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Abstract: For over two decades, scholars and practitioners have emphasized the importance of
digital literacy, yet the existing datasets are insufficient for establishing learning analytics in Thailand.
Learning analytics focuses on gathering and analyzing student data to optimize learning tools and
activities to improve students’ learning experiences. The main problem is that the ICT skill levels of
the youth are rather low in Thailand. To facilitate research in this field, this study has compiled a
dataset containing information from the IC3 digital literacy certification delivered at the Rajamangala
University of Technology Thanyaburi (RMUTT) in Thailand between 2016 and 2023. This dataset
is unique since it includes demographic and academic records about undergraduate students. The
dataset was collected and underwent a preparation process, including data cleansing, anonymization,
and release. This data enables the examination of student learning outcomes, represented by a
dataset containing information about 45,603 records with students’ certification assessment scores.
This compiled dataset provides a rich resource for researchers studying digital literacy and learning
analytics. It offers researchers the opportunity to gain valuable insights, inform evidence-based
educational practices, and contribute to the ongoing efforts to improve digital literacy education in
Thailand and beyond.

Dataset: https://dx.doi.org/10.21227/370s-1s37

Dataset License: CC-BY 4.0

Keywords: digital literacy dataset; IC3 certification; improvement; learning analytics; RMUTT

1. Summary

Digital literacy is a personal skill regarding one’s ability to use a present digital tech-
nology for daily use, which includes operating, understanding, accessing, communicating,
searching, and processing information technology [1]. In the 21st century, this set of skills
and competencies is very important for professional life, Industry 4.0, and work in academic
fields [2]. Nowadays, digital technology consists of hardware, software, and information.
The technology can include personal computers, mobile phones, tablets, computer pro-
grams, and online media. Digital literacy is the primary factor affecting quality of life in
the digital age. If a country fails to adopt and utilize information and communication
technologies (ICTs), it will encounter digital exclusion as it cannot access conventional
mainstream information sources [3].

The policy of Thailand 4.0 considers the country’s economic development, providing a
model for the development of the national economy by relying on the production structure
and the occupational basis of people in Thai society [4]. Also, according to such policy,
youth groups and students play an important role in the development of the country, as
the youth population is three times greater than the working-age population. However,
the main problem is that the ICT skill levels of the youth are rather low; this is a factor

Data 2023, 8, 121. https://doi.org/10.3390/data8070121 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data8070121
https://doi.org/10.3390/data8070121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://dx.doi.org/10.21227/370s-1s37
https://doi.org/10.3390/data8070121
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data8070121?type=check_update&version=1


Data 2023, 8, 121 2 of 16

that greatly influences the upgrading of the Thailand 4.0 policy. Similarly, the digital
transformation process still encounters problems in many areas, and it is necessary for the
population to develop fundamental digital skills to make the digital transformation process
more efficient [5].

The Rajamangala University of Technology Thanyaburi (RMUTT) aligns itself with
the vision of Thailand 4.0 and places great importance on students acquiring digital literacy
skills. In line with this policy, RMUTT strives for a high success rate, aiming for nearly
one hundred percent proficiency in digital literacy skills among the student population.
RMUTT students have high expectations of the university, envisioning an educational
environment that fosters excellence in the 21st century, with a particular emphasis on
the development of digital literacy skills [6]. The IC3 Digital Literacy Certification (IC3)
is a globally recognized standard utilized to certify individuals at entry and employee
levels with sufficient ICT skills. In Thailand, the IC3 certification is widely adopted as a
measure of digital literacy proficiency [7]. During the pilot phase, the IC3 certification was
implemented at RMUTT as a testing standard as part of a short-term program aimed at
enhancing students’ digital skills. Although the percentage of passing examinations was
at an acceptable level, the number of students participating in the program was still very
small compared to the total number of students at the university.

To address this issue and expand student involvement, the university introduced a
new general education subject relating to digital literacy, titled “Computer and Information
Technology Skill” (RMUTT CITS course), during the first phase of the program in 2019. This
initiative aims to increase the number of students engaging with and acquiring essential
digital skills. Students from all faculties can register for this subject freely, and they also
use IC3 as a testing standard in mid-year and final examinations. Moreover, the RMUTT
Learning Management System (LMS) was employed as the primary platform used for
learning this course to develop the ICT skills of students and lecturers with regard to using
a digital platform. This LMS is not provided for full self-learning. It is used for learning
activities such as online assignment submission and the provision of online resources.
However, despite these efforts, the students’ IC3 pass rate remained disappointingly low.
This study investigated what factors influence students’ digital skills and how we can
elucidate the relationships among these factors.

