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Abstract: The accumulation of electronic waste (e-waste) is becoming a problem in society. Old parts
and components are conveniently discarded instead of being recycled. Economic and environmental
measures should be taken by individuals and organizations to enhance sustainability. This could
include desoldering and reusing parts from electronic circuit boards. Hence, the purpose of the
dataset presented in this paper is for the classification of used electronic parts in linear voltage
regulator power supply circuits. The dataset presented in this paper comprises low-resolution
(30 × 30 pixels) grayscale images of major reusable electronic parts from a typical adjustable regulated
linear voltage power supply kitset. The three major reusable parts are capacitors, potentiometers,
and voltage regulator ICs. These are typically the most relatively expensive components. Data
representing the parts are extracted from 960 × 720 pixel workspace images containing multiple
parts. This permits the dataset to be used with multiple types of classifiers, such as lightweight
shallow neural networks (SNNs), support vector machines (SVMs), or convolutional neural networks
(CNNs). Classification accuracies of 93.5%, 94.9%, and 98.4% were achieved with SNNs, SVMs, and
CNNs, respectively. Successful detection and classification of parts will permit a Niryo Ned robotic
arm to pick and place parts in the desired locations. The dataset can be used by other academics
and researchers working with the Niryo Ned robot and Matlab to handle electronic parts. It can be
expanded to include relatively expensive components from other types of electronic circuit boards.

Dataset: https://github.com/praneelchand10/Electronics-Parts-Dataset.

Dataset License: Creative Commons Attribution 4.0 International.

Keywords: machine vision; image processing; electronic parts

1. Summary

In circular economies [1], the reduction and elimination of waste is a key priority. This
facilitates a robust system that is beneficial for the environment, businesses, and humans.
Reusing and recycling devices and components should be promoted in all parts of an
economy. In classroom and laboratory settings where access to materials can be limited,
physical equipment and hardware parts used for practical activities can be recycled or
reused [2].

Electrical engineering courses often rely on hardware components, such as resistors,
capacitors, inductors, voltage regulators, and diodes, for project work. As an example,
students are required to construct an electrotechnology product in the Electrical and Elec-
tronics Applications course at Waikato Institute of Technology [3,4]. The construction
could be on a printed circuit board (PCB), Veroboard, or breadboard. After project work,
the constructed boards are either thrown away or kept in storage (Figure 1). Functional
components are discarded instead of being reused. In the circular economy concept, compo-
nents on these circuit boards could be removed and collected as part of soldering practice
lessons. Part sorting is a mundane task. This process could be achieved using an intelligent
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automated sorting system. Hence, the data descriptor presented in this article is being
utilized in a project that investigates vision-based detection, classification, and sorting of
used electronic parts [5,6]. In particular, the classification of commonly used and relatively
expensive electronic project parts, such as capacitors, potentiometers, and voltage regulator
ICs, is investigated. These are the major reusable electronic parts from typical adjustable
regulated linear voltage power supply kitsets. The project received funding from Waikato
Institute of Technology.
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A comprehensive literature review of various methods for detecting and classifying
electronic parts is available in [6]. Two common applications of vision systems for electronic
parts are PCB quality inspection [7–9] and loose electronic parts classification [10–12]. With
the exception of [10] that utilized images from Kaggle [13], these methods produced their
own customized datasets.

Deep learning [14] is the most commonly employed technique in these applications.
Variations of the ‘you only look once’ (YOLO) deep learning algorithm [15] were applied
in [11,12]. The performance of a customized CNN model is compared with AlexNet,
GoogleNet, ShuffleNet, and SqueezeNet in [10]. Deep learning methods can perform object
detection and classification via a single network model. However, these models typically
rely on large datasets with high-resolution images. Consequently, they require powerful
computing resources.

Traditional machine learning with SVM and principal component analysis (PCA) was
evaluated in [9]. Scale-invariant feature transform (SIFT) [16] parameters extracted from
raw images were applied to artificial neural networks (ANNs) and SVMs in [8]. Traditional
machine learning approaches typically do not require powerful computing resources, such
as deep learning methods. However, they tend to have lower classification accuracy than
deep learning models.

