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Abstract: The automatic processing of high-dimensional mass spectrometry data is required for
the clinical implementation of ambient ionization molecular profiling methods. However, complex
algorithms required for the analysis of peak-rich spectra are sensitive to the quality of the input data.
Therefore, an objective and quantitative indicator, insensitive to the conditions of the experiment,
is currently in high demand for the automated treatment of mass spectrometric data. In this work,
we demonstrate the utility of the Shapley value as an indicator of the quality of the individual mass
spectrum in the classification task for human brain tumor tissue discrimination. The Shapley values
are calculated on the training set of glioblastoma and nontumor pathological tissues spectra and used
as feedback to create a random forest regression model to estimate the contributions for all spectra
of each specimen. As a result, it is shown that the implementation of Shapley values significantly
accelerates the data analysis of negative mode mass spectrometry data alongside simultaneous
improving the regression models’ accuracy.

Keywords: ambient ionization mass spectrometry; Shapley value; classification

1. Introduction

The explosion in interest surrounding ambient ionization mass spectrometry has
turned fingerprinting into a prominent method for a variety of clinical implementa-
tions [1,2]. The absence of time-consuming sample preparations and separation steps
has allowed for it to be possible to integrate ambient ionization mass spectrometry into
routine diagnostic and surgical pipelines [3,4]. The intraoperative differentiation and evalu-
ation of resected tissues is becoming more and more in demand in oncological surgery as a
helpful decision-making technique, as well as a way to accelerate biopsy examinations [4–6].
Unlike widespread approaches based on single biomarker identification [7–9], molecular
profiling requires the detection of a complex molecular signature of cancer tissue [10–12].
This means that an analysis of peak-rich mass spectra is required to determine distinctive
features, regardless of the exact ion composition in the detected peaks. However, such
an analysis inevitably leads to high data dimensionality. In such cases, it is common
to use averages over certain axes, which reduces the input dataset and masks possible
inconsistencies therein.

The automatic processing of high-dimensional data is required for the clinical im-
plementation of the proposed molecular profiling techniques; thus, more complex data
analysis algorithms are becoming more crucial [13–15]. At the same time, the more com-
plex the algorithm used, the more samples should be subjected to a mass spectrometric
analysis. However, the typical number of available samples [16,17] (i.e., individual patients
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or biopsy specimens, which usually count in the dozens to low hundreds) is lower than
the number of characteristics describing the model (i.e., peaks and scans, which could
count in the hundreds or thousands) [18,19]. On the other hand, complex algorithms are
sensitive to the quality of the input data, and a simple increase in the number of spectra
from each individual specimen could increase the percentage of inadequate data caused by
experimental instabilities or sample exhaustion [20].

The quality of individual spectrum scans can be determined with the magnitude of
the total ion current, the number of peaks, or with the signal-to-noise ratio. Despite the
large number of tools designed for this purpose, the results should be manually inspected
by an expert [21–23], since, for instance, the polarity mode, the resolution of the detector,
and the scanning range can cause large differences in the parameters used for the control
of spectra quality. Therefore, a more universal and quantitative indicator, which does
not depend as strongly on the experimental conditions, is required for the automated
processing and analysis of mass spectrometric data. To obtain such an indicator, one of
the quantitative data valuation methods can be used. The set of these methods consists
of influence functions [24], leave-one-out validation [25], reinforcement learning, and
Shapley’s value computation [12,26].

In this work, the Shapley value as an indicator of the quality of the individual scan
(mass spectrum) is proposed. In supervised machine learning, given the training dataset,
the learning algorithm, and the means of assessing the learning algorithm performance, we
could obtain the importance of one particular data point as a measure of whether excluding
this data point from the training dataset decreases or increases the performance of the learn-
ing algorithm. At the same time, this measure should satisfy the three axioms: symmetry,
efficiency, and “the aggregation law” [27]. It was previously stated and proven [26] that the
method which satisfies the axioms listed above must have the form

φi = C ∑
S⊆D−{i}

V(S ∪ {i})−V(S)(
n− 1
|S|

) (1)

where C is an arbitrary constant and the sum is computed over all subsets of the dataset D
with the i-th data point excluded. The value φi is called the Shapley value of the i-th data
point. In this assay, the Shapley value is essentially the contribution of the i-th scan into a
metric that characterizes the quality of the model built using that scan among others in a
whole dataset. The classification model is fitted on previously collected human brain tumor
mass spectra [17] and is based on the hypothesis of there being an alteration in the lipid
metabolism during the malignant transformation of glial cells [28,29]. The Shapley value
calculation consists of determining how the accuracy (or any other metric) of the machine
learning model changes if this particular scan is removed from the training set.