From primary to higher education, the LMS has been utilized for years to facilitate the
establishment of a good learning environment. With the rapid advancement of information
technology, large-scale data collection on student populations is feasible. Several scientific
researchers have studied the influence of student data analysis in recent years. This
demonstrates the significance of open datasets, which provide a consistent method for
comparing and visualizing results. There are several publicly accessible data sets discussed
in previous studies. Table 1 showcases the dataset’s contents, encompassing demographic
information, academic records, and results from ICT skill tests. In contrast, the RMUTT
Digital Literacy Dataset (RMUTT-DLD) offers a broader scope by including data on RMUTT
students from 2016 to 2023. This extended dataset encompasses demographic information,
academic learning records, and certification outcomes, providing a more comprehensive
view of students’ digital literacy progression over time.

Education has a substantial impact on economic growth and employment prospects.
With the aim of providing students with the best learning resources, an abundance of
predictive analytical educational research articles has been released in recent years. Over
the past several years, effective statistical and machine learning approaches have been
widely applied to educational datasets. For example, high school and college dropout rate
datasets have been proposed by several researchers [8–10]. These datasets can be used to
develop a model for predicting the dropout rate, which in turn may allow for the dropout
rate to be lowered if the needs of students are better met. There was also a study that
investigated the student dropout rate at the University Faculty of Electrical and Computer
Engineering (FECE) from 2001 to 2015 [11]. This is why decreasing the number of students
who drop out before graduating is so crucial. Using data mining techniques, [12] suggested
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a novel recommendation system based on student data aimed at enhancing the number of
university graduates by offering suitable subject selections.

In addition, higher-education students are continuously expected to improve their ICT
competencies amongst the rapid development of the digital technology era. In 2017, [13]
proposed a dataset that includes data from 22 courses presented by 32,593 Open University
students (OU). The dataset contains demographic information as well as clickstream data
gathered from student interactions in a virtual learning environment (VLE). In order to
assess the impact of a VLE on learning outcomes, the VLE dataset was proposed. Some
studies [11,12,14] have suggested datasets containing observations of students’ ICT skill
usage and evaluations of students’ new technology learning skills. Digital Kids Asia
Pacific (DKAP) published a new dataset encompassing 1061 observations of students’
information and communication technology competence rates from several high schools
across five Vietnamese regions and cities. The dataset includes responses from thousands
of students who were asked to rate their digital literacy. Consequently, in order to address
and analyze the university’s digital literacy and provide the best quality education, our
dataset, spanning from 2016 to 2023, consists of three main sections concerning the students’
demographics, academic records, and IC3 digital literacy exam results.

Table 1. Comparison of recent datasets in the academic area.

Dataset Year High School Undergraduate Number of
Observations Purpose Location

Open University
Learning Analytics

Dataset [13]
2017 - X

22 courses,
32,593 students

Students’
interactions in the

virtual learning
environment (VLE)

Open
University

(OU)

Digital
Competency
Observation
Dataset [15]

2019 X - 1061 students Digital competency Vietnam

Academic
Performance
Evaluation
Dataset [11]

2020 X X 12,411 students

Observe the
influence of social
variables and the

evolution of
students’

learning skills

Colombia

Video
Conferencing Tools

Acceptance
Dataset [14]

2020 - X 277 records Video conferencing
tools (VTCs) Vietnam

High-School
Dropout Rate
Dataset [10]

2022 X - 1613 records Student
Dropout rates United States

C# Programming
Examination
Dataset [12]

2022 - X Unspecified
Academic results in

C# program-
ming language

Iraq, Sudan,
Nigeria, South

Africa, and
India

Undergraduate and
High-School
Dropout Rate

Dataset [9]

2022 X X
50 records,

143,326 records
Student

dropout rate Mexico

* RMUTT-DLD 2023 - X 45,603 records IC3 Digital Liter-
acy Certification Thailand

Note: * The dataset in this study is called the RMUTT Digital Literacy Dataset (RMUTT-DLD).
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2. Data Description

To fully comprehend the proposed dataset, a description of the RMUTT digital literacy
learning process must be provided. RMUTT is one of Thailand’s public universities, with
approximately 25,000 students enrolled in various programs. The RMUTT LMS is used
to deliver digital literacy-related learning resources. The database stores instructor and
student interactions with course materials and assignments. It allows for the frequency of
online assignment submissions in related modules to be lowest, low, medium, or high.

