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Abstract:
resembling an industrial vehicle equipped with several sensors. Wi-Fi interfaces collect signals from

This paper describes a dataset collected in an industrial setting using a mobile unit

available Access Points (APs), while motion sensors collect data regarding the mobile unit’s movement
(orientation and displacement). The distinctive features of this dataset include synchronous data
collection from multiple sensors, such as Wi-Fi data acquired from multiple interfaces (including a
radio map), orientation provided by two low-cost Inertial Measurement Unit (IMU) sensors, and
displacement (travelled distance) measured by an absolute encoder attached to the mobile unit’s
wheel. Accurate ground-truth information was determined using a computer vision approach that
recorded timestamps as the mobile unit passed through reference locations. We assessed the quality of
the proposed dataset by applying baseline methods for dead reckoning and Wi-Fi fingerprinting. The
average positioning error for simple dead reckoning, without using any other absolute positioning
technique, is 8.25 m and 11.66 m for IMU1 and IMU2, respectively. The average positioning error for
simple Wi-Fi fingerprinting is 2.19 m when combining the RSSI information from five Wi-Fi interfaces.
This dataset contributes to the fields of Industry 4.0 and mobile sensing, providing researchers with a
resource to develop, test, and evaluate indoor tracking solutions for industrial vehicles.

Keywords: Industry 4.0; datasets; fingerprinting; motion sensors; industrial vehicles; indoor tracking;
indoor positioning; Wi-Fi; IMU; encoder

1. Introduction

Industry 4.0 is a generation of manufacturing development driven by disruptive
trends in numerous areas, including the Internet of Things (IoT) [1], deep learning [2],
and edge computing [3], among others [4]. Industrial vehicles have an important role in
manufacturing, participating in the transport of raw materials and finished goods as well
as moving materials within factories. Factories benefit from tracking vehicles to monitor
and control operations, improve logistics and safety, and also to enable inter-connectivity
between vehicles, other machines and even human operators. Contrarily to outdoor
environments where Global Positioning System (GPS) is used to locate vehicles [5], in indoor
environments, satellite-based positioning systems are not reliable. Alternatively, indoor
vehicles can be localised using Wi-Fi-based positioning systems [6]. Wi-Fi is ubiquitous,
being present in most environments, including industrial buildings; hence, its infrastructure
can be explored for localisation without additional costs.

Wi-Fi fingerprinting [7,8] is one of the most used positioning techniques based on Wi-
Fi. It consists of two phases, the calibration (or offline) phase and the online phase. In the
calibration phase, a radio map is built by collecting Wi-Fi samples in known locations, which
are also known as reference points. In the online phase, an operational sample is compared
against the radio map using a (dis)similarity function to find the radio map samples that
are more similar to the operational sample. Then, a position estimate is obtained using

Data 2023, 8, 157. https:/ /doi.org/10.3390/data8100157

https://www.mdpi.com/journal /data


https://doi.org/10.3390/data8100157
https://doi.org/10.3390/data8100157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-5423-0624
https://orcid.org/0000-0002-4563-7414
https://orcid.org/0000-0003-4338-4334
https://orcid.org/0000-0002-8967-118X
https://doi.org/10.3390/data8100157
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data8100157?type=check_update&version=1

Data 2023, 8,157

2 of 20

an algorithm (e.g., the k-Nearest Neighbour (k-NN)), based on the most similar radio
map samples. Despite being low cost and simple to implement, Wi-Fi fingerprinting has
a few drawbacks: namely, it requires the collection of the radio map, and it is prone to
large errors [9], which occur due to numerous reasons such as changing the indoor layout,
adding/removing APs, or propagation effects.

Although Wi-Fi may provide an absolute position, additional sensors are necessary to
accurately track industrial vehicles. The vehicle’s movement can be tracked using sensors
that measure the heading (orientation) and the displacement (travelled distance). IMU
sensors allow measuring the absolute heading of the vehicle, detecting which way it is going
towards, and wheel encoders may be used as odometers to measure the travelled distance.
The vehicle’s trajectory based on motion sensors can be determined with dead reckoning.
An initial position must be provided, and then upon receiving new observations, the
trajectory is updated based on the previous position. This approach is prone to cumulative
errors because the IMU sensor is affected by bias and noise, leading to drift in the heading.
Therefore, the position should be corrected after some time to avoid large errors.

Combining Wi-Fi with motion sensor data mitigates the drawbacks of both Wi-Fi
fingerprinting and dead reckoning [10]. For instance, Wi-Fi fingerprinting can provide
the absolute position necessary for the initial position of dead reckoning and correct the
drift in the estimated trajectory. In addition, large positioning errors may be reduced when
combining Wi-Fi with motion sensor data. Kalman filters and particle filters are two of the
most-known sensor fusion approaches to fuse Wi-Fi with motion sensors [6,11,12].

Testing and evaluation are crucial parts of the development of an Indoor Positioning
System (IPS), usually requiring real-world experiments to collect data for validation and
testing. When the objective of the IPS is to localise and track industrial vehicles equipped
with multiple sensors, this process comprises several stages:

1.  Preparing the setup where experiments are conducted:

(a) Defining the reference points for the radio map;
(b)  Mapping the locations of the APs and reference points, measuring their posi-
tions with respect to the building’s coordinate reference system.

2. Preparing the hardware and software:

(@) Physically connect all sensors to a computer;
(b)  Develop sensor acquisition software;
(c) Test software collecting data from all sensors simultaneously.

3. Perform calibration by collecting the radio map at reference points;
4. Collect the sensor data and ground truth in multiple trajectories.

