data on gravity were obtained from the repositories of
Scripps Institution of Oceanography [56]. The IRIS database of the world’s seismicity was
applied for Bolivia for the period of 2015–2021. It was used to map the earthquake events
recorded in the Central Andes for the six-year time span. Several columns of the initial table
in CSV format presented seismic parameters of the earthquakes (depth and magnitude), the
coordinates and time of the event (date-month-years), a brief description, and the location.
The table recording 3000 seismic events in Bolivia was converted from CSV to the NGDC
format for plotting in GMT. The study employed existing GIS methods [16,57–61] and
presents the two geologic maps made using the QGIS software [62].

Besides the GIS, the study applied the GMT, developed and continuously maintained
by [63]. In contrast to the traditional GIS, the GMT refers to a console-based scripting framework
aimed at automated and effective plotting of the geospatial data. The cartographic approach
of GMT enables effective mapping and data visualisation, based on shell scripting [64,65].
It includes a variety of data processing steps, such as conversion, reshaping, reformatting,
modelling, spatial analysis, and visualisation. The process of GMT mapping was adapted in
this work based on the previous existing studies [66].

3. Study Area

Identifying the correlations between the geological structure, topography, and geophysics
and seismicity gives better insights into our understanding of the geological hazards and risk
assessment in the mountainous regions shown in previous works [10,67–69]. The study object
is presented by the Bolivian segment of the Andes Mountains. The Andes Mountains present
a unique geologic, geomorphological, and tectonic structure built upon the thickest crust on
Earth. The Andes are the longest continental mountain range stretching along the western
margins of South America and crossing several countries including Bolivia (Figure 1).

The Andes are the key geological object of Bolivia directly affected by their tectonic
history. The geological evolution of the Bolivian segment of the Andes has underwent a
long multi-stage period of formation, which has been reported and described in detail
in previous studies [70,71] and in some earlier fundamental books on South American
geology [72–74]. Bolivia occupies the Central Andes segment with Altiplano, the world’s
2nd highest mountain plateau after Tibet. The tectonics of the Andes largely controls the
geomorphology of the Bolivian mountainous lakes (shape, orientation, and geometry),
primarily by a nearly orthogonal fracture pattern from the underlying granitic basement
(Brazilian Shield) and, secondarily, by the tectonic movements: ancient global fracture
pattern, principal compressive stress, downwarping and uplifting of the Beni Basin during
the Cenozoic Andean orogeny [75].

The geologic setting of the Central Andes (Figures 2 and 3) have been previously
described in earlier works by many researchers [76–78]. The specific features of the Central
Andes have drawn the attention of Earth scientists in various disciplines, e.g., hydrogeolo-
gists [79,80], geophysicists [81,82], and seismologists [83,84]. The historic evolution of the
Bolivian Andes underwent several stages during the early history of the Earth. Among the
notable geologic events of Bolivia is the San Ignacio Orogeny, which reshaped the terrane
through the deformations accompanied by the voluminous tectonic granite intrusions and
deformations of the sediments [85].
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The dominating units in central Bolivia (Figure 2) are presented by the Cambrian-
Ordovician (CmO) outcrops, which largely contrast with a very complex disposition of
several layers in the west of the country in the Central Andes region: Ordovician-Silurian
(OS), Devonian (D), Silurian (S), Tertiary (T), and Cretaceous-Tertiary volcanics (Cv).

Figure 2. Geologic map of Bolivia and surrounding countries. Visualisation: QGIS. Source: author.

Figure 3. Geologic provinces in Bolivia and surroundings. Visualisation: QGIS. Source: author.
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The eastern part of the country, presented by the Amazon forests, is occupied by the
Precambrian outcrops (pC), which well correspond to the extent of the Brazilian Shield
(Figure 2). The geological structures of the Bolivian orogeny are generally oriented in the
NW direction off Amazonia, following the extent of the Central Andes. The Andes act
as a source of precious mineral and geological resources in Bolivia. This is caused by the
intensive tectonic processes and orogenesis in the past, which took place in these geological
provinces (Figure 3).