2. Materials and Methods
2.1. Experimental Data

Tissue samples were provided by the N.N. Burdenko NSPCN and analyzed under
a protocol approved by the N.N. Burdenko NSPCN Institutional Review Board. Brain
tumor tissues (n = 208) were resected during elective surgeries of glioblastoma patients.
Nontumor pathological tissues (n = 40) were resected in the course of the surgical treatment
of drug-resistant epilepsy. A signed informed consent form, filled out in accordance with
the requirements of the local ethical committee, specifically noting that all removed tissues
could be used for further research, was obtained from all patients before surgery. The
study was conducted in accordance with the Helsinki Declaration, as revised in 2013. All
procedures were carried out according to the relevant guidelines and regulations.

All dissected tissue was anonymized, examined by a professional pathologist, and
placed in normal saline, frozen, and stored at −80 ◦C until analysis. The samples were
analyzed using an inline cartridge extraction (ICE) ambient ionization mass spectrometry
approach [17]. Briefly, a freshly thawed tissue sample was cut into an approximately
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1 mm3 large sample and placed into disposable stainless-steel cartridges. A high voltage
(3.5 ± 1 kV, tuned to form a stable single-jet Taylor cone) and solvent flow (3 µL/min) were
then applied through the cartridge to obtain a stable ion current. In total, 90% HPLC-grade
methanol supplemented with 0.1% acetic acid was used as an extraction solvent. The
solvents and acetic acid were obtained from Merck (Merck KGaA, Darmstadt, Germany).
The acquisition of mass spectra was performed on the Thermo LTQ XL Orbitrap ETD mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Samples were analyzed in the
negative and positive modes in the m/z ranges 500–1000 m/z.

2.2. Shapley Data

The mass spectra were preliminarily aligned to the spectrum with the maximum
total ion current. The alignment was performed within each class of spectra (glioblas-
toma/nontumor pathology) separately. After the alignment, a total matrix of peak in-
tensities was obtained with a size of 13,611 × 198 for the spectra of negative ions and
15,102 × 200 for the spectra of positive ions. The calculation procedure was carried out for
each set of spectra separately.

The Shapley values were calculated for 1200 scans, which were selected randomly
from the total peak intensity matrices. Scan contributions were evaluated on validation
sets of 1500 scans.

The sets were compiled in such a way that scans from both groups of spectra were
equally included in each set. It was also ensured that scans belonging to the same specimen
were not included in the training and verification sets at the same time.

The calculation process was as follows: a random rearrangement was performed in
the original training set of the scans. For a newly ordered set, the learning algorithm
determined the contribution of each scan to a given performance metric. The traditional
logistic regression model was used as a training algorithm, and the accuracy of the class
prediction for a validating set of scans was calculated as a quality metric for the model. The
contribution of a scan is defined as the change in prediction accuracy when adding this scan
to the training set of predictors compared to the previous accuracy value, averaged over
the number of scans before the addition. The procedure for calculating the permutations
was repeated until the sum of the relative changes in the contributions of the scans over
the last 100 permutations became less than a certain threshold (ShapTolerance), which was
fixed at a value of 0.5 in this study. The scan contributions obtained for the last permutation
were taken as the Shapley values. Data on the histological diagnoses of patients were used
as a response in creating the model.

Determining Shapley values can take a long time, even for a set as small as 1200 scans,
so the permutation calculation procedure was performed in parallel on 8 CPU cores, and
the ShapTolerance threshold was checked once for every thousand permutations.

To extend the Shapley analysis to the whole dataset, the calculated Shapley values
were used as feedback to create a regression model to estimate the contributions for all
scans. The model was built using the random forest method with cross-validation (5 splits
with 3 repetitions).

To determine the influence of the scanned Shapley values on the accuracy of the
resulting model, 1200 scans were selected from the entire set for the calculated Shapley
values and 4000 scans for the predicted values. The selection of scans was performed so that
each set contained an approximately equal number of glioblastoma scans and nontumor
samples. Selected scans were aligned in ascending order, according to the Shapley value,
and removed from the training set according to that order. The remaining scans were used
to create a cross-validated logistic regression model. After that, for the resulting model, the
accuracy of predicting classes from the training set of scans was estimated.

Shapley values and their processing were calculated in the R environment versions
3.4.4 and 4.0.4 using the R packages MALDIquant, glmnet [30], doParallel [31], caret [32],
and ggplot2 [33]. The negative ion spectra were processed on a 12-core desktop computer
with 32 GB RAM running Ubuntu 16.04 OS, and the positive ion spectra were processed on
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a 16-core desktop computer with 32 GB RAM running Ubuntu 20.04 OS. The Shapley data
calculation was performed simultaneously on 8 CPU cores.

3. Results
3.1. Calculated Shapley Values

The iterative process of calculating the Shapley values was limited to a ShapTolerance
of 0.5. As a result, Shapley values of 1200 scans were obtained for two sets of spectra
obtained in the negative and positive ion modes, with their model performance estimated
on a validation set consisting of 1500 scans. The distribution of calculated values is shown
in Figure 1.