There are datasets of electronic parts images publicly available on websites, such as
Kaggle [13]. Alternatively, users can create their own datasets by sourcing images from
electronic component supplier websites, such as Digi-Key [17] or RS Components [18].
However, in the case of used electronic components, there are no publicly available dataset
images based on an internet search using Google. This requires the collection of data directly
from the workspace environment where object sorting takes place. In [11], researchers
collected electronic parts data using an overhead workspace camera for their custom
application. Similarly, images of capacitors and inductors are collected using a high-
resolution (3264 × 2488 pixels) camera in [12]. A very-high-resolution imaging device
(8000 × 9000 pixels) collected images of PCBs from various electronics devices in [9]. The
high resolution is needed to extract surface mount component images from the PCB images.
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The data descriptor presented in this paper can be useful for academics and researchers
developing Matlab-based control systems for the Niryo Ned robotic arm [19]. Other
object classification algorithms and additional data can be generated for alternative sorting
applications using the Niryo Ned robotic arm and conveyor belt system [20]. Additionally,
the data could be used to identify parts for PCB placement or even detect faulty components
if the dataset is expanded further. Extracting low-resolution (30 × 30 pixels) images of parts
from higher-resolution workspace images (Figure 2) enables the dataset to be used with a
variety of classifiers, such as shallow neural networks (SNNs), support vector machines
(SVMs), or convolutional neural networks (CNNs). As outlined in [6], this is advantageous
because the low-resolution images require less computational power. This permits the
classifiers to be implemented using standard laptop computers.
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Figure 2. A 960 × 720 pixel image taken using Matlab.

2. Data Description

The current dataset contains over 1734 grayscale images extracted using an object
detection process described in Section 3. There are three classes of objects: capacitor,
potentiometer, and regulator. A sample of original 960 × 720 pixel images containing
multiple instances of each object class in the workspace environment is shown in Figure 3.
The capacitor object class (class 1) consists of electrolytic through-hole-type capacitors.
Panel mount rotary potentiometers make up the potentiometer object class (class 2). The
regulator object class (class 3) comprises linear voltage regulator integrated circuits (ICs)
with a TO-220 casing. Further information about the objects in each class is available in [4].
Each object class has at least 578 images. This provides an even distribution of data across
all three classes. A sample of grayscale images from the dataset extracted using the object
detection process is shown in Figure 4. The dataset is organized primarily for ease of use
with Matlab. It can be restructured for use with other software if required. In the grayscale
images, each pixel has a numerical value between 0 and 255. Zero (0) corresponds to black,
and 255 corresponds to white.
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2.1. SNN and SVM Dataset Formats

The SNN and SVM datasets are stored in Matlab workspace files as cell arrays. Each
workspace file has two arrays: one representing the pixels of the grayscale images (input),
and the other representing the object classes (output). The 30 × 30 pixel grayscale images
(refer to Section 2.2 for more details, such as folders, filenames, etc.) are converted to
1 × 900 row vectors for Matlab compatibility. All n data samples are collated in an
n × 900 array representing the input. The n rows of the array are ordered alphanumerically
by filename in each folder (refer to Section 2.2). For the SNN dataset, the data are formatted
for use with Matlab’s Neural Pattern Recognition tool (nprtool). On the other hand, the
SVM data are arranged in a format for use with the Matlab Classification Learner App.
Both the SNN and SVM data files use the same input array format (n × 900 array). Each
input array has an additional 901st column that contains information about the grayscale
image filename. However, the output arrays vary, and the difference is summarized below:

• The SNN data use an output array format of n × 3. The three columns are used for
placing 0 s or 1 s representing the output class. An additional 4th column contains
information about the grayscale image filename.

• For the SVM data, the output array has a format of n × 1. A single numerical value
(1, 2, or 3) representing the object class is entered into the array. An additional 2nd
column contains information about the grayscale image filename.

A portion of each output array format is illustrated in Figures 5 and 6. Figure 7 shows
a portion of the input array data representing the grayscale images. If a user prefers to use a
different software, they can use the portable network graphics (.png) image files described
in Section 2.2 and convert them to their preferred software/hardware format requirements.
Non-Matlab users can access the comma-separated values (.csv) format files to view the
SNN and SVM data.
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2.2. CNN Dataset Format

For CNN use, the dataset is stored as portable network graphics (.png) image files
in folders representing each object class. The parent folder (“30by30 images”) has three
subfolders as shown in Figure 8a.
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The first subfolder (“1”) contains images of the capacitors (object class 1). As shown in
Figure 8b, the filenames have the format image1xxx.png where xxx represents the image
number. A similar notation is used by the other two subfolders as shown in Figure 8c,d.
The subfolder name and the first digit of the filename correspond to the object class, and
this can easily be extracted when the image files are batch-loaded using Matlab or any
other software.