There are several public Wi-Fi datasets for Wi-Fi-based positioning systems, [13-19],
which are collected in a variety of scenarios, including universities, office buildings, shop-
ping malls, and industrial factory-like space. There are also hybrid datasets, namely,
with Wi-Fi and Bluetooth Low Energy (BLE) data [20], with Wi-Fi, BLE, and Zigbee [21],
with Wi-Fi, BLE, and magnetometer data [22], with BLE and IMU data [23], or even
with Wi-Fi, BLE, cellular signal and multi-sensor data (magnetometer, accelerometer, gy-
roscope, barometer, and ambient light sensor) [24]. The International Conference on
Indoor Positioning and Indoor Navigation (IPIN) provides their competitions” datasets,
containing multi-sensor data along with ground truth [25-34], which are available at
https:/ /ipin-conference.org/resources.html (accessed on 7 July 2023). In 2021, Microsoft
co-organised the Indoor Location Competition 2.0. The competition introduced a first-
of-its-kind large-scale indoor location benchmark dataset [35], containing dense indoor
signatures of Wi-Fi, an geomagnetic field, BLE iBeacons, and ground truth locations col-
lected by smartphones from numerous buildings in Chinese cities. Despite the existence of
these public datasets, none of them incorporate data gathered specifically in an industrial
setting from multiple sensor types, including Wi-Fi. Public access datasets are usually
collected at office buildings, laboratories or controlled scenarios. Therefore, they are not
considering some relevant features present in industrial layouts, such as wide-open areas
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with metallic machinery, high ceilings and constraints on where to place the Wi-Fi APs.
Existing datasets on office buildings are useful for the research community but often in-
clude narrow large corridors, small offices and locations of APs that do not mimic a real
industrial setup. Additionally, while datasets for mobile robots in indoor environments
exist, encompassing data from laser scanners, cameras, and odometry [36,37], none of these
datasets are tailored for indoor vehicles equipped with Wi-Fi interfaces and motion sensors
to accurately track their movement.

In industrial settings, it is difficult to conduct real-world experiments in the production
area where operators, robots and vehicles are moving in space; therefore, datasets are
essential for the development, prototyping and validation of novel IPSs. This allows
researchers to focus mostly on the development of the IPSs instead of needing to perform
the above-mentioned stages to prepare the experiment’s setup and collect sensor data.

In this paper, we present a dataset for vehicle tracking in indoor environments, which
includes Wi-Fi and motion sensor data. We fully describe the dataset, how it was collected,
and show examples of data usage.

To the best of our knowledge, there is no other open-source dataset with these char-
acteristics: (1) data collection at an industrial building with large open spaces and heavy
machinery; (2) Wi-Fi data from multiple synchronous Wi-Fi interfaces, which has been
shown to improve positioning performance [38]; (3) orientation data from two low-cost
IMUs, providing raw accelerometer, gyroscope, and magnetometer data as well as absolute
orientation provided by integrated sensor fusion algorithms; (4) displacement data pro-
vided by an absolute encoder attached to the wheel; and (5) ground-truth data determined
by a computer vision approach which automates the annotation process and improves
accuracy by providing not only the position but also the orientation of the mobile unit. The
objective of this paper is to share this indoor tracking dataset with the community, pro-
viding an additional resource for the development, evaluation and benchmarking of IPSs.
This contribution is especially valuable for the research community focused on positioning
solutions for Industry 4.0 and IoT. A potential use of this dataset is for the development
of solutions for vehicle automation and mobile robots, as it contains data from sensors
commonly found in these solutions. This dataset will also enable the research community
to test their Machine/Deep Learning proposals for PDR [39,40], Wi-Fi fingerprinting [41,42]
or a combination of both [43,44] with external datasets.

The remainder of this paper is organised as follows. A detailed description of the
dataset is made in Section 2. The data collection approach is presented in Section 3,
describing the building where data were collected and the software and hardware necessary
to collect and store the data. An analysis of the data is made in Section 4, providing several
details and statistics about the dataset. Examples of two possible data uses are provided in
Section 5, using two baseline methods, namely, dead reckoning and Wi-Fi fingerprinting.
Finally, the conclusions are presented in Section 6.

2. Data Description

The dataset is structured in several folders inside the data folder, whose contents are
as follows:

®  T1-T6 trajectory sub-folders—each sub-folder contains the data relative to a trajectory;

. RadioMap sub-folder—contains a set of Wi-Fi samples collected at known locations,
also known as radio map, which can be used for Wi-Fi fingerprinting-based position-
ing systems;

*  aps.csv—contains the information regarding the Wi-Fi APs detected in the building.
APs whose IDs start with 2, e.g., 2XXX, are the ones whose position is not known. The
positions of the other nine APs (IDs 0XXX and 1XXX) are included in this file;

*  tags.csv—contains the information regarding the radio map reference points;

* floor_plan. jpg—the image of the building’s floor plan, which can be used for visu-
alisation purposes or sensor fusion approaches that explore the floor plan information
(e.g., particle filters);
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* floor_plan_cal. jpg—the image of the building’s floor plan with four calibration
points marked, which can be helpful for plotting and using the floor plan information;

* floor_plan_cal.csv—contains coordinates of the calibration points, which are marked
in the floor_plan_cal. jpg image.

2.1. Trajectory Files
Each trajectory sub-folder contains nine sub-sets of data (sub-files), as follows:

D; = {E, I, I, W1, Wp, W3, Wy, Wy, GT } (1)

where j defines the number of the trajectory with j € {1,...,6}. E represents the set of
samples from the encoder sensor in the enc. csv file; I; and I, represent the set of samples
from both IMU sensors in imu_1.csv and imu_2. csv, respectively; Wi, Wp, W3, and Wy
represent the set of samples from Wi-Fi interfaces in rss_1.csv, rss_2.csv, rss_3.csv,
and rss_4.csv, respectively; W, represents the set of averaged Received Signal Strength
(RSS) values from all Wi-Fi interfaces in rss_m. csv; and GT represents the set of Ground
Truth (GT) records in ground_truth.csv.

2.1.1. Encoder Data

Encoder samples in the enc. csv file are defined as follows:
e={td,0} ()

where ¢ represents the time in milliseconds, d represents the displacement since the previous
sample (in meters), and 6 defines the absolute angle at which the wheel is positioned at
(value between 0 and 27, in radians). An example of the encoder data from a CSV file is
provided in Figure 1.

time,displacement,angle

0.000,0.001199913860746,2.672099084803318

0.021,0.001090830782496,2.689552377323262

0.041,0.001418080017245,2.712241657599188

0.061,0.001418080017245,2.734930937875114
0.081, ...

Figure 1. Example of encoder data file from trajectory T1.