Figure 1. Distribution of calculated Shapley values. The values obtained for the negative and positive
ion modes are shown on the left and right hand sides, respectively.

Excluding scans with negative Shapley values as predictors affected the accuracy of
the classification model, as shown in Figure 2. It can be seen that, when scans with negative
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Shapley values were excluded (the area to the left of the vertical red line), the accuracy of
the model increased.

Figure 2. Change in classification accuracy in the scan exclusion procedure. The plots for the
negative and positive ion regime spectra are shown on the left and right hand sides, respectively.
The red vertical line shows the border separating the areas of negative (left) and positive (right)
Shapley values.

3.2. Shapley Value Modeling

The time required to calculate the Shapley values can be measured in days and weeks
for a large set of scans; therefore, in this study, values were calculated for a smaller set of
scans and the random forest regression model was trained to predict the Shapley values
for the entire set of available experimental data. The parameters of the obtained models
are presented in Table 1. There was a good agreement between the predicted and actual
Shapley values shown in Figure 3, although it should be noted that the deviation was
bigger in the area of the highest Shapley values, which was less important in terms of
quality control.
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Table 1. Parameters of regression models. Neg and Pos are models for the Shapley data for the
spectra of negative and positive ions, respectively.

Scan Set Number of Predictors RMSE R2 MAE

Neg 198 8.473 × 10−5 0.8972 5.0221 × 10−5

Pos 200 6.550 × 10−5 0.8411 4.6361 × 10−5

Using the models, the Shapley values were calculated for the entire set of scans. The
distribution of the predicted Shapley data was generally the same as the distribution of the
calculated ones (see Supplementary Figures S1 and S2).

Figure 3. Correspondence of the predicted Shapley values with the calculated ones. The model for
the mass spectrometric scan data in the negative (left) and positive (right) ion modes.
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The Shapley values obtained using regression models were used to exclude from
the analysis mass spectrometric scans, which corresponded to negative and zero Shapley
values. To evaluate the results, the construction time and accuracy of the logistic regression
model were measured for two cases: the entire set of scans and the set of only those
scans that had positive Shapley values. The data presented in Table 2 show a decrease in
calculation time and an increase in prediction accuracy when using only the scans with
positive Shapley values.

Table 2. Comparison of construction time and accuracy of models when only the scans with positive
Shapley values were included in the analysis.

Dataset
Duration (Seconds) Model Accuracy

Negative Mode Positive Mode Negative Mode Positive Mode

General 38.738 24.070 0.9626 0.9860
Shapley-filtered 15.730 23.354 0.9719 0.9881

4. Discussion

The Shapley values could be used to evaluate the relevance of the respective scans for
further consideration. By definition, adding scans with negative Shapley values worsened
the quality of the resulting model, positive values improved it, and zero values did not
affect the simulation results. Therefore, scans with negative and zero Shapley values should
be excluded from further consideration.

Figure 2 shows that the accuracy of the class prediction increased when the predictors
with low Shapley values were excluded until a certain maximum value was reached, after
which the accuracy started to decrease due to a decrease in the size of the training dataset.

The results of this study showed that the Shapley values calculated using a regression
model for the entire set of scans could also be used as a reliable scan quality metric.

For the spectra of negative ions, the number of scans with negative Shapley values was
10% of the calculated and 16% of the predicted values; the same data for positive ions were
4% for the calculated values and 3% for the predicted ones. This was in great accordance
with previous results indicating that positive spectra were much more stable compared
to negative ones [20]. This could also explain that the Shapley values for the positive ion
mode scans were smaller in the absolute value than for the negative ion mode.

The obtained results indicated that the Shapley value, as proposed in Ref. [26], could
be used as a quality metric for mass spectrum scans and that the regression model built
on a small subset of data could provide a good estimation of Shapley values to rank scans
according to their quality. The application of the Shapley value quality filter drastically
reduced the model training time and increased the classification accuracy.

Nevertheless, Data Shapley should not be treated as the outlier detection algorithm,
as they did not use assumptions about the data distribution and the data normality. The
scan with the negative Shapley value could either be an outlier, for instance, in the sense of
the total ion current, or the scan belonging to the part of the sample tissue corresponding
to the tumor boundary and, thus, containing malignant tumor cells and healthy brain cells.
Supplementary Figures S3 and S4 with the PCA diagrams of the negative ion scans colored
with the positive and nonpositive Shapley values showed that nonpositive Shapley value
scans could hardly be treated as outliers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/data8010021/s1, Figures S1 and S2: plots of change in prediction
accuracy with the exclusion of samples from the predicted Shapley values for different polarities;
Figures S3 and S4: PCA diagrams for the scans of the negative ions colored with the positive and
non-positive Shapley values.

https://www.mdpi.com/article/10.3390/data8010021/s1
https://www.mdpi.com/article/10.3390/data8010021/s1
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