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Abstract: Recently, data-driven decision-making has attracted great interest; this requires high-quality
datasets. However, real-world datasets often feature missing values for unknown or intentional
reasons, rendering data-driven decision-making inaccurate. If a machine learning model is trained
using incomplete datasets with missing values, the inferred results may be biased. In this case, a
commonly used technique is the missing value imputation (MVI), which fills missing data with
possible values estimated based on observed values. Various data imputation methods using machine
learning, statistical inference, and relational database theories have been developed. Among them,
conventional machine learning based imputation methods that handle tabular data can deal with only
numerical columns or are time-consuming and cumbersome because they create an individualized
predictive model for each column. Therefore, we have developed a novel imputational neural
network that we term the Denoising Self-Attention Network (DSAN). Our proposed DSAN can deal
with tabular datasets containing both numerical and categorical columns; it considers discretized
numerical values as categorical values for embedding and self-attention layers. Furthermore, the
DSAN learns robust feature expression vectors by combining self-attention and denoising techniques,
and can predict multiple, appropriate substituted values simultaneously (via multi-task learning).
To verify the validity of the method, we performed data imputation experiments after arbitrarily
generating missing values for several real-world tabular datasets. We evaluated both imputational
and downstream task performances, and we have seen that the DSAN outperformed the other
models, especially in terms of category variable imputation.

Keywords: attention network; deep learning; multi-task learning; embedding; data quality; missing
values; data imputation

1. Introduction

As the amount of data increases, data-driven decision-making via machine learning
has become increasingly important in many fields. The results are greatly affected by data
quality; good quality data are essential for data-driven decision-making. The most common
problem is missing values, which damage the data pipelines and render the results of
data-driven tasks inaccurate. If a machine learning model is trained using incomplete
datasets, the inferred results may be biased [1]. For example, many missing values arise
because customers do not wish to give personal information when asked to comment on e-
commerce or mobile advertising domains. In such cases, data scientists or machine learning
engineers must clean the datasets to ensure meaningful results. Missing value imputation
(MVI) is the most commonly adopted solution. MVI seeks to replace the missing values
with substituted values estimated based on the observed values [2].

In general, MVI methods use a statistical or machine learning technique to replace
missing values with substituted values. Statistical MVI methods employ descriptive
statistics such as mean and mode values; they are thus simple and fast, but inaccurate.
Machine learning based MVI methods have recently been studied to ensure more accurate
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results. Such methods generate or predict substituted values using trained generative
or predictive models. MVI methods employing generative models include Generative
Adversarial Imputation Nets (GAIN) [3] and denoising autoencoder (DAE) for multiple
imputations [4]; MVI methods that feature predictive models include MissForest [5] and
Datawig [6]. Generative-model-based MVI methods cannot generate substituted values for
categorical variables (or columns); such models cannot handle tabular data that contain both
numerical and categorical variables. Meanwhile, predictive-model-based MVI methods
train models for each variable, and can thus deal with tabular data [7]. However, it is both
cumbersome and inefficient to train several predictive models.

Here, we have developed a novel, end-to-end, imputational neural network termed
the Denoising Self-Attention Network (DSAN), which can handle tabular data with het-
erogeneous columns. The DSAN combines self-attention-based feature representation and
denoising to learn robust features prior to analysis of an incomplete mixed-type dataset.
The DSAN is trained by using a multi-task learning (MTL) method to predict substituted
values that are appropriate for the type of variable under consideration. DSAN training
proceeds in a self-supervised manner; each received input is re-predicted. During such
training, the DSAN learns the interactions among variables and among observed and
missing values. Thus, the DSAN predicts substituted values appropriate for each type of
variable, and missing values.

To verify the method, we performed experiments evaluating two types of performance:
imputation performance and downstream task performance. Imputation performance is
evaluated with the accuracy by which a method imputes a substituted value, and is
calculated as the errors between the imputed and original values. Downstream task
performance explores whether the imputed dataset can be used to solve other tasks. In
order to explore downstream task performance, a binary classifier was trained using an
imputed dataset, and its performance is then evaluated.