2.1.2. IMU Data
IMU samples in the imu_i . csv files (Figure 2) are defined as follows:

imu = {t, gw, qx, Gy, qz, roll, pitch, yaw, gyrx, gyry, §Yrz, acCx, ACCy, ACCz, MAGy, MAZy, mag; } 3)

where t represents the time in milliseconds, (qu, qx,qy,qz) represent the orientation in
quaternion format, (roll, pitch, yaw) represent the orientation in Euler angles (degrees), and
gyr, acc, and mag tri-axis values represent the raw data from the gyroscope, accelerometer,
and magnetometer sensors, which measure the angular rate (rad/s), acceleration (m/ s%)
and magnetic field (uT), respectively. An example of the IMU data from a CSV file is
provided in Figure 2.

time,w,x,y,z,roll,pitch,yaw,gyro_x,gyro_y,gyro_z,acce_x,acce_y,acce_z,magn_x,magn_y,magn_z
0.038,0.999755859375,-0.0228271484375,0.003173828125,-0.0001220703125,-0.3125,2.625,90.0,0.0,0.0,0.0087266462599716,0.43,-0.5700000000000001,9.44,-84.6875,-2.5625,-18.5625
0.089,0.999755859375,-0.02313232421875,0.00152587890625,-0.0001220703125,-0.125,2.625,90.0,0.0054541539124822,0.0010908307824964,0.0098174770424681,0.43,-0.39,9.45,-83.5625,-3.25,-18.875
0.137,0.999755859375,-0.02313232421875,0.00128173828125,0.000244140625,-0.0625,2.625,90.0625,-0.0010908307824964,0.0032724923474893,0.0229074464324255,0.28,-0.4,9.62,-84.0,-2.875,-18.5625
0.192,0.9997556859375,-0.02301025390625,0.0008544921875,0.0006103515625,-0.0625,2.625,90.125,0.0021816615649929,0.0021816615649929,0.0087266462599716,0.25,-0.36,9.35,-51.5625,-1.75,-10.5
0.241, ...

Figure 2. Example of IMU data file from T1.

2.1.3. Wi-Fi Data

Wi-Fi samples in the rss_i. csv files are defined as follows:

w = {t,rss1,...,¥ssN} 4)
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where f represents the time in milliseconds, and rss; represents the RSS value of the i-th
AP (in dBm), with a total of 27 APs. A default RSS of —120 dBm is assigned to the APs
that were not detected in the Wi-Fi sample. An example of the Wi-Fi data from a CSV file is
provided in Figure 3.

time,0001,0002,0003,1001,1002,1003,1004,1005,1006,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
0.701,-50,-52,-28,-32,-41,-44,-37,-28,-32,-33,-33,-55,-52,-77,-120,-120,-120,-120,-120,-120,-24,-120,-120,-120,-120,-120,-120
2.319,-49,-56,-34,-27,-41,-41,-32,-25,-27,-32,-32,-53,-52,-80,-120,-120,-120,-120,-120,-120,-29,-120,-120,-120,-120,-120,-120
4.005,-49,-56,-39,-24,-40,-42,-35,-25,-25,-29,-30,-52,-52,-82,-120,-120,-120,-120,-120,-120,-27,-120,-120,-120,-120,-120,-120
5.614,-50,-50,-39,-27,-38,-42,-35,-22,-32,-32,-33,-52,-50,-82,-120,-120,-120,-120,-120,-120,-29,-120,-120,-120,-120,-120,-120

7.234,...

Figure 3. Example of Wi-Fi data file from T1.
2.1.4. Ground Truth Data

The location of the trajectory samples, also known as ground truth positions (GT) in
the ground_truth.csv file, is defined as:

gt = {i’, tﬂg, Pxs Pys pZ/(P} (5)

where f represents the time in milliseconds, tag is the identifier of the point, (px, py, p-) are
the Cartesian coordinates of the GT position, and ¢ is the GT orientation (in degrees). An
example of the GT data from a CSV file is provided in Figure 4.

time,tag,x,y,z,orientation
.033,42,-5.1746,5.1034,0.975,90.2836
.066,42,-5.1746,5.1037,0.975,90.2836
.100,42,-5.1741,5.1046,0.975,90.0000
.133,42,-5.1736,5.10568,0.975,89.7149
.166, ...

o O O O O

Figure 4. Example of ground truth data file from T1.
2.2. Radio Map

The radio map sub-folder includes the six sub-sets of data, as follows:
RM = {Vvi/LNErVVé/VV4rL“Cn11{l)} (6)

where W; represents the set of samples from each Wi-Fi interface, W, represents the set
of averaged RSS values from all Wi-Fi interfaces, and RP represents the set of reference
points where Wi-Fi samples were collected. Wi-Fi samples included in rss_i . csv files are
defined by Equation (4), and the reference points included in ref_pos. csv file have the
same format as GT points (Equation (5)).

The radio map is made of 40 Wi-Fi samples per reference point, with 10 Wi-Fi samples
collected at each of four directions turning clockwise, as shown in Figure 5. The mobile
unit was placed on the reference point position (RP), and then it was turned to face each
one of the four directions while collecting Wi-Fi samples.

Y,
1).10

31...40 o 11...20 >

21].30

Figure 5. Mobile unit orientations while collecting Wi-Fi samples: 10 Wi-Fi samples were collected at
each orientation for a total of 40 Wi-Fi samples at each reference point.
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2.3. Supporting Software
In addition to the dataset, several Python scripts are provided in the code folder:

* data_analysis.py—main file that parses the dataset, performs a statistical analysis,
and executes Wi-Fi fingerprinting and dead reckoning algorithms as examples of
data usage;

* plots.py—contains code to generate all plots presented in this paper;

* indoor_positioning.py—includes Wi-Fi fingerprinting and dead reckoning algo-
rithms as well as the methods to compute the positioning error;

* config.py—used as a configuration file that holds several values to configure, includ-
ing the path to the dataset folder, the folder where results and plots are saved into and
also Wi-Fi fingerprinting parameters, the k values and distance functions, that can be
Manhattan (city-block) or Euclidean;

* requirements.txt—lists the required Python packages to run the code.

3. Data Collection Approach

The main architecture of the data collection system, depicted in Figure 6, represents
each module and the software technology used to collect data from each sensor. Data from
the Wi-Fi interfaces are obtained from a multi-threaded Java application that saves data
from each interface into a separate Comma-Separated Values (CSV) file. Similarly, data
from the IMUs are obtained from a Python application, running separately for each IMU
sensor. This application is also multi-threaded to avoid blocking when it is writing to the
files. Data from IMUs are exported into separate CSV files. Data from the encoder sensor
are obtained from a Python application and exported into a CSV file. Ground truth data are
obtained from a video that records the gt! tags, placed on the floor, when the mobile unit
moves. A Python application processes the video to obtain the true position and heading
of the mobile using, which are exported into a CSV file.

2x IMU Gro%nd Truth

Python ython

{-:}' Encoder

Python

® GT tags Past —— Future

Figure 6. Data collection process: Wi-Fi data are collected from a Java application; data from the
two IMUs were collected by a Python application; data from the encoder sensor were obtained from
another Python application; ground truth data were collected by a video camera and processed by a
Python application. Output data from all applications are exported to CSV files.