Students are aware of the policies regarding data protection and the ethics code in
the use of student data recorded in databases for learning and research analysis. They are
provided with crucial details on how their data is used and the possibility of data sharing
with other academics for research purposes that can be disclosed to students. Additionally,
this RMUTT-DLD dataset has been anonymized and cannot be used to identify specific
pupils and lecturers.

This dataset comprises two distinct learning process application periods. The first
term ran from 2016 to 2018, and the second from 2019 to 2023. Figure 1 depicts the learning
process approach for the first period, in which all students studying the RMUTT CITS
course had to register for a schedule of IC3 certification exams to evaluate their digital
literacy skills. After receiving the schedule, students took the certification exam and
received a score which equates to either a “Fail” or “Pass” grade. Also, the scores from
such examinations were partially used for grading the course.
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Figure 1. Digital literacy learning procedure—first period (2016–2018).

Figure 2 demonstrates the learning procedure for the second phase. As mentioned
in the previous section, the initial phase of implementation did not achieve the desired
outcomes. Therefore, RMUTT created a digital literacy improvement platform, including
two modules. First, the self-e-Learning module was designed based on the standard
gamification concept, and learners can study using that module completely on their own.
Second, an intensive tutoring module was provided for a certain period. Typically, any
student can register for the self-e-Learning module without registering for the RMUTT CITS
course. For students who meet the qualification criteria, there is the option to participate
in the intensive tutoring module. Additionally, students who are deemed qualified by
the board of lecturers from the RMUTT CITS course can also directly access the intensive
tutoring module. Then, students can take the IC3 certification exam in the first period.
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Table 2 shows the detailed structure of the RMUTT-DLD dataset, consisting of the
field name, data type, description, and data scope. The dataset is a collection of anonymous
students’ profiles, academic records, and IC3 digital literacy exam results, spanning from
2016 through 2023, as shown in Figure 3. The dataset focuses on students; hence, students
are the focal point. Each record within the data corresponds to a student who registered
for the IC3 certification exam in a specific module. The dataset includes a variety of
demographic information, consisting of the student’s encoded identifier, first-entry GPA,
current GPA, admission year, faculty name in Thai and English, department name in Thai
and English, home province name in Thai, home district name in Thai, and contact zip code
in Thailand. The prefix “STD” was added to the field names of these data. The records of
the IC3 exam results were combined with the students’ profiles, which can refer to other
fields, and the prefix “IC3” was added. The IC3 exam has three main modules, including
‘IC3 GS5—Computing Fundamentals’, ‘IC3 GS5—Key Applications’, and ‘IC3 GS5—Living
Online’. Information regarding the language, score, result, used time, station, and year of
the IC3 examinations were also recorded. Furthermore, there are six fields of academic
records, including the class identifier, teacher’s encoded identifier in each class, number of
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students who enrolled in a class, year of class opening, semester period, and frequency of
online assignment submissions. The prefixes “CLASS” and “ONLINE” were added to the
academic records.

Table 2. The detailed structure of the RMUTT-DLD dataset.

No. Field Name Data Type Description Data Scope

1 STD_ENCODE_ID Text Record of student’s encoded identifier. There are 45,603 IC3 examination
records that were recorded.

2 IC3_MODULE_NAME Text IC3 certificate module name. This field
has only three modules.

IC3 GS5—Computing
Fundamentals
IC3 GS5—Key Applications
IC3 GS5—Living Online

3 IC3_EXAM_LANGUAGE Text Language for examination. English/ Thai.

4 IC3_SCORE Integer IC3 certificate score for each module. 0 to 1000 points.

5 IC3_RESULT Text IC3 certificate result.
Scores ≥ 700 pass; otherwise, fail. Fail/ Pass.

6 IC3_EXAM_TIMEUSED Integer The time that was used during
the examination. 0 to 3000 s.

7 IC3_EXAM_STATION Text

Station of the test taker, mostly
including building and computer
name. For example, IWORK-201-01 is
IWORK building, room number 201,
and computer number 01.

There are 997 stations. Some are
not in the standard format because
they may use an extra building or
computer.

