
S1 of S6

Supplementary Materials: USC-DCT: A Collection of Diverse
Classification Tasks
Adam M. Jones 1,† , Gozde Sahin 2,† , Zachary W. Murdock 1,† , Yunhao Ge 2 , Ao Xu 2, Yuecheng Li 2, Di Wu 2,
Shuo Ni 2, Po-Hsuan Huang 1, Kiran Lekkala 2 and Laurent Itti 1,2,*
S.1. Dataset Inclusion Criteria Decision Tree

Figure S1. Visualization of the decision process used to determine if a computer vision dataset could be included in the development

of USC-DCT, as mentioned in Section 3.1.1.

S.2. Dataset Preparation Examples

As mentioned above, a prepare_dataset.py script is created for each dataset during the inspection phase. Most of
the work to "ingest" the dataset is done by a function called parse_dataset(). In this function, the extracted files and any

other knowledge are combined to create a list of every image file with its details and a dictionary of all classes. Many

of the datasets have straightforward parsing. However, some are quite complex (not including the splitting up of the

super-datasets: iNaturalist and Office-Home).

S.2.1. Simple Example

One simple example of our task-specific scripts to integrate a task into USC-DCT is the Concrete Cracks dataset.

Listing 1 includes the main processing function for this dataset, and shows a straightforward example of how a user

would customize parse_dataset() to add a task to USC-DCT. The script first creates a list of all the image files found in the

original_files folder where the downloaded archive for the dataset was extracted to. These images are processed using the

method given in Section 3 to set status codes for each image (problem_value and the set (train/val/test). Images with

non-zero status codes are excluded from the collection by setting their class and set values to -1.

Version September 6, 2023 submitted to Data

MDPI
Stamp

Version September 6, 2023 submitted to Data S2 of S6

verify md5sums
extract dataset
verify all archive files are used (this will be a manual check):
archive . zip ########## #

DATASET_FILE_ 1 = " archive . zip "

parse dataset
validate parsed dataset
validate classes dict
validate images list
get all remaining image details
get image details using 26 workers ...
took 9 sec

statistics :

image statistics :

1 def parse_dataset (
2 dataset_root_path : str ,
3) -> tuple [list [Dataset Image], dict [str , int]]:
4 """ This returns a list of all images within the dataset .
5 This includes ** all images ** in both ./ original_files / and ,
6 if necessary , ./ converted_files /
7 """
8

9 image_list : list [Dataset Image] = []
10 class_dict : dict [str , int] = {}
11

12 # get all file paths
13 files_list = get_all_files_in_directory (
14 dataset_root_path + " original_files /", dataset_root_path)
15

16 (image_path_list , _) = filter_file_list (files_list)
17

18 # create a class dict
19 class_list = os. listdir (dataset_root_path + " original_files /")
20 for k, class_name in enumerate (sorted (class_list , key= str. casefold)):
21 class_dict [class_name] = k
22

23 for image_path in image_path_list :
24 problem_value , set_value = 0 , 0
25

26 # first address problem_value
27 if not is_image_valid (dataset_root_path + image_path):
28 problem_value = 1
29

30 # check non - dataset file
31

32 # once problem_value != 0 , set all else as -1
33 if problem_value != 0:
34 class_int = -1
35 set_value = -1
36 else :
37 # finally address the class_int
38

39

40

41

42

43

44

45

46

47

48

49

50

class_from_path = image_path . split ("/")[-2]
class_int = class_dict [class_from_path]

image_list . append (
Dataset Image (

relative_path = image_path ,
class_id = class_int ,
set_id = set_value ,
problem = problem_value ,

)
)

return (image_list , class_dict)

Code Snippet. 1: A simple example of a prepare_dataset function.