The sensor samples are synchronised in time because the data collection programs
for each sensor are executed on the same computer. Consequently, when retrieving a new
sensor record, these programs acquire the timestamp from the operating system, enabling
them to share a common time reference.

The data collection took place at the PIEP building, which is part of the University
of Minho’s Azurém Campus. PIEP (Figure 7) is a Centre for Innovation in Polymer
Engineering; hence, it has an open-space area quite similar to a factory plant with plastic
extrusion machines. The building measures 20 m by 50 m and has a Wi-Fi infrastructure
with several APs installed inside. All APs are emitting in the 2.4 GHz frequency band.
Figure 8 shows the floor plan, the positions of APs and their IDs as well as the reference
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points where Wi-Fi samples were collected to build the radio map. These reference points
also mark the locations where GT data were collected. Grey areas in the floor plan represent
obstacles or non-navigable areas.

@ Ref. Point

Figure 8. Floor plan of the PIEP building, including the deployed APs and radio map reference points.

Table 1 includes details about the deployed APs, namely, their ID, brand and model,
and the transmission channel of each AP in the 2.4 GHz frequency band. These APs are
the ones whose positions are known. Despite that, there are also other APs available in the
building whose positions are not known.

Table 1. Configuration of deployed APs.

APID Brand/Model Channel Frequency
0001 ORINOCO AP200 1 2412 MHz
0002 ORINOCO AP200 6 2432 MHz
0003 ORINOCO AP200 9 2452 MHz
1001 Cisco Aironet 1100 series 1 2412 MHz
1002 Cisco Aironet 1100 series 6 2432 MHz
1003 Cisco Aironet 1100 series 11 2462 MHz
1004 Cisco Aironet 1100 series 9 2452 MHz
1005 Cisco Aironet 1100 series 3 2422 MHz
1006 Cisco Aironet 1100 series 7 2442 MHz
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3.1. Mobile Unit

A manually pushed trolley is used to emulate an industrial vehicle equipped with
several sensors. The trolley measures 40 x 60 x 97.5 cm (W x D x H). Figure 9 represents
the relative positions of the Raspberry Pi (RPi) and sensors with respect to the mobile unit.
These devices/sensors are listed below:

¢ 1x Raspberry Pi 3B+: computer that runs programs to collect data from sensors;

* 1x Absolute Encoder (US Digital A2): Wheel-attached sensor at 62.5 mm height that
measures the displacement;

e 2x IMU sensors (Adafruit BNO055): Low-cost IMU sensors providing absolute orien-
tation and/or raw magnetometer, gyroscope, and accelerometer measurements;

e 4x Wi-Fi interfaces (Edimax EW7811-Un): external Wi-Fi interfaces compliant with
IEEE 802.11 b/g/n (2.4 GHz frequency band).

The laptop is used to remotely control the data collection process by connecting to the
RPi using the Secure Shell (SSH) protocol.

e
53
o O
2
Q c
<< w
ol
5

&
b=

IMU;
nooss
IMU,
BNOO55

RPi 3 B+

Figure 9. Sensors placement (position) on the mobile unit (depth is minimised to reduce image space).

3.2. Encoder

In this work, we opted to use a rotary encoder attached to one of the vehicle’s wheels as
an odometer to measure the displacement. Rotary encoders can be absolute or incremental.
Absolute encoders allow reading the absolute angle at which the wheel is positioned
whenever a new reading is obtained. Incremental encoders generate a series of pulses
during movement, which can be converted into a velocity from the previous sample.
Another difference between absolute and incremental encoders is that when it is first
powered, the absolute encoder always reports a known position (wheel position), while
the incremental encoder always starts from zero and acts as a counter for each pulse
generated. We selected the US Digital A2 absolute encoder to measure the displacement
as it is accurate, reliable, and it is simple to read and convert the measured angles into a
distance value. The sample rate was configured to 50 Hz, i.e., an interval of 20 ms between
consecutive readings.

Converting Absolute Encoder Angle into Displacement

Given that the absolute encoder reports the angle at which the wheel is positioned, at
least two angle readings are necessary to determine the angle difference. Assuming that
the wheel does less than one complete turn between two consecutive samples, the angle
difference can be converted into a distance value as follows:
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/AB
d= 360 X 27tr )

where d represents the measured displacement in the time interval between tg and t1, ZAB
represents the angle (in degrees) measured in the same time interval, and r represents the
wheel radius. The mobile unit’s wheels have a radius of r = 62.5 mm.

3.3. IMU

We opted for low-cost sensors to evaluate their feasibility in real-world applications;
therefore, we decided to include two IMU sensors in the mobile unit. We selected the
Adafruit BNO055 IMU; since it has several fusion modes and provides the absolute position,
it can be easily connected to the RPj, it is low-cost, and it is simple to work with. The IMU’s
RPi connection setup is shown in Figure 10. In order to connect two BNOO55 sensors to the
same RPi device, it is necessary to change the default I2C address in one of the IMUs. One
device has the default I2C address, which is 0x28. And the device where the ADR pin is
connected to 3.3 V has a default I2C address of 0x29.

Raspberry Pi 3 Model Bv1.2
© Raspberry Pi 2015

ETHERNET

Figure 10. RPi GPIO connection setup to connect the IMUs enabling simultaneous data collection
from both sensors.

Data collection was performed with a Python program composed of two threads
with different purposes. One is responsible for obtaining the data from the sensor, and
the other is responsible for writing the data into a CSV file. They implement a producer—
consumer approach, where the thread that reads data from the sensor is the producer, and
the thread that writes the data to the CSV file is the consumer. This approach reduces
possible delays in the data collection process, which would be caused in case the process
was synchronous with one thread, because writing to the file could block and cause delays
in the data collection. Configuration and reading data from the sensor were permitted by
the custom CircuitPython driver for the BNOO55 sensor (https://github.com/adafruit/
Adafruit_CircuitPython_BNOO55 (accessed on 7 July 2023)).

The sensor was configured with the NDOF operation mode (https://www.bosch-
sensortec.com/products/smart-sensors/bno055/ (accessed on 7 July 2023)) that includes
a sensor fusion algorithm where the fused absolute orientation data are calculated from
the accelerometer, gyroscope and magnetometer. The absolute orientation is provided
in quaternion and Euler angles formats. In addition to the absolute orientation, this op-
eration mode also outputs raw data from the accelerometer, magnetometer (compass),
and gyroscope.