The rest of the paper is organized as follows. Section 2 describes the related work and
the differences between our method and existing methods. In Section 3, we formalize the
data imputation problem. Section 4 introduces our DSAN imputation method in detail.
Section 5 describes our experimental setup and results. Lastly, we conclude our paper in
Section 6.

2. Related Work

For enhancing tabular data quality, besides MVI, data repairing is used to update
any detected erroneous data with correct data. For this, there has been a study that
probabilistically calculates the correct value for erroneous data through statistical inference
after detecting erroneous data using integrity constraints [8]. As a study on solving the MVI
problem using integrity constraints, Breve et al. [9] proposed a method to impute missing
values by identifying candidate values that ensure data integrity using relaxed functional
dependencies. Similarly, Song et al. [10] showed that data imputation is possible with
valid candidate values (called neighbors) that can be identified by a similarity relationship.
Furthermore, Jia et al. [11] devised tensor-based data imputation models to extract latent
features from a traffic dataset and predict neighbors to fill in the missing values via tensor
factorization.

Recently, deep neural network-based imputational methods for tabular data have
received much attention. Deep neural networks afford several advantages, including end-
to-end learning and multi-task learning (MTL), possible fusion of multiple modalities (e.g.,
images and text), and representation learning. Efforts have been made to apply such models
to MVI tasks. The representational learning of a deep neural network is used to extract
features of tabular data that aid predictive imputation [6,12,13]. MTL can simultaneously
handle regression and classification tasks; thus, an imputational model can combine a
regression task and a classification task [14,15].

The attention mechanism employed in machine translation [16] has been successfully
ported to natural language processing tasks [17,18] and computer vision [19]. A number of
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attempts have been made to incorporate the mechanism into deep neural networks that
handle tabular data. TabNet [17] used an attention mechanism to imitate a decision tree,
which works well when used to handle structured data. TabNet enabled interpretable
and efficient learning; sequential attention was used to select the important features of
each decision-making stage. TabTransformer [20] used the encoder of a transformer [21]
and a self-attention mechanism to map categorical features into a contextual embedment.
TabTransformer outperformed a multi-layer perceptron (MLP) and a tree-based ensemble
model, and was very robust against noisy and missing data.

Our imputation method has a special deep learning architecture that is quite different
from the existing methods mentioned above.

• Our method has a self-attention neural network architecture to realize effective repre-
sentation learning for noisy data.

• We use MTL to predict missing values simultaneously for various column types in the
imputation task, so as not to combine the imputation task and downstream task.

• Generally, the attention-based neural networks for tabular data [17,20] have been
proposed to solve the classification problem. In contrast, our method includes the
attention mechanism to solve the missing value imputation problem.

• Our method considers discretized numerical values as categorical values for embed-
ding and self-attention layers.

3. Problem Formulation

We seek to transform an incomplete tabular dataset (e.g., Figure 1) into a complete
dataset (e.g., Figure 2) by predicting substitute values that impute missing values. The tab-
ular data of interest include both numerical and categorical variables; we solve regression
and classification problems simultaneously.

Figure 1. Example of an input dataset with incomplete tabular data. This is the Bank dataset used for
performance evaluation in Section 6.

Figure 2. Example of the output data (imputed data) that are sought.

Let x = {xnum, xcat} denote an input vector (a data record). An input vector x contains
n numerical variables xnum ∈ Rn and k categorical variables xcat = {xcat

1 , xcat
2 , · · · , xcat

k }.
The i-th categorical variable xcat

i has a domain set Ci in which all observed values of the
i-th categorical variable xcat

i lie. We use an indicator vector m = {mnum, mcat} ∈ {0, 1}(n+k)

to indicate whether a given variable is missing or not. The indicator value mi = 1 if the
corresponding i-th variable (numerical or categorical) is observed; otherwise, mi = 0. These
values are later used to compute the loss function (employing only observed values).

Given an input vector x, the imputational model predicts x̂ using the input values. We
then fill in the missing values with predicted values. As mentioned above, if a variable is
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numerical, we reconstruct an observed value; if a variable is categorical, we classify it by
targeting the observed value.