In addition to the sample parse_dataset(), we also provide a sample output that a human validator would obtain from the

automated validation script for this dataset. Listing 2 shows this output, which notes important information like total images

found in the original archives, number of images assigned to each set, and class statistics. The validation script also presents
statistics on status codes across images and whether certain status codes can be independently confirmed (exact duplicate
folders etc.). This information can be utilized by the human validator to make sure the customized script is running as

expected.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

Version September 6, 2023 submitted to Data S3 of S6

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Code Snippet. 2: A simple example of what the output from the automated validation script looks like.

images total : 40000
images found independently : 40000

inoriginal_ files : 40000
problem - free images : 40000

imagesintrainingset: 40000
imagesinvalidationset: 0
imagesintestingset: 0

problematic images : 0
class_ id = -1 images : 0
set_ id = -1 images : 0
all3 (problem / class_ id / set_ id) images : 0

classstatistics :
classes (>=0): 2
first 2 classes :
-id- , - name - , - count -

0 , Negative , 20000
1 , Positive , 20000

classnamesinalphabetical order :
True classids are contiguous : True
shortestclassname : Negative
longestclassname : Negative
allclasses are the same size :

20000

create database . sqlite
run additional checks on hashes
image count : 40000 folder count : 2
there are no folders full of images that are duplicated elsewhere
there are 1519 (problem =0) hashes that arenotunique
create examples

Version September 6, 2023 submitted to Data S4 of S6

def parse_dataset (
dataset_root_path : str ,

) -> tuple [list [Dataset Image], dict [str , int]]:
""" This returns a list of all images within the dataset .
This includes ** all images ** in both ./ original_files / and ,
if necessary , ./ converted_files /

"""

image_list : list [Dataset Image] = []
class_dict : dict [str , int] = {}

get all file paths
files_list = get_all_files_in_directory (

dataset_root_path + " original_files /", dataset_root_path
)

splitting the file list into images and non - images (
image_path_list , text_path_list) = filter_file_list (files_list)

generate list of classes AND list of file labels
class_list = []
text 2 img_dict : dict [str , int] = {}
for file Path in text_path_list :

remove all filepaths , break at counting number
(pattern : .../.../ LABEL_ # _ ...)
class Name = re. split (r"\ d+", file Path . replace (" original_files /", ""))[0][: -1]
Collect Unique Class Names
if class Name not in class_list :

class_list . append (class Name)

creating class_dict , and text 2 img_dict
for id , class Str in enumerate (sorted (class_list , key = str . casefold)):

class_dict . update ({ class Str : id })

Create list of files denoted for the given class Str
text Labels = []
for file Text in sorted (text_path_list):

If class is in file name (and not a " Query " file),

S.2.2. Complex Example

A slightly more complex (but not too complex) example is from the Oxford Buildings dataset. Here, the folder

structure was less straightforward, which necessitated some additional code. It bears mentioning that for some of the

datasets, the parse_dataset() function runs into hundreds of lines, and sometimes requires the use of additional files that

act as keys for the class structure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Version September 6, 2023 submitted to Data S5 of S6

39 # add to collection , else ignore
40 if class Str in file Text and " query " not in file Text :
41 for x in (
42 open (str (dataset_root_path + file Text), " r"). read (). split ("\ n")[: -1]
43):
44 text Labels . append (x)
45 else :
46 pass
47 # Generate dict with the image name : id#
48 n = 0
49 for txt Img in text Labels :
50 n += 1
51 text 2 img_dict . update ({" original_files /" + txt Img + ". jpg ": id })
52

53

54

55

56

57

58

59

60

61

go through each image , ensure valid , flag any problems , else find label
for image_path in sorted (image_path_list):

problem_value , set_value = 0 , 0

first address problem_value
if not is_image_valid (dataset_root_path + image_path):

problem_value = 1

class_int = -1

62 # If not in listed named files
63 elif image_path not in text 2 img_dict . keys ():
64 class_int = -1
65 problem_value = 4
66 else :
67 class_int = text 2 img_dict [image_path]
68

69 # once problem_value != 0 , set all else as -1
70 if problem_value != 0:

71 class_int = -1

72 set_value = -1

73

74 assert isinstance (class_int , int)
75

76 image_list . append (
77 Dataset Image (
78 relative_path = image_path ,
79 class_id = class_int ,
80 set_id = set_value ,
81 problem = problem_value ,
82)
83)
84

85 return (image_list , class_dict)

Code Snippet. 3: A more-complex example example of a prepare_dataset function.

Version September 6, 2023 submitted to Data S6 of S6

S.3. USC-DCT Visual Overview

Version September 6, 2023 submitted to Data S7 of S6

Figure S2. Visual Overview of the Datasets used within USC-DCT. Dashed-Lines represent data subsets created by splitting one larger

dataset (e.g. iNaturalist). See also: Table 4 in the main paper.