The angle range for the rotation angles for roll, pitch, and yaw varies as follows:

e  DPitch: —180° to 180°;
*  Roll: —90° to 90° (increasing with increasing inclination);
*  Yaw: —180° to 180° (turning clockwise decreases value).
Although the sensor outputs the yaw ranging from 0° to 360°, we converted it into the

—180° to 180° format. It is also relevant to mention that the yaw returned from the sensor
increases the reported value when turning clockwise, but we inverted the yaw so that it
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decreases when turning clockwise. We did this because by inverting the yaw, the angle
varies according to the Cartesian referential (positive x-axis points to 0°, positive y-axis
points to 90°).

No prior calibration is made before collecting data from the IMU sensor, because we
assumed that the mobile unit emulates an industrial vehicle that initiates operation from
a cold start without any sensor calibration. Despite that, the NDOF mode applies a fast
magnetometer calibration, which results in a quick calibration of the magnetometer and
higher output data accuracy.

The IMU sample rate was set to 20 Hz. Although the program was configured to
obtain a new sample every 50 ms, there were times when the sensor took more than that
time to return the orientation data; hence, in some cases, a small delay was observed.

IMU Angle Adjustment

Whenever starting the collection of data in a new trajectory, the selected IMU reports
a yaw angle of 0° independently of the orientation of the mobile unit. In order for the
reported yaw value to match the angle used in the Cartesian referential, an adjustment was
made to yaw values, shifting the angle according to the initial orientation of the mobile unit.

yaw = yaw, + yaw; (8)

where yaw represents the converted yaw (the absolute orientation), yaw, represents the raw
value obtained from the sensor, and yaw; represents the initial angle at which the mobile
unit started the trajectory. In cases where yaw < —180° or yaw > 180°, an adjustment was
made so that the yaw is within the range between —180° and 180°.

3.4. Wi-Fi

We used four Wi-Fi interfaces to collect signal strength data from multiple sources
because signals from these interfaces are uncorrelated [38]. Hence, signal strength values
from multiple interfaces can be averaged in a Wi-Fi sample to reduce noise.

The Wi-Fi sample rate is deeply dependent on hardware and software; in this particular
case, an RPi with the Raspberry Pi OS (previously called Raspbian) was used. Raspberry
Pi OS is a Debian-based Linux distribution; hence, to scan Wi-Fi, one may use Linux
commands to obtain information from a Wi-Fi interface. The time it takes to perform a
scan depends on the operating system and the list of channels to scan (2.4 GHz and/or
5 GHz band). Usually the Wi-Fi standard supported by the Wi-Fi interface specifies which
channels are supported, e.g., IEEE 802.11 b/g/n support 2.4 GHz and IEEE 802.11 a/n/ac
support 5 GHz.

The software used to collect Wi-Fi signals comprises a Java application that runs
operating system commands to scan Wi-Fi interfaces. In this application, a main thread
manages several other threads; each is responsible for scanning a specific Wi-Fi interface.
The program runs cyclically as follows:

1.  The main thread starts the scanning process by giving the start command to the
scanning threads;

2. It waits for each scanning thread to finish scanning;

3. It gathers scans from all Wi-Fi interfaces;

4. When the last thread returns the scan information, the main thread assigns a times-
tamp to the Wi-Fi scans from all interfaces so that the same timestamp is shared.

This approach was adopted to keep data from Wi-Fi interfaces synchronised in time.

Threads dedicated to scanning Wi-Fi interfaces run the Linux command “sudo iwlist
wlanO scanning”, obtain the result of the command, and parse the relevant information
(AP’s MAC, channel, Received Signal Strength Indicator (RSSI), link quality). After parsing
the information, each thread returns the Wi-Fi scan data to the main thread.
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3.5. Ground Truth

Ground truth (GT) is a crucial element of datasets as it serves two important purposes.
Firstly, it can be used for training, such as fine-tuning algorithms. Secondly, it is essential for
the validation and evaluation stages where it can be used to calculate the positioning error.

Various methods can be used to obtain GT, depending on the application and experi-
mental scenario. Typically, the accuracy of the reference system is directly related to the
accuracy that the positioning solution being tested is expected to achieve. It is desirable
to have an order of magnitude of higher accuracy in the reference system. In indoor
positioning, the reference system can be based on a higher-performing technology. For
example, one can use an ultrawide-band (UWB) system as a reference to evaluate a Wi-Fi
fingerprinting solution or perform experiments in a space with a specialised high-accuracy
camera system to track the user position. However, the use of advanced solutions such as
the ones described is often impossible due to the high costs and complexity involved and is
not practical for large data collection campaigns (e.g., multiple buildings and floors).

A simpler solution can also be explored with good results. In Track 3 of the IPIN
competition, the GetSensorData App is used to collect data. To obtain GT, users press
a button when they are over a GT point, and the time instant is marked in a log file.
This process is more suitable for collecting data in pedestrian applications. However, the
accuracy of the GT depends on the user’s precision in marking the exact instant when over
the reference point, which can be challenging to do without stopping at the reference point.

The dataset presented in this paper can be used in indoor vehicle positioning and
tracking solutions that can achieve relatively high accuracy through multi-sensory fusion
(0.5 m or less). In a previous experiment, we obtained GT using a grid of GT tags and
a camera mounted on the vehicle to record the path. In an offline stage, we manually
annotated the time instant when the vehicle passed over each GT point. However, for
longer data collection campaigns, the manual process can be significantly effortful and may
lead to errors. One of our objectives for this dataset was to improve the quality of GT data.
To achieve this, we adopted an approach based on computer vision to automate the process
of obtaining GT and increase its accuracy.

First, a grid of GT points was established in the space. The distance between neighbour
GT points was about 5 m with a total of 22 points. A GT reference point was mapped in
the space as (0, 0) coordinate, and the remaining points were mapped in relation to the
reference point using accurate laser distance meters (see Figure 8). All direction changes
(turns) are performed over a GT point.

ArUco markers were used as GT tags, and a video camera pointed to the ground was
mounted on the mobile unit. The camera position and reference point in the vehicle, as
well as the visible area, were accurately calibrated. The video camera records the GT tags
when the mobile unit passes by them.

The video feed obtained by the camera is processed using computer vision techniques
in order to detect the ArUco markers, obtaining the tag ID as well as the pose of the vehicle
in relation to the tag (Figure 11).