4. Proposed Method

In this paper, we aim to develop a new MVI neural network model that simultaneously
imputes missing values present in mixed-type tabular data containing both numeric and
categorical columns. To this end, the MVI neural network must extract significant data
distribution patterns from incomplete data inputs by distinguishing between numeric and
categorical columns, and it should be designed with a structure that can simultaneously
perform regression and classification for numerical value prediction and categorical value
prediction, respectively. Taking this into account, our DSAN model features end-to-end
MVI of tabular data, as shown in Figure 3. There are three modules: a feature representation
module, a shared-layer module, and a task-specific module. The first module column-
embeds each variable [20] and learns contextual embedding employing the self-attention
layers. The model then is trained (via MTL) to predict appropriate substituted values for
the different variables at the same time. The DSAN features hard parameter sharing [22];
the shared-layer module learns the shared parameters by sharing the hidden layers among
all tasks. The task-specific layer module learns the various parameters that should be
retained in the several task-specific output layers. The DSAN is trained in a self-supervised
manner; observed values are reconstructed in a manner similar to that of AutoEncoder [23].

Figure 3. An overview of the proposed model.

4.1. The Feature Representation Module

The feature representation module learns how to extract useful information from
incomplete mixed-type inputs, as shown as Figure 4. In this section, we explain the details.

Figure 4. An overview of the feature representation module.
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4.1.1. Preprocessing

To handle incomplete mixed-type data, we preprocess the input vectors as shown in
Figure 5. First, we initialize a missing value (e.g., NaN) to a processible value. A missing
numerical variable is initialized to 0; a missing categorical variable is initialized to a unique
string, indicating that the value is missing. For example, if the value for the third column
(a categorical variable) is missing, it is initialized to ‘Col3:NULL’. Then, we use a denoising
technique [24] to learn robust feature representation parameters for incomplete inputs. To
this end, a certain percentage α of the observed values are randomly selected and dropped
out. The dropped-out values are initialized in the manner described above, but the values
of all indicator vectors m are held at 1. We thus obtain corrupted input vectors x̃ that are
input into the model.

Figure 5. An example of model inputs. The blue columns represent numerical columns and the
brown columns represent category columns, respectively.

4.1.2. Column Embedding

We embed all inputs into a parametric embedment of dimension d using the embed-
ding layer. Here, the numerical variables x̃num are discretized (to reduce computation
and ensure regularization). Given an input vector {x̃num, x̃cat}, an embedding matrix
E ∈ R(n+k)×d is computed using

E = Embedding(Discretize(x̃num), x̃cat) (1)

where the Embedding maps each value to a d-dimensional vector. Discretize converts
continuous values to discrete values using certain rules in a heuristic manner. Our rules
are as follows:

Discretize(x) = int(log2(x)2) (2)

At this time, the DSAN also learns an embedding vector with a unique value that
indicates that a value is missing (e.g., ‘Col3:NULL’). The information loss caused by miss-
ing values is supplemented, and feature representations for the various missing patterns
(arbitrarily generated via denoising) are learned. This improves performance; the tech-
nique is similar to data augmentation [25]. The embedding matrix E is input to the
self-attention layer.

Some information loss is inevitable when discretizing numerical variables. To com-
pensate for this, numerical values that are not discretized are learned in parallel via a fully
connected (FC) unit consisting of an FC layer, Layer Normalization [26], the ReLU function,
and Dropout. This unit is also active in the subsequent shared-layer module. In the feature
representation module, the FC unit employs d nodes as the embedding dimension (to unify
feature size). This maintains information on the raw numerical variables, and serves as an
input to the shared-layer module, along with the contextual embedding matrix computed
via self-attention.
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4.1.3. The Self-Attention Layer

As MVI predicts substituted values based on observed values, it is important to learn
the relationships between the variables. Therefore, we trained the DSAN to learn the
contextual embedments (including the associations) between the variables. We used self-
attention to this end; this combines queries, keys, and values into single inputs and engages
in feature representation by computing the relationships between elements of the input.
We employed multi-head attention [21]; this linearly projects queries, keys, and values
h times but with different parametric weights, and (in parallel) runs the attention function
h times. It is thus possible to simultaneously focus on information from subspaces featuring
different representations. Given an embedding matrix E, the contextual embedding matrix
H ∈ R(n+k)×d is computed as follows:

H = Concat(head1, · · · , headh)WO (3)

where headi ∈ R(n+k)×(d/h) is the partial attention result, thus that computed by

headi = Attention(EWQ
i , EWK

i , EWV
i ). (4)

where the projections are parametric matrices WQ
i , WK

i , WV
i ∈ Rd×(d/h), and WO ∈ Rd×d.