3. Methods

Figure 9 illustrates the setup of the workspace environment used to acquire object
data. An overhead camera (Logitech HD C270) is mounted in the center of the workspace
to capture images. The camera is positioned at a height of 0.37 m. This height can be
adjusted because the four circular boundary markers are used to calibrate pixel distances.
The workspace environment assumes a fixed lighting condition of approximately 350 lux,
which is the typical level for focused activity [21].

The collected data are used by an object classification system to sort electronic parts [6].
An overview of the system is presented in Figure 10. The captured camera image is passed
into the object detection process (Section 3.1) for detecting instances of unclassified objects
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and their locations. The unclassified object images (regions of interest, ROI) are resized
to conform to the classification process requirements. After resizing, the classification
process matches the unclassified object images to an object class it has been trained to
recognize. Training the classifier is the primary purpose of the dataset presented in this
paper (Section 3.2). After classification, an object can be moved from the workspace to a
desired target location.
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Insufficient data in classifier training can lead to overfitting, which makes the model’s
generalization ability worse. Therefore, the dataset needs to be augmented to improve
the diversity of the sample. Conventional methods, such as flipping images and rotating
images, were used to augment the dataset. Other complex preprocessing, such as contrast
enhancement or blur processing, was not needed.

3.1. Object Detection Process

An overview of the object detection process is provided in Figure 11. A variety of image
processing algorithms are applied to the original 960 × 720 pixel workspace color image
to extract grayscale object images. The first part of the process is to convert the RGB color
image to grayscale using the weighted method (1) [22]. Next, edge detection algorithms can
be applied to determine the boundaries (outlines) of objects within images [23]. The Canny
edge detection algorithm performed the best in detecting shape outlines out of the available
algorithms in Matlab (Sobel, Canny, Prewitt, and Roberts). Canny is less likely to be fooled
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by noise and more likely to detect true weak edges due to its use of two thresholds. For
this application, the values of the high and low thresholds are 0.1 and 0.04, respectively.

gray = 0.299R + 0.587G + 0.114B (1)
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Figure 11. Object detection process.

A binary image is output from the Canny edge detection algorithm. This binary image
is then dilated to further improve connectivity between the edges. A rectangular structuring
element filter that enlarges the edges of the binary image by 10 pixels is applied. Edge
connectivity is important as the next stage involves flood-filling the binary image to form
filled (solid) shapes representing the detected objects. After flood-filling, the binary image
is further processed by measuring the properties of the image regions. The “BoundingBox”
property provides the positions and sizes of the smallest boxes containing each detected
object. This represents the ROIs or unclassified objects. Green markers are applied to the
bounding box centers to identify the location of objects in the workspace.

3.2. Validation

Prior to input to the classification process, the validity of the data is checked in
two ways:

1. The size of each unclassified object image is checked against an estimated size thresh-
old representing the dimensions of the smallest component to be detected. This
eliminates small images that may have been erroneously detected due to noise or tiny
holes in components, such as voltage regulators. The pick and place task assumes
that objects are physically separated and do not overlap.

2. Pixel grayscale shades are checked against a threshold value. Because all the objects
in the current sorting task produce dark shades of gray or black in their grayscale
images, an 80% or above shade of gray (i.e., <51 grayscale pixel value) is arbitrarily
set as the threshold. At least 5% of the unclassified object image pixels need to
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meet the threshold. Otherwise, the image is flagged for manual inspection or can be
automatically ignored.

To validate the dataset, classifiers were implemented using SNN, SVM, and CNN. The
dataset was randomly divided into 70% training (1214 images), 15% validation (260 images)
and 15% test (260 images). Five-fold cross-validation was used in the training process. A
Windows 10 HP ProBook 450 G7 laptop running Matlab 2021a was used to implement
the various classifiers. The hardware configuration had an Intel i7-10510U processor and
16 GB RAM. Full details of the classification models, results, and analysis are available in
the cosubmitted journal paper [6]. Furthermore, a comparison with other classification
methods is also presented in [6]. In this data descriptor paper, a summary of the best SNN,
SVM, and CNN models is presented in Table 1 for validation purposes.

Table 1. Summary of the best classification models.