Figure 11. Ground truth using ArUco markers detection: (A) Tag 42, (B) Tag 10. FR represents

the frame reference point; R1 and R2 represent two marker reference points used to compute the
marker rotation.
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When the marker is detected in a frame of the video, we start by identifying the marker
corners. We used two marker corners as references (R1 and R2) to compute the marker
rotation in the frame. Then, the image referential has to be converted to the real-world
referential by mapping the visible area in the image (in pixels) to the real-world (meters).
Then, the angle and displacement between the frame reference point (FR) and the marker
reference point (R1) are computed. Finally, the current vehicle yaw can be computed as
well as the distance between the vehicle reference point (VR) and the marker reference
point (R1).

By automating this process, we are able to perform large-scale data collection surveys
without manual labelling effort. When a GT tag is visible by the camera, we automatically
obtain the 2D position (pyx,py) and the orientation (¢) ground truth with high accuracy.
This allows calculating not only the error in the estimated position but also the error in the
vehicle yaw (orientation). Between tags, one can also easily estimate ground-truth data,
e.g., using interpolation techniques.

4. Data Analysis

Table 2 shows the number of samples collected by sensors, the time duration and the
accumulated distance for each trajectory. The Wi-Fi samples count includes the samples
from each Wi-Fi interface plus the merged Wi-Fi samples for each trajectory, hence the
number of samples from each Wi-Fi interface and the merged sample is this value divided
by five. The sample count for both IMUs is also provided. Despite having two programs
collecting simultaneously with the same configured time between samples, IMU1 collected
15 samples more than IMU2 considering all trajectories. The time duration of each tra-
jectory is the time in seconds that the trajectory took from the beginning until the end.
The accumulated distance is the absolute distance obtained from the encoder sensor by
summing the absolute value of all distance samples. The total duration from all trajectories
sums up to almost 1 h of data (=57 min.), and the total accumulated distance is over 1 km.

Table 2. Number of sensor samples, elapsed time and accumulated distance per trajectory.

Number of Samples

Wi-Fi IMU1 IMU2 Encoder Ground Truth Time (s) ~ Acc. Dist (m)

T1 1910 12,266 12,262 30,242 1400 617.621 215.357
T2 2090 13,392 13,387 33,008 1857 674.398 223.371
T3 2360 15,200 15,200 37,462 3553 765.564 229.434
T4 1100 7058 7056 17,404 2689 355.362 122.437
T5 945 6078 6078 15,000 1580 306.197 87.846
T6 2170 13,901 13,897 34,257 4068 700.210 193.858
Total 10,575 67,895 67,880 167,373 15,147 3419.352 1072.303

The mean time and standard deviation between consecutive samples are displayed
in Table 3. Despite the existence of several Wi-Fi interfaces, the application that collects
samples from them assigns the same timestamp for samples obtained from all interfaces;
hence, only one column is necessary to represent the time in consecutive Wi-Fi samples.
In contrast, samples from IMU sensors have distinct timestamps, so they are represented
in two distinct columns. As expected, encoder and IMU samples have low time variation
in two consecutive samples, thus having the expected sample rates of 50 Hz and 20 Hz,
respectively, having a mean sampling period of 20 ms and 50 ms. Overall, encoder and
IMU samples have a standard deviation of 1 ms and 5 ms, respectively. A higher stan-
dard deviation in IMU is probably due to the data provided by the integrated sensors
(i.e., magnetometer, gyroscope, accelerometer), which take longer to process than encoder
samples. Wi-Fi samples are dependent on the time it takes to scan the available channels
in the 2.4 GHz frequency band, which is 1.614 s on average, with little variation since the
standard deviation on all samples is 94 ms.
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Ground-truth samples are the ones with higher variation between consecutive samples.
This is due to a ground-truth sample being collected only when the camera on the mobile
unit is able to ‘see” a GT tag. A video was collected at 30 fps for each trajectory. Then,
the computer vision algorithm processes each frame of the video, and when it detects a
tag, it generates a new GT sample. For instance, if the mobile unit is stopped while a tag
is visible by the camera and detected by the computer vision solution, it generates GT
samples at a rate of 30 Hz. Therefore, when the mobile unit stops close to a GT tag, it is
constantly detecting that tag; hence, it has more ground-truth samples. Conversely, when
the mobile unit is constantly moving, there will be fewer GT samples. The speed of the
vehicle influences the number of ground truth samples, since each tag will be less time
visible to the camera when the vehicle moves at higher speeds. This is demonstrated by the
number of GT samples obtained in trajectories T3 and T6, where despite T6 being shorter in
duration and accumulated distance, it has more GT samples (4068) than T3 (3553). This is
also shown by the significantly higher number of GT samples from trajectory T4 (2689 GT
samples) in comparison to the number of GT samples from trajectories T1 (1400) and T2
(1857), both of which were longer in duration and accumulated distance.

Table 3. Sensor sample analysis: sampling period (time between consecutive samples from sensors,
in seconds) (top); percentage of sampling period outliers per sensor (bottom).

Wi-Fi IMU1 IMU2 Encoder Ground Truth
Sampling period (mean =+ standard deviation), in seconds
T1 1.614+0.094 0.050 £ 0.005 0.050£0.005 0.020 +0.001  0.432 4-2.198
T2 1.611£0.027 0.050 £ 0.005 0.050 £0.005 0.020 & 0.001  0.339 4 1.853
T3 1.621+£0.231 0.050+0.005 0.050+0.005 0.020 +0.001  0.210 £ 1.404
T4 1.614+0.030 0.050 +0.004 0.050 +0.004 0.020 +0.001  0.131 £ 1.081
T5 1.612+0.025 0.050 +0.005 0.050 £0.005 0.020 +0.001  0.168 4 2.265
T6  1.610+0.030 0.050 £ 0.005 0.050 £0.005 0.020 +0.001  0.162 & 1.380
All  1.614 £0.094 0.050£0.005 0.050 £0.005 0.020+0.001  0.432 £+ 2.198
Percentage of sampling period outliers (%)

T1 0.262 1.394 1.240 1.462 N.A.
T2 0.478 1.128 1.382 1.594 N.A.
T3 0.212 1.329 1.263 1.564 N.A.
T4 0.455 1.332 1.361 1.028 N.A.
T5 0.529 1.283 1.267 1.467 N.A.
T6 0.000 1.331 1.180 1.124 N.A.
All 0.284 1.298 1.276 1.397 N.A.

N.A.—Non-applicable.