Attention is the scaled, dot-product attention function:

Attention(Q, K, V) = softmax(
QKT
√

d/h
)V (5)

The computed, contextual embedding matrix is flattened into a vector and concate-
nated with the output of the FC unit. Thus, we obtain a concatenated vector z f eature ∈
R(n+k+1)×d that is input into the shared-layer module:

z f eature = Concat(Flatten(H), FCunit(x̃num)) (6)

4.2. The Shared-Layer and Task-Specific Layer Modules

As mentioned above, the DSAN performs regression and classification tasks in parallel
using MTL. Each task is a prediction appropriate for the type of variable. If the variable is
numerical, the task is a regression; if the variable is categorical, the task is a classification.
We used hard parameter sharing (the most common form of MTL); this reduces overfitting
by sharing the hidden layers. The components output by the feature representation module
are divided between the shared-layer and the task-specific layer modules.

We created the shared-layer module fshare by stacking FC units in layers. All units
featured the same number of nodes as the dimensions of the concatenated vectors z f eature’s
dimension (n + k + 1) × d. We used the residual connection approach [27] to enable
deep layer learning. Given z f eature, we computed the output of the shared-layer module
zshare ∈ R(n+k+1)×d using the inputs of the several task layers:

zshare = fshare(z f eature) (7)

The task-specific layer module featured as many FC layers as the number of tasks.
During regression, the DSAN also predicts numerical variables. During classification,
the DSAN predicts categorical variables separately. Thus, employing (1 + k) FC layers
{ fnum, f1, · · · , fk}, the DSAN is trained in a self-supervised manner; the observed input is
re-predicted. The regression task FC layer fnum reconstructs the input numerical values

x̂num = fnum(zshare) (8)
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and the other k classification task FC layers fi classify the input categorical values

ŷi = σ( fi(zshare)) (9)

where ŷi is the probability vector that the target is the i-th categorical value xcat
i . If the size

of the domain set of xcat
i is |Ci| = 2, this is a binary classification task, and the output ŷi

is thus a scalar. The σ activation function maps this to a probability. If a task is a binary
classification, σ is a sigmoid function; if a task features multi-class classification, σ is a
softmax function. During MTL, the total loss Ltot is the sum of the losses of each task:

Ltot = Lnum +
k

∑
i=1
Li (10)

Lnum is the regression task loss; the mean squared errors are computed using only the
observed values:

Lnum =
1
n

n

∑
i=1

mnum
i (xnum

i − x̂num
i )2 (11)

Li is the i-th classification task loss; the cross-entropy loss is computed using only the
observed values:

Li = −mcat
i

|Ci |

∑
j=1

yi,j log(ŷi,j) (12)

We minimized the total loss Ltot; all DSAN parameters are learnt in an end-to-end manner
using the gradient descent method.

5. Experiments
5.1. Datasets and Evaluation Methods

We evaluated DSAN performance using several tabular datasets from the UC Irvine
Machine Learning Repository [28]. Table 1 contains the details. All datasets feature several
numerical and categorical variables; all contain over 10,000 records. In the real world, it
is difficult to know the correct missing values; therefore, we removed all existing missing
values. We then generated missing values that we knew were correct.

We evaluated two types of performance, of which the first was imputation perfor-
mance assessed by calculating the errors between the imputed and original values. For
numerical variables, we calculated the normalized root mean squared errors (NRMSEs) [29];
for categorical variables, we derived error rates. The second performance type was down-
stream task performance. We evaluated the performances of models trained with imputed
datasets. The downstream task was a binary classification task; performance was evaluated
by deriving area under the curve receiver operating characteristic (AUC-ROC) scores. We
used the same classifier (logistic regression) for all cases.

We split the data into 80% training and 20% test sets, and created 5∼20% “missingness”
in the training set using the MCAR (Missing Completely At Random) approach [30]. All
imputation methods (the DSAN and the others) were compared in terms of imputations
made for the incomplete training set; we then evaluated imputation performance. The
classifier was trained with the imputed training sets; we then evaluated downstream task
performance. To generalize the results, we applied k-fold cross-validation.
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Table 1. The experimental datasets.