The most important geological provinces of Bolivia include the Madre dos Dios in
the north, mostly covered by the Tertiary rocks (T), the Brazilian Shield to the east, the
Oran-Olmedo Basin to the south (covered by the Cambrian-Ordovician outcrops), the Beni
Basin in the central-northern segment of the country, and the Andean Province to the west
(covering the Central Andes) with the intrusion of the Altiplano Basin. The formation of
precious metals in the Andes includes a system of complex petrographic and geochemical
processes that result in the evolution of magmas and lavas that underwent fractionation
and assimilation in the Earth’s crust [86]. As a result, the mining industry has had a
dominant position in the country’s economy since the 16th Century. As a result, Bolivia
holds a leading position in the reserves of tin, zinc, silver, copper, gold, tungsten, lead,
and antimony [87–90]. Besides, the Bolivian Salar de Uyuni salt flat is the world’s largest
lithium deposit [91,92].

The regional geomorphology of the Andes affects a wide variety of the interconnected
processes in Bolivia linking hydrology, environment, soils, ecology, climate, and landscapes.
For instance, the tectonic faults, lineaments, and structure of the underlying rocks cause
variations in the geomorphic and hydrological fluvial structure of the country. This was
recorded within the drainage network of the Andean foreland, which is preserved in the
palaeochannels of the Bolivian Amazon, varying in sinuosity, width, and the pattern of
the Amazon rivers [93]. The types of landscapes of Bolivia vary according to their specific
location within the Andes, which serve as a natural barrier to the air masses controlling
climate though fluctuations in temperature, humidity, and water balance.

The geomorphological patterns initially formed by the geological processes are mir-
rored in fluvial belts, lacustrine patterns, and riverine meanders in Bolivia and shaped the
landscapes of the country [94]. The landscapes in eastern Bolivia located along the southern
margin of the Amazon basin are largely affected by climate through the strong hydrological
and climatic seasonality, e.g., high wind speeds and aeolian processes. This affects the
geomorphology and the environment of the eastern part of the country, forming special aeolian
landforms, such as linear sand streaks and ridges, parabolic and elongate morphological
structures, dunes, sand sheets, and mega-ripples. Hence, climate and aeolian processes largely
control the environmental, vegetation, and soil setting in the country [95].

Various regions of the Bolivian Andes give place to the National Parks and protected
nature conservation zones [96–98]. Besides the mountainous regions, the forests of the Boli-
vian Amazon provide the ecological habitat for endemic species [99], which demonstrates
the environmental significance of this region. Besides the climatic and geologic factors
affecting the landscapes, landscape changes in Bolivia are also influenced by anthropogenic
activities. For example, according to the study in the Iroco and Cueva Bautista regions in
the highlands of Bolivia, human settlements in the high-altitude ecosystems (>3800 m asl)
occurred, at least, by 13,000 years BP [100].

At the same time, the seismicity of the Andes is high with repetitive earthquakes of various
focal depth, rupture size, and magnitude [101,102]. In turn, earthquakes are closely associated
with tectonic activity and zones of plate subduction. Magma evolution and assimilation at the
subduction zones of the Andes significantly affected the geologic setting in South America
in the past [103,104]. The earthquakes usually have negative consequences and involve such
hazardous events as landslides, rockfalls, and ground shaking. This leads to damaged and
destroyed buildings, ruined bridges and other constructions, losses in economics and financial
instability, and in the worst cases, affected or lost human lives. The possibility of geologic
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hazards in the mountainous regions of the Central Andes resulted in intensive geological
investigations of Bolivia, as reported in earlier studies [105–108].

4. Results

In the present study, the geophysical and geological maps of Bolivia were created for
comparison with the seismicity, topography, and geomorphological variability.

The topography of Bolivia (Figure 1) shows regional variations that well reflect the
Quaternary geologic history, including the periods of glaciations in the high mountains of
the Bolivian Andes during the Pleistocene, e.g., the Cordillera Real [109]. The glaciation in
the Bolivian Andes experienced several periods in its early geologic history. These include
the Tertiary and Early Pleistocene (>790 ka), Middle Pleistocene (790–132 ka), Late Pleis-
tocene (132–11.7 ka), and Holocene (11.7 ka) [110]. The results of these glaciations remained
as a system of the bedded slope deposits on the moraine ridges in the Bolivian Andes. The
Late Pleistocene glaciations also formed the megafans of the Gran Chaco—a huge plain in
eastern Bolivia which presents the main biogeographic biome of South America.