The percentage of outliers in each sampling period is displayed in the bottom part of
Table 3. The sampling period is the time interval between two consecutive samples. The
sampling period outliers are the sensor samples whose time since the previous sample was
significantly higher than the other samples, meaning that they took longer to collect. The
expression that defines the percentage of sampling period outliers is defined as follows:

N,
Pout = ﬁ” x 100 )

s
where N, represents the number of sampling period outliers, and N; represents the total
number of sensor samples collected. The number of sampling period outliers is defined
as follows:
N; o=
{1 At; > X+ 30 (10)

No = l; 0  otherwise
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where At; represents the time difference between sample i and the previous sample, X
represents the mean time between consecutive samples (mean sampling period), and ¢
represents the standard deviation sampling period. For a sensor sample to be considered an
outlier, the time it took since the previous sample must be higher than the mean sampling
period plus three times the standard deviation.

Overall, both IMUs and the encoder have a lower percentage of outlier samples, all
being lower than 1.4%, when considering all sensor samples. Wi-Fi reports the lowest
percentage of outlier samples with only 0.284%. This is justified, because the sampling
period of Wi-Fi samples (overall 1.614 s) is much higher than that of the IMUs and the
encoder, which are 50 ms and 20 ms, respectively. Due to the lower sampling period of
the IMUs and encoder, more outlier samples are detected. Even a slight delay of a few
milliseconds can cause these samples to be counted as outliers. In contrast, Wi-Fi samples
have a higher delay tolerance because the standard deviation time between consecutive
Wi-Fi samples is significantly larger than that for samples from the IMUs or the encoder. It
is also relevant to mention that although obtaining fingerprints from the multiple Wi-Fi
interfaces depends on the operating system to return the results, the percentage of outlier
samples shows that the operating system is consistent in returning almost all samples
without a significant delay. Outlier sampling period samples were not computed for
ground truth. This metric does not apply to these types of data, because GT data are
not continuously obtained, and it depends on the mobile unit, as previously mentioned.
However, samples for Wi-Fi interfaces, the IMUs, and the encoder are continuously obtained
at a specific sampling frequency.

5. Examples of Data Use

In this section, we provide two examples showing practical applications of the col-
lected data. In the first example, dead reckoning is applied to determine the vehicles’
trajectory over time using data from the encoder and IMU sensors. In the second example,
Wi-Fi fingerprinting is used to determine the absolute position of the vehicle based on data
obtained from the Wi-Fi interfaces.

5.1. Dead Reckoning

Dead reckoning is a tracking technique that requires an initial position and then
determines the next position based on heading and displacement information. Although
it produces accurate estimates in short periods, dead reckoning is prone to cumulative
errors, which are mostly caused by sensor bias in the IMU that causes drift in the heading
and magnetic perturbations that can significantly affect the heading. Consequently, in
the long term, this approach can lead to large errors if the initial position is not re-set. To
mitigate the accumulated error, dead reckoning may be combined with absolute positioning
techniques which allow the user to re-set the initial position and reduce the accumulated
error. In this paper, we use dead reckoning because it is a simple method to analyse the
collected data and visualise the produced trajectories. It can serve as a baseline against
which other researchers can compare their solutions to improve it and combine it with
more complex solutions.

The estimated position by dead reckoning is given by the following:

pi(x,y) = (xji_1 + cos(yaw) x d , y;_1 + sin(yaw) x d) (11)

where p;(x,y) represents the latest position, (x,y);_1 represent the coordinates of the
previous position, yaw represents the orientation provided by the IMU sensor, and d
represents the displacement provided by the encoder.

Figure 12 represents the estimated dead reckoning trajectories with both IMUs. Vi-
sually analysing these plots, one can see that trajectories from both IMUs are affected by
cumulative errors, namely sensor bias, drift, and also magnetic disturbances that cause
sudden variations in the estimated heading, hence leading to distorted dead reckoning
trajectories. One can also observe that with the exception of T5, where trajectories from both
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~—— DR Trajectory IMU1
DR Trajectory IMU2

IMUs are similar, in the remaining trajectories, it can be seen that the drift in the heading
and the magnetic perturbations result in distinct trajectories. This shows that although
these sensors share the same environment, the sensor bias of each sensor leads to a unique
behavior in the estimated heading.

—®— GT Trajectory
~—— DR Trajectory IMU1
DR Trajectory IMU2

—8— GT Trajectory
~—— DR Trajectory IMU1
DR Trajectory IMU2
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I —8— GT Trajectory —— GT Trajectory

()

Figure 12. Estimated trajectories using dead reckoning: (a) T1, (b) T2, (c) T3, (d) T4, (e) T5, (f) T6.
GT trajectory represents the ground-truth trajectory; DR Trajectory IMU1 and DR Trajectory IMU2,
represented by the purple and yellow plot lines, define the dead reckoning trajectories obtained with
IMU1 and IMU?2, respectively.

The detailed positioning results are shown in Table 4. There are several trajectories in
which the maximum error is quite large due to the accumulated error. Possible causes for
this are associated with the industrial environment due to heavy machinery that affects the
magnetometer, and since the IMUs are low cost, they are more prone to noise and magnetic
disturbances. Overall, the IMU1 performs better than IMU2, having the best mean and 75th
percentile error with 8.25 m and 9.57 m, respectively. However, it has a higher positioning
error, with 42.12 m, than the 35.56 m obtained with IMU?2.

Figure 13 shows the cumulative distribution functions (CDFs) of all trajectories for
both IMUs, showing the probability (between 0 and 1) on the x-axis and the error (in meters)
on the y-axis. These plots prove that the distinct trajectories, observed in Figure 12, lead to
differences in the positioning performance on both IMUs. For instance, the trajectory with
the best 75th percentile is T6 for IMU1 and T1 for IMU2. The best-performing trajectory,
i.e., the one with the lowest maximum error, is T6 for IMU1 and T5 for IMU2. Conversely,
the worst-performing trajectory, i.e., the one with the highest maximum error, is T2 for
IMU1 and T6 for IMU2. Although these results seem suboptimal, this dataset has been
used with a particle filter to combine dead reckoning with Wi-Fi fingerprinting, achieving a
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Probability

mean error of 0.62 m [45], demonstrating that when combined with other techniques, dead
reckoning enables accurate tracking of indoor vehicles.

Table 4. Dead reckoning results from both IMUs (in metres).