Datasets
The Number of

Numerical
Variables

The Number of
Categorical
Variables

The Number of
Records

Adult 9 6 30,162
Bank 10 7 11,162
Online 10 8 12,330
Churn 5 6 10,000

5.2. Experimental Settings

We compared DSAN performance to that of a statistical (Mean/Mode) method and
that of a classical machine learning imputation method (i.e., MissForest) [5] and a recent
multi-task deep learning-based imputation method (i.e., MIDASpy) [15]. In the feature
representation module, the DSAN featured d = 16 column-embedding; the multi-head
attention layer can have 2∼16 heads. As mentioned above, the FC unit of the feature
representation module has 16 nodes, the same number as that of the embedding dimension
d. We dropped out 40% of the input values when denoising. The shared-layer module
featured six layers (FC units), each of which has (n + k + 1) · d nodes equal to the number
of dimensions of the input feature vector. The task-specific module has an FC layer
with n nodes for numerical variable prediction and an FC layer for categorical variable
prediction. Here, the latter includes output nodes corresponding to the domain (i.e., a set
of possible values) of each categorical variable; in particular, the binary classification task is
implemented as an FC layer with a single node. To create an imputation model, we trained
the DSAN using the Adam optimizer [31] with β1 = 0.9, β2 = 0.999, ε = 10−8, learning
rate γ = 0.003, and weight decay λ = 10−5.

5.3. Imputation Performance

Figure 6 shows an example of performing imputation on the Adult dataset with the
imputation model generated by the DSAN technique. Assuming that (categorical and
numeric) values in the shaded cells in Figure 6 are missing according to the MCAR type,
Figure 7 shows the result of imputing the missing values through the DSAN imputation
model. As seen in the figure, most of missing values were replaced with correct values.

Figure 6. Part of the Adult dataset with missing values (denoted as the shaded cells).
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Figure 7. An imputation result for the Adult dataset.

Table 2 shows the numerical variable imputations; we used NRMSE as the evaluation
metric.

NRMSE =

√
E[(x− x̂)2]

Var(x)
(13)

where x is the true and x̂ the imputed value. The NRMSE is the average of the n numerical
variables using only the missing values. In general, as the missing rate increases, imputa-
tional performance decreases because fewer observed values are used to predict substituted
values. If the model is perfectly imputational, NRMSE = 0; if the model imputes the
average value for each variable, NRMSE ≈ 1. Therefore, a lower NRMSE value indicates
a better imputation.

Table 2. Numerical variable imputational performances (NRMSEs).

Dataset Methods 5% Missing 10% Missing 15% Missing 20% Missing

Adult

Mean 1.0017 0.9972 1.0002 1.0125
MissForest 0.8358 0.8561 0.8745 0.9071
MIDASpy 0.4420 0.4523 0.4465 0.4365

DSAN 0.7999 0.8099 0.8247 0.8488

Bank

Mean 0.9562 0.9651 1.0000 0.9778
MissForest 0.7703 0.8164 0.8586 0.8783
MIDASpy 0.5027 0.5226 0.5322 0.6094

DSAN 0.7580 0.7860 0.8282 0.8226

Online

Mean 1.0012 0.9836 0.9875 0.9947
MissForest 0.6038 0.6504 0.6915 0.7086
MIDASpy 0.3186 0.3205 0.3268 0.3498

DSAN 0.6311 0.6413 0.6619 0.6738

Churn

Mean 0.9949 1.0052 0.9966 1.0014
MissForest 0.9850 0.9964 0.9986 1.0208
MIDASpy 0.4217 0.4409 0.4332 0.4233

DSAN 0.9625 0.9725 0.9685 0.9757

Table 3 shows the average NRMSE values. The DSAN outperformed all other methods
except MissForest in terms of numerical variable imputation. Compared to mean imputa-
tion, the performance improvements were 22.18% for the Adult, 22.05% for the Bank, 52.10%
for the Online, and 3.07% for the Churn datasets. Compared to MissForest, the performance
improvements were 5.79% for the Adult, 4.03% for the Bank, 1.77% for the Online, and
3.13% for the Churn datasets. For the latter dataset, we found that machine learning based
regression imputation performance was rather poor when numerical variable data exhibit
a uniform distribution. MIDASpy showed excellent performance in numerical variable
imputation; however, it showed very poor performance in categorical variable imputation.
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Table 3. Average numerical variable imputational performances.