Model Main Parameters Dataset Test Accuracy %

SNN

900 inputs
Single hidden layer with 80 neurons
3 outputs
Scaled conjugate gradient training
method

93.5

SVM
900 inputs
3-class one vs all approach
Cubic kernel function

94.9

SVM + PCA

900 inputs reduced to 20 components
with PCA
3-class one vs all approach
Cubic kernel function

94.6

CNN

30 × 30 pixel grayscale image input
3 convolution layers
2 pooling layers
1 fully connected layer

98.4

All classifiers achieved over 90% accuracy with the dataset. Classifier accuracy im-
proves as the complexity of the network increases. For the SNN model, a single hidden
layer with 80 neurons achieved the best result over the tested range of 40 to 120 neurons.
The SVM model was tested with four kernel functions (linear, quadratic, cubic, and medium
Gaussian). Cubic kernel function performed the best. Principal component analysis (PCA)
was applied to reduce the number of support vectors for the SVM model. The number
of components was varied between 10 and 50. Classifier performance was least impaired
with 20 components. The classification result was similar to using the full 900 inputs for
support vectors. Deep learning via a lightweight CNN model achieved the best classifica-
tion accuracy. The CNN model uses 30 × 30 pixel grayscale images with three convolution
layers, two pooling layers, and one fully connected layer. It does not need to perform object
detection because this is achieved via the process described in Section 3.1. This permits the
same dataset to be used across multiple types of classifiers.

Other deep learning models that perform object detection and classification with a
single network rely on higher-resolution color images and a larger number of network
layers [9–12]. Hence, these other classifiers are inherently more complex and require heavier
computational power. Their accuracies are in the range of 95.21% to 99.99%.

Figure 12 illustrates sample results from the trained classifier models when presented
with new multiobject scenes (cap = capacitor, pot = potentiometer, and reg = regulator).
The SVM and CNN models classify all objects successfully. There is one misclassification
when using the SNN model. Based on the results presented in Table 1 and Figure 12, the
applicability of the dataset for training classification models is justified.



Data 2023, 8, 20 10 of 11Data 2023, 8, x FOR PEER REVIEW 10 of 11 
 

 

  
(a) (b) 

 
(c) 

Figure 12. Sample results from trained classifier models. (a) SNN; (b) SVM; (c) CNN. 

4. User Notes 
This dataset was derived from a workspace environment based on the Niryo Ned 

robotic arm. It relies on the use of an overhead camera to take images of the workspace. 
Computational complexity is reduced by using low-resolution grayscale images. This per-
mits a variety of classifiers, such as SNN, SVM, and CNN, to be implemented using stand-
ard laptop computers. Classification accuracies of 93.5%, 94.9%, and 98.4% were achieved 
with SNNs, SVMs, and CNNs, respectively. These accuracies compare favorably with 
other similar classes of problems that tend to utilize higher-resolution images. The current 
implementation assumes that objects are scattered in the workspace such that the robotic 
arm can relatively easily grasp objects. The Niryo Ned robotic system also comes with a 
conveyor belt. Because individual objects are detected in the workspace, this dataset can 
also be applied to classify objects entering the Niryo conveyor belt via overhead camera 
detection. 
Funding: This research received partial funding from the Waikato Institute of Technology Contest-
able Fund. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are available at (Github link) under Creative Commons Attrib-
ution 4.0 International license. 

Figure 12. Sample results from trained classifier models. (a) SNN; (b) SVM; (c) CNN.

4. User Notes

This dataset was derived from a workspace environment based on the Niryo Ned
robotic arm. It relies on the use of an overhead camera to take images of the workspace.
Computational complexity is reduced by using low-resolution grayscale images. This
permits a variety of classifiers, such as SNN, SVM, and CNN, to be implemented using
standard laptop computers. Classification accuracies of 93.5%, 94.9%, and 98.4% were
achieved with SNNs, SVMs, and CNNs, respectively. These accuracies compare favorably
with other similar classes of problems that tend to utilize higher-resolution images. The
current implementation assumes that objects are scattered in the workspace such that
the robotic arm can relatively easily grasp objects. The Niryo Ned robotic system also
comes with a conveyor belt. Because individual objects are detected in the workspace, this
dataset can also be applied to classify objects entering the Niryo conveyor belt via overhead
camera detection.

Funding: This research received partial funding from the Waikato Institute of Technology
Contestable Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available at (Github link) under Creative Commons Attribu-
tion 4.0 International license.
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