T1 T2 T3 T4 T5 T6 Overall
IMU1
Mean 6.19 20.22 8.82 12.02 3.73 2.26 8.25
P75th 12.63 28.91 9.19 13.34 9.54 2.59 9.57
P99th 15.80 42.12 20.44 34.07 9.57 5.90 42.12
Max 15.80 42.12 20.44 34.16 9.57 5.92 42.12
IMU2
Mean 4.08 11.23 15.93 7.57 3.20 16.72 11.66
P75th 6.63 17.48 21.63 9.07 8.17 20.55 17.51
P99th 12.07 19.87 28.95 21.11 8.19 35.55 35.55
Max 12.07 19.87 28.95 21.17 8.20 35.55 35.56
1.0 A
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A N 00 O
| I [ —

Probability
o
w

0.4 1
— T — T
T 0.3 T
— T3 — T3
— T4 0.2 — T4
T5 0.1 T5
— T6 — T6
T T T T 1 0-0 T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
Error (m) Error (m)
(a) (b)

Figure 13. CDF of dead-reckoning trajectories obtained with (a) IMU1 and (b) IMU2.

5.2. Wi-Fi Fingerprinting

We computed the Wi-Fi fingerprinting positioning error for each track that was per-
formed using single Wi-Fi interfaces and the merged data to compare how averaging
Wi-Fi samples from multiple interfaces affects positioning results. We used k = 3 with the
Manhattan (city-block) distance and evaluated the positioning error by determining the Eu-
clidean distance between the ground truth and the estimated position. Since ground-truth
positions are not synchronised with Wi-Fi samples, the positioning error was obtained only
for the Wi-Fi samples that were closer in time for each of the ground-truth positions.

The Wi-Fi fingerprinting results of trajectory T3, obtained for each Wi-Fi interface
and the interface with the averaged samples, are presented in Table 5. We opted for T3 to
show these results because it is the longest trajectory, containing more Wi-Fi samples than
the others.

The merged Wi-Fi data W, has the best 99th percentile and maximum errors in
comparison to results with single interfaces. Although the best mean and 75th percentile
errors are achieved with Wi-Fi interface W3, averaging multiple Wi-Fi interfaces provides
the best overall result, leading to improvements in the last percentile. Improvements are
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significant in the maximum error reporting 8.04 m, with improvements ranging from 54%
to 75% in comparison to single Wi-Fi interfaces.

Table 6 shows the positioning results of Wi-Fi fingerprinting for all trajectories, using
the merged Wi-Fi data provided in Wy, files. The last column aggregates position estimates
from all trajectories with an overall mean error of 2.19 m, which outperforms other research
works using Wi-Fi fingerprinting [9].

Table 5. Wi-Fi fingerprinting results of trajectory T3 using different Wi-Fi interfaces (in metres).

Wi W, Ws Wy Wi

Mean 3.88 3.22 2.71 5.12 3.30
P75th 6.28 4.96 3.56 8.02 4.96
P99th 12.52 8.18 12.67 17.80 8.02
Max 15.05 14.04 14.96 17.80 8.04

Table 6. Wi-Fi fingerprinting results using averaged Wi-Fi samples from all interfaces (in metres).

T1 T2 T3 T4 T5 Te6 Overall
Mean 2.00 1.84 3.30 1.24 2.68 1.88 2.19
P75th 3.36 3.16 4.96 2.14 3.93 2.68 3.60
P99th 7.88 6.62 8.02 5.22 7.82 12.79 8.01
Max 7.97 6.66 8.04 5.29 7.84 12.80 12.80

Figure 14 illustrates the CDF of these results, presenting the error distribution for each
trajectory. Notably, trajectories T4 and T6 exhibit comparable performance up to the 75th
percentile, achieving positioning errors of 2.14 m and 2.86 m, respectively. However, it is
worth mentioning that despite having the second-best 75th percentile error, T6 demonstrates
the highest positioning error, measuring 12.80 m. Although the maximum error of T6 is
higher than the one observed in the other trajectories, it is a rare occurrence. This is evident
from the fact that its 95th percentile positioning error is 7.89 m, which is similar to the
maximum error seen in the other trajectories. Consequently, 95% of the evaluated position
estimates lie below 7.89 m, thus being a more reliable indication of typical performance.
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0.5 1
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Figure 14. CDF of Wi-Fi fingerprinting using averaged Wi-Fi samples.

6. Conclusions

This paper presented a new dataset for the indoor tracking of vehicles in industrial
environments. The dataset was collected in a factory-like environment with a mobile unit,
which was purposely designed to emulate an industrial vehicle equipped with Wi-Fi and
motion sensors. In addition to the documentation of the dataset, we detailed the process to



Data 2023, 8,157

18 of 20

collect the data, describing the software used to collect data from each sensor type and how
the GT data were obtained.

Despite the existence of other datasets for indoor positioning, the dataset proposed
in this paper contributes to the pool of available datasets with distinct characteristics:
data were collected in an industrial environment with heavy machinery that can influence
indoor radio propagation and magnetometer readings; Wi-Fi data (radio map and test
samples) from multiple Wi-Fi interfaces; orientation data obtained from two low-cost IMUs;
displacement data obtained from an absolute encoder attached to the wheel, allowing
accurate measurement of the travelled distance; and GT collected by a video camera to
annotate timestamps when the mobile unit passed by reference tags.

Due to having data from two low-cost IMUs, this dataset can be explored to devise
new sensor fusion approaches that combine data from both sensors to improve orientation
estimates while keeping the overall cost of the system more economical. These IMUs
allow greatly reducing the cost of the positioning system especially when compared to
industrial-grade sensors, which are costly.

Industry 4.0 and the IoT are the primary research areas that can benefit from this
dataset. Potential applications include the development of vehicle tracking and monitoring
systems, autonomous robot positioning, as well as indoor transportation systems for
materials. Additionally, the indoor positioning and indoor navigation community can
explore this dataset to develop, test, and evaluate their systems as well as contribute new
methods for indoor tracking in industrial environments. Finally, adding a new public
dataset contributes to the fair comparison and benchmarking between different solutions.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Access Point

BLE Bluetooth Low Energy

CSV ~ Comma-Separated Values

GT Ground Truth

GPS  Global Positioning System

IoT Internet of Things

IPIN  International Conference on Indoor Positioning and Indoor Navigation
IPS Indoor Positioning System

IMU  Inertial Measurement Unit

k-NN  k-Nearest Neighbour

RPi Raspberry Pi

RSS Received Signal Strength

RSSI  Received Signal Strength Indicator
UWB  Ultrawide-Band
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