Dataset Methods Average Improvement

Adult

Mean 1.0029 +22.18%
MissForest 0.8684 +5.79%
MIDASpy 0.3290 −59.92%

DSAN 0.8208

Bank

Mean 0.9748 +22.05%
MissForest 0.8309 +4.03%
MIDASpy 0.5417 −32.18%

DSAN 0.7987

Online

Mean 0.9918 +52.10%
MissForest 0.6636 +1.77%
MIDASpy 0.3289 −49.56%

DSAN 0.6520

Churn

Mean 0.9995 +3.07%
MissForest 1.0002 +3.13%
MIDASpy 0.4298 −55.68%

DSAN 0.9698

Table 4 shows the results of imputation in terms of categorical variables. We used error
rate as the evaluation metric.

error rate =
|x 6= x̂|
|x| (14)

where x is the true and x̂ the imputed value. As for NRMSE, the error rate is the average of
k categorical variables using only the missing values. If the model is perfectly imputational,
error rate = 0. Thus, a lower error rate indicates better imputational performance.

Table 4. Categorical variable imputation performances (error rates).

Dataset Methods 5% Missing 10% Missing 15% Missing 20% Missing

Adult

Mode 0.4112 0.4129 0.4134 0.4126
MissForest 0.2147 0.2238 0.2342 0.2425
MIDASpy 0.5057 0.5098 0.5361 0.5385

DSAN 0.2103 0.2173 0.2239 0.2325

Bank

Mode 0.4063 0.4088 0.4093 0.4074
MissForest 0.2460 0.2558 0.2674 0.2730
MIDASpy 0.4335 0.4427 0.4491 0.4356

DSAN 0.2501 0.2571 0.2678 0.2732

Online

Mode 0.4166 0.4198 0.4170 0.4186
MissForest 0.3387 0.3473 0.3539 0.3604
MIDASpy 0.6563 0.6455 0.6701 0.6665

DSAN 0.3366 0.3465 0.3498 0.3569

Churn

Mode 0.4055 0.4060 0.4008 0.4047
MissForest 0.3561 0.3608 0.3652 0.3770
MIDASpy 0.7101 0.7205 0.7293 0.7288

DSAN 0.3436 0.3576 0.3549 0.3665

Table 5 shows the average error rate. Compared to mode imputation, the performance
improvements were 86.66% for the Adult, 55.68% for the Bank, 20.31% for the Online, and
13.67% for the Churn datasets. Compared to MissForest, the improvements were 3.53% for
the Adult, 0.76% for the Online, and 2.57% for the Churn datasets. Compared to MIDASpy,
the improvements were 136.42% for the Adult, 68.02% for the Bank, 89.81% for the Online,
and 63.98% for the Churn datasets. Thus, the DSAN outperformed the other models in
terms of category variable imputation. Whereas MIDASpy has better numerical variable
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imputation performance than the other three methods (as mentioned earlier), it showed
significantly lower categorical variable imputation performance.

In terms of numerical variable imputation, the performance of our DSAN is inferior
to that of MIDASpy. However, MIDASpy focuses only on improving the imputation
performance for numerical variables, and in fact it does not achieve simultaneous data
imputation for a given table through multi-task learning at all. In general, it is not easy to
simultaneously increase the performance of learning models for all tasks in the multi-task
learning. That is, the simultaneous learning of multiple tasks introduces the destructive
interference problem where increasing the performance of a model on one task can degrade
the performance of models on other tasks with different requirements. Although the
current performance of DSAN needs to be further improved, we argue that the imputation
performance for both numerical and categorical variables is reasonably balanced compared
to the other imputation methods.