8 IC3_EXAM_YEAR DateTime (Year) Year of IC3 examination in yyyy
format, such as 2023. 2016 to 2023 A.D.

9 STD_ENTRY_GPA Float Student’s first-entry GPA 1.0 to 4.0 on a 4.0 scale.

10 STD_CURRENT_GPA Float Student’s current GPA during the
IC3 examination. 0.0 to 4.0 on a 4.0 scale.

11 STD_ADMIT_YEAR DateTime (Year) Student’s admission year in yyyy
format, such as 2022. 2012 to 2022 A.D.

12 STD_FACULTYNAME_THAI Text Student’s faculty name in Thai. There are 13 faculties.

13 STD_FACULTYNAME_ENG Text Student’s faculty name in English. There are 13 faculties.

14 STD_DEPARTMENTNAME_THAI Text Student’s department name in Thai. There are 43 departments.

15 STD_DEPARTMENTNAME_ENG Text Student’s department name in English. There are 43 departments.

16 STD_HOME_PROVINCENAME Text
(GEO) Student’s home province name in Thai. There are 77 provinces in Thailand.

17 STD_HOME_DISTRICT Text
(GEO) Student’s home district name in Thai. There are 988 districts.

18 STD_CONTACT_ZIPCODE Text
(GEO)

Student’s contact zip code in Thailand.
In general, some districts have the
same contact zip code.

There are 855 contact zip codes.
Some values are NA, which
is undefined.

19 CLASS_ID Text Class identifier is used for classifying a
class/section for RMUTT CITS.

There are 788 sections for the
RMUTT CITS class.

20 CLASS_TEACHER_ENCODE_ID Text
Record of teacher’s encode identifier.
This field can distinguish a lecturer
from each other.

There are 76 teachers who taught
many classes and have different
name IDs.

21 CLASS_ENROLLSEAT Integer Number of students who enrolled in
a class.

Between 3 and 78 students in
a class.

22 CLASS_ACADEMIC_YEAR DateTime (Year) Year of class opening in yyyy format,
such as 2022. 2015 to 2022 A.D.

23 CLASS_SEMESTER Integer Semester period in which the
class opens. Semester 1, 2, or 3.

24 ONLINE_ASSIGNMENT
_SUBMISSION_FREQUENCY Text

Frequency of online assignment
submissions in related modules. This
field was transformed to include
four levels.

Lowest/Low/Medium/High
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Figure 3. Overall dataset structure diagram.

The dataset is available in the .xlsx format and comprises three modules with 45,603
enrolled students. It can be freely downloaded by visiting the provided link via the
file named “RMUTT-DLD-dataset-master.xlsx”. This dataset can be imported into any
application for further analysis or use, making it applicable to various scenarios. It facilitates
the evaluation of predictive models to anticipate students’ certification exam results and
allows for model comparisons with those created by other researchers.

One interpretation of the dataset can be seen in Figures 4 and 5, and there are significant
differences between the results of the certification exams before (2016–2018) and after
(2019–2023) the digital literacy platform improvement. This is due to differences in the
digital literacy learning procedure, which was explained in the previous paragraph. The
differences are clear; the pass rate in 2019–2023 was better than the previous period.
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In Figure 6, an interpretation of the data is presented, showing the relationship between
the number of assignments and the pass rate of students who took the IC3 exam. The
data visualization divides the data into two categories: before and after the platform
improvement. Furthermore, Figure 7 illustrates the distribution of the student population
across Thailand and IC3 exam pass rates based on their province of residence. It is evident
that students residing in the central Thailand area exhibited superior digital literacy skills
compared to other provinces, on average.
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3. Methods
3.1. Raw Data

The data preparation process involved three key stages: raw data handling, data
cleansing, data anonymization, and release, as shown in Figure 8. The first stage was
raw data handling, which encompassed the collection, extraction, and initial storage of
data from various sources. Students at RMUTT have access to a variety of information
system technologies that can be used to support their academic activities. As mentioned
in the previous section, RMUTT has a data center for collecting all information due to the
significant variation between information systems. In the dataset utilized for this article,
three distinct types of data are distinguished:
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• Demographic data—represent basic information on the students, such as name, age
(date of birth), home province, home district, first-entry GPA, current GPA, faculty
name, etc.

• Academic data—show the records of enrollment information of a student’s education
at RMUTT, including information on teachers, classes, and activities in RMUTT LMS.

• IC3 digital literacy exam data—are a record of student exam results according to
digital literacy abilities.
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