The contrasting glaciation formed a series of large piedmont fans of the Andes that
were developed during the colder and seasonal conditions and dry–wet intense seasons and
enhanced rainfalls by the orographic effects of the Andes [111,112]. A complex interrelation
of the vegetation, climate, and soils can be illustrated by the reduced forest cover due to the
increased aridity in the selected landscapes, soil formation, and intensive sedimentation
in the dense forest cover in the Bolivian Chaco [113]. Besides glaciation, external factors
that strongly affected the topography of Bolivia include the fluvial and aeolian interactions,
the climate, and biogeographic effects. These mostly formed the Gran Chaco and selected
regions of Amazonia through the distribution of the subtropical semi-deciduous vegetation
and associated specific soil types in the piedmonts of the Andes.

The geologic maps (Figures 2 and 3) reflect the current state of the processes of solid Earth
physics in the Andes. Thus, the metamorphic rocks and outcrops of various geologic epochs
experienced solid-state mineral transformations due to changes in pressure and temperature in
the crust and mantle of the Earth and record the geological periods, heating, seismic processes,
and cooling, which in turn, reflect the tectonic processes they were formed in [114]. As a
result, a complex geological history of the Bolivian Andes reflects its regional geology and
petrographic setting, as well as the origin, distribution, and geochemistry of the minerals [115].

Regional undulations of the geoid (Figure 4) well correlate with the topography. For
instance, the values of the geoid increase westward exceeding 34 m, which well correlates
with the geomorphology of the Central Andes. In general, the isolines increase towards
the west of Bolivia. In contrast, negative values of the geoid (from 10 to −10) are visible in
the NE region and mostly cover the Amazon region of Brazil. The Beni Basin of Bolivia
(Figure 3) demonstrates a slight decrease in data (from 20 to 16 m), while central regions
of the Madre dos Dios Basin show a local increase in the geoid values (up to 32 m in the
surroundings of Madidi National Park).

The comparison of the geological map in Figure 2 with the geoid in Figure 4 shows
a distinct correlation between these two. The distribution of the geologic folds situated
westward off the Cambrian-Ordovician outcrops well repeats the dense and steep increase
in the isolines of the geoid detecting the increase of the gravity, which in turn, well correlates
with the extent of the mountain areas of the Andes (red colour areas in Figure 4 show
values of the geoid over 35 m). The correlation in changes of the free-air gravity (Figure 5)
and vertical gravity gradient (Figure 6) with the topography (Figure 1) and geologic setting
(Figure 2) are found by the comparison of these maps, further from the Andes to the
Amazonia area and the Gran Chaco region.

The analysis of the values of the free-air gravity (Figure 5) and vertical gravity (Figure 6)
demonstrates a very good correlation with the local lacustrine and riverine depressions
of the mountainous lakes in Bolivia (Laguna Rogagua, Laguna San Luis), the rivers of
Amazonia, the regional depression of the Gran Chaco on the border with Paraguay, and
the piedmonts of the Andes (dark blue colours in Figures 5 and 6). In contrast, the highest
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elevation peaks of the Bolivian Andes (Cordillera Real, Cordillera Occidental, and Altiplano)
well correlate with the highest values in the geophysical data. The correlation of the gravity
data with the geoid (Figure 4) well exhibits the lowest geoid values in the regions of the
lower gravity in Figures 5 and 6 and the saddle-like local depression in the region of the
city La Santísima Trinidad (central Bolivia), showing local topographic depression.

Figure 4. Geoid model of Bolivia. Visualisation: GMT. Source: author.
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Figure 5. Free-air gravity map of Bolivia. Visualisation: GMT. Source: author.