In addition, it is necessary to see how varying the hyperparameters (such as the num-
ber of heads and the noise ratio) inherent in our DSAN method affects the imputation
performance. Figure 8 demonstrates the changes of imputation performance (i.e., NRMSE
and error rate) from varying the number of heads of multi-head attention in the DSAN. As
shown in the figure, the imputation performance is not very sensitive to the number of
heads in the multi-head attention mechanism, except for categorical variable imputation
in the Churn and Online datasets; overall, the DSAN shows the best performance when
the number of heads is 4 for categorical variable imputation. Figure 9 shows the changes
of imputation performance from varying the denoising ratio. This figure also shows that
the imputation performance is not sensitive to the denoising ratio except for numeric vari-
able imputation; for numerical variable imputation, a slight performance degradation is
observed as the denoising ratio increases.

Table 5. The average categorical variable imputation performances.

Dataset Methods Average Error Rate Improvement

Adult

Mode 0.4125 +86.66%
MissForest 0.2288 +3.53%
MIDASpy 0.5225 +136.42%

DSAN 0.2210

Bank

Mode 0.4080 +55.68%
MissForest 0.2606 −0.57%
MIDASpy 0.4402 +68.02%

DSAN 0.2620

Online

Mode 0.4180 +20.31%
MissForest 0.3501 +0.76%
MIDASpy 0.6596 +89.81%

DSAN 0.3475

Churn

Mode 0.4043 +13.67%
MissForest 0.3648 +2.57%
MIDASpy 0.5831 +63.98%

DSAN 0.3556



Data 2023, 8, 102 12 of 17

Figure 8. (a) Changes of error rate for categorical data imputation from varying the number of heads
in the multi-head attention. (b) Changes of NRMSE for numeric data imputation from varying the
number of heads in the multi-head attention.

Figure 9. (a) Changes of error rate for categorical data imputation from varying the denoising ratio.
(b) Changes of NRMSE for numeric data imputation from varying the denoising ratio.
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5.4. Downstream Task Performance

To evaluate downstream task performance, we trained a binary classifier (using logistic
regression) with an imputed dataset and evaluated classifier performance using 20% of the
test dataset. All experimental datasets featured binary-labeled classes: ‘Income’ in Adult,
‘Deposit’ in Bank, ‘Revenue’ in Online, and ‘Exited’ in Churn.

Table 6 shows the downstream task performances using the AUC-ROC score as the
evaluation metric; this reveals how well a classifier separates two classes in a dataset. A
score closer to 1 indicates a better classifier. The original performance is that after training
with the complete dataset but without generating missing values; thus, this is the upper
bound of classifier performance. If the performance is similar to that of a classifier trained
with the original dataset, the imputed and original datasets are of similar quality.

Table 6. Results of downstream task performance (AUC-ROC figures).

Dataset Methods 5% Missing 10% Missing 15% Missing 20% Missing

Adult

Original 0.9052

Mean/Mode 0.9034 0.9015 0.8978 0.8962
MissForest 0.9049 0.9049 0.9041 0.9036

DSAN 0.9050 0.9050 0.9047 0.9045

Bank

Original 0.9030

Mean/Mode 0.9020 0.9002 0.8989 0.8962
MissForest 0.9030 0.9028 0.9028 0.9019

DSAN 0.9028 0.9029 0.9029 0.9020

Online

Original 0.8945

Mean/Mode 0.8889 0.8870 0.8796 0.8765
MissForest 0.8952 0.8983 0.8980 0.8993

DSAN 0.8951 0.8970 0.8964 0.8984

Churn

Original 0.8325

Mean/Mode 0.8324 0.8327 0.8308 0.8317
MissForest 0.8322 0.8313 0.8298 0.8295

DSAN 0.8323 0.8320 0.8316 0.8307

Table 7 shows the average downstream task performances. Compared to a classifier
trained with the original dataset, the relative performance deteriorations ranged up to 0.1%.
This shows that the DSAN-imputed and the original datasets were of similar quality. For
the Online dataset, the performance improvement was 0.2% because some noise in the
original data was resolved during imputation. In terms of mean/mode imputation, the
relative performance improvements were 0.56% for the Adult, 0.37% for the Bank, and
1.55% for the Online datasets. For the MissForest dataset, the performance did not improve.
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Table 7. Average downstream task performances.

Dataset Methods Average Improvement

Adult

Original 0.9052 −0.00%

Mean/Mode 0.8997 +0.56%
MissForest 0.9044 +0.05%

DSAN 0.9048

Bank

Original 0.9030 −0.00%

Mean/Mode 0.8993 +0.37%
MissForest 0.9026 +0.00%

DSAN 0.9026

Online

Original 0.8945 +0.20%

Mean/Mode 0.8830 +1.55%
MissForest 0.8977 −0.11%

DSAN 0.8967

Churn

Original 0.8325 −0.10%

Mean/Mode 0.8319 −0.03%
MissForest 0.8307 +0.11%

DSAN 0.8316

5.5. Interpreting Attention

Unlike MLP-based models, which are difficult to interpret, some results afforded
by attention-based models can be interpreted. The DSAN learns the interactions among
each variable using a self-attention layer. It is possible to detect the features employed
to make decisions. We employed the Adult dataset to explore this topic. This dataset
contains individual annual incomes, and various relevant factors. The Adult data include
‘relationship’ and ‘sex’ variables. The ‘relationship’ variable represents a family relationship
and can assume values such as ‘Husband’, ‘Wife’, and ‘Unmarried’. If the ‘relationship’
variable has a ‘Husband’ value, the ‘sex’ variable must be ‘Male’. This can serve as the
basis for imputation of a value for ‘sex’ using the ‘relationship’ variable.

To confirm the learning ability of DSAN, we intend to take the attention weights from
the self-attention layer in the feature representation module shown in Figure 3 (A) and to
identify what features DSAN focuses on by visualizing the attention weights in the form
of a heatmap. Figure 10 illustrates a visual representation of the attentional weights that
reveal the DSAN decision-making process when imputing missing values. The relatively
high weighted features can be considered to have contributed more to predicting missing
values; that is, analyzing the attention weights of the missing value embedding vector can
allow one to detect the highly contributing features for the MVI task.

Specifically, this figure shows the self-attention weights of 20 records when the ‘rela-
tionship’ variable had the ‘Husband’ value and the ‘sex’ variable predicted the substituted
value ‘Male’ for the missing value. Each row is the attention weight of the ‘sex:NULL’
feature of the self-attention layer. It is apparent that the ‘sex:NULL’ features focus on
the ‘relationship:Husband’ feature, indicating that the DSAN can capture the interactions
among other variables when predicting substituted values.
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Figure 10. Self-attention weights of 20 records of the ‘sex:NULL’ feature when the ‘relationship’
variable had the ‘Husband’ value.

6. Conclusions

We proposed a novel, end-to-end imputational neural network termed the Denoising
Self-Attention Network to solve the problem of missing values within mixed-attribute
tabular data; our method includes a self-attention neural network architecture for effective
representation learning for noisy data. To verify the model, we downloaded several
real-world tabular datasets and evaluated two types of performance, of which one was
imputational performance; that is, the NRMSE for numerical variables and the error rate for
categorical variables were measured. The DSAN outperformed the other methods in terms
of imputation of both numerical and categorical variables. We also explored downstream
task performance. We trained a binary classifier using original and imputed datasets, and
evaluated performance. A classifier trained with DSAN-imputed data performed similarly
to a classifier trained with original data. Thus, the imputed dataset was of similar quality
to the original dataset because the DSAN constructed a high-quality training dataset. As
the number of records in tabular data to be imputed is greater, the imputation performance
of DSAN increases. In addition, since the DSAN creates imputation models for all columns
simultaneously via multi-task learning, its imputation process is much faster than that of
the existing methods of generating an individual imputation model for each column.

However, the DSAN did not show sufficient performance improvement when imput-
ing missing values for numerical variables. Moreover, the DSAN shows relatively low
imputation performance for datasets with a small number of records. Thus, by refining
the DSAN’s architecture to specifically consider numerical variables and preventing degra-
dation of some tasks in the multi-task learning, we will try to overcome these limitations.
Basically, our proposed method relies on the MCAR type of missing data assumption even
though MAR (Missing At Random) and MNAR (Missing Not At Random) types are more
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common than the MCAR type. As another future study, we need to investigate whether
the DSAN can be extended so as to be applied to the MAR and MNAR types.
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