The overall distribution of the earthquakes in Bolivia (Figure 7) indicate a good correla-
tion with the geological extent of Cordillera Occidental, followed by Altiplano and Cordillera
Real. In total, 3000 records have been assessed using the IRIS database for the period of
2015–2021. In general, the higher seismicity level of Bolivia is clearly visible in the west-
ernmost region of the country. The earthquake with the least moment magnitude (1.8) was
detected 17 km ESE of the Iquique, Chile, at a depth of 20 km. In contrast, the most significant,
very deep earthquake events are located 211 km S of Tarauaca, Brazil (620.6 km, moment
magnitude 7.6), and at 173 km WNW of Iberia, Peru, with a depth of 606.2 km. In the inner
western region of the Andes (Cordillera Occidental), a series of volcanoes were mapped
(Figure 7), to show a correlation with a higher magnitude of earthquakes (M 3.4 to 4.0 and
4.1 to 4.7).

The most significant earthquake in Bolivia was located 11 km NNE of Carandayti
with a depth of 559 km and a moment magnitude of 6.8. Furthermore, some significant
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earthquakes within the strongest magnitude (above 7) were located in Peru: (1) 140 km
WNW of Iberia, Peru, which took place in 2018 with a moment magnitude of 7.1 at a depth
of 630 km; (2) 38 km SSW of Acari, Peru, also dated 2018, with a moment magnitude of
7.1 located at a depth of 39 km (shallow earthquake). Thus, one can conclude that the
most significant earthquake during the last 6 years (2015–2021) in Bolivia did not exceed a
moment magnitude of 7.0, which indicates a rather lower seismic activity in Bolivia and
less risk to the population, if compared, for example, to Peru.

Figure 6. Vertical gravity gradient in Bolivia. Visualisation: GMT. Source: author.
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Figure 7. Seismicity in Bolivia and the Central Andes. Visualisation: GMT. Source: author.

5. Discussion

Using scripting techniques of GMT has many applications in geosciences, for example
the analysis of the geologic setting of the Earth, climate modelling, exploring the atmosphere–
ocean–solid earth interactions, which require advanced mapping, and many more. Rapid
processing of maps by GMT enables producing a series of maps, which is a crucial source
of geo-information for such tasks. To fully utilise the potential of GMT, the abilities
and advantages of the modern scripting approaches should be used. In this research, I
demonstrated the functionality of GMT and QGIS for the thematic mapping of the Andes
region using the geological and geophysical datasets available from the open sources.
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Currently, the geo-information data are available online in many sources, which increases
the need for rapid and robust processing of these data, based on the availability.

To this end, a data-driven approach of GMT and QGIS was introduced in this paper
for the thematic geological–geophysical mapping of the Andes region, Bolivia. Using
the functionality of this program, this paper presented a workflow where I showed that
it performs well on cartographic data processing without the manual tedious workflow
usually applied in cartography. The geological features of regional objects in the Andes
were mapped to show geological structure of Bolivia.

The most important geological units were mapped to show the outcrops of various
geologic time: Precambrian-Devonian, Palaeozoic, Carboniferous, Cambrian, Ordovician,
Permian, Tertiary Jurassic, Mesozoic, Cenozoic, Silurian, Triassic, and Quaternary as the
major units. The algorithms of GMT processed well relatively large files (each raster file
mapped for visualisation of the geoid, gravity, and seismicity has a size of several hundreds
of MB) and converted these data into GMT native format for processing. Some complex
regions of seismicity with overlapped sources of earthquakes were visualised using various
colours and sizes of legend units for a better interpretation. Graphical representations of
the maps were illustrated in relevant sections.

Mapping multi-source geo-information data are based on the processing and visual-
ising of relevant thematic layers showing the geological and geophysical features of the
target objects, such as free-air gravity anomalies, vertical gravity gradients, earthquakes,
and other concepts. The major principle of GMT consists of creating the lines of code based
on its syntax language. For instance, the projection and selected colour palettes were set
up experimentally for each corresponding geographic phenomenon to better show the
variations in levels. Such adjustments enabled better indicating the correlations between
the topography and geophysics of the Andes region.

Moreover, the integrated use of the techniques of QGIS and GMT was used to identify
the relationships between the geological and geophysical phenomena of the Earth through
the prepared maps. Based on the setup parameters of GMT, a series of maps was created
using a machine-based approach using scripts run from the console. A step-by-step car-
tographic process applied for the presented maps is shown in the scripts available in the
GitHub repository with the provided link.

This workflow arrived at the data processing and visualisation on the presented series of
maps showing the geologic, geophysical, and topographic features of Bolivia. However, certain
steps in a cartographic workflow require manual adjusting and improvements in QGIS
compared to GMT, which demonstrates a higher level of automation in the spatial data
processing of the latter. The most geologically complicated regions (folds in the Bolivian
Andes) were mapped using the enlarged zoom, to gain more insights into the visual
characteristics of the small areas (e.g.,see the Devonian and Ordovician outcrops in Figure 2),
as well as to discriminate the strata from the undifferentiated areas. To do so, I enlarged the
selected areas on the map and controlled the visualisation manually using a zoom function
of QGIS. Specifically, I identified the densely interspersed outcrops of the Cretaceous-
Tertiary volcanics (Cv), Precambrian-Devonian (AD), and Palaeozoic (PZ) units in the
Bolivian Andes, which demonstrated a distinct correlation between the gravity anomaly
and the topographic heights of the same territory.

This study presented an integrated application of the GMT scripting tool set and the
QGIS software used for mapping the geological and geophysical features of Bolivia in a
semi-automatic regime in GMT and a manual approach in QGIS. I noted that while using
a reliable software tool is a major task of any cartographic workflow, there are still more
algorithms that need to be adjusted in GMT for a more automated cartographic workflow.
Processing geo-information is an essential part of geophysical and geological research,
having its specifics compared to the topographic or environmental mapping: the inter-
pretation of the geophysical anomalous fields, visualising seismic events as a series of
earthquakes with different magnitudes and depths, detecting geoid undulations using
isoline directions and interpretation, and smooth data conversion from the seismic IRIS
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catalogue into GMT, to mention a few of such tasks. This paper presented an example of
such a study showing the integrated use of GMT and QGIS for processing the geological,
topographic and geophysical data with the special example of Bolivia, South America.

6. Conclusions

In this study, a data-driven cartographic approach for data processing was presented
using an example of scripting techniques of GMT applied for raster-based data and GIS-
based mapping for vector data. By exploring the principles of the console-based mapping
in GMT, this study visualised and evaluated the geophysical parameters that capture the
intrinsic geologic properties of the Bolivian Andes, as demonstrated through the existing
links on a series of maps. The study also used the modular technique of GMT to increase
the speed, accuracy, and effectiveness of mapping. Cartography as an important discipline
among the Earth sciences has experienced technical advances with the development of
programming. New methods used for spatial data processing have enabled a more effective
processing of the complex datasets for modelling the Earth [28,116,117]. This enables
obtaining new insights into the correlations among the Earth phenomena. This increases
the possibilities of the traditional GIS used for mapping spatial data [118,119].

GIS-based mapping is used for integrated thematic maps or in risk assessment
studies [120,121]. Geological GIS-based mapping is largely supported by visualisation
of the provinces and units [122], statistical graphs, and plotting for hydrocarbon resource
analysis [123]. Other approaches include geophysical and geochemical data analysis [124–126]
or gravimetric geoid modelling [127]. The existing GIS applications of mapping Bolivia
are presented in studies of the ecosystem services combining quantitative and qualitative
data and spatial GIS to assess the environmental changes [128]. In contrast to the thematic
applications of GIS specifically for Bolivia, using scripting techniques was presented as
a special opportunity of machine-based cartography. Specifically, the scripting approach
provides advantages in Earth studies in geological, geophysical, and geotechnical mod-
elling of soil data, seismic analysis and simulation, and risk mitigation and vulnerability
assessment [67–69,105,129]. The advantages of scripts can be explained by the increased
speed of data processing and the accurate plotting and machine-based workflow routine,
which significantly minimises man-made errors and misprints. These include such improve-
ments as automated mapping, precise data handling, automated re-projecting, or processing
big data.

This paper contributes to the increase of the geographic knowledge of Bolivia by pre-
senting an integrated framework of the geological, topographic, seismic, and geophysical
data processing by means of GIS and GMT. Specifically, it demonstrated that using scripts
enables meeting the high demands of contemporary cartography, e.g., spatial analysis, com-
puting, and visualisation of the multi-format data for an integrated analysis. A structured
analysis of the data was performed to incorporate the insights into the geologic analysis using
regional characteristics of lithology and geological provinces and basins of Bolivia, a special,
unique region of the Central Andes, South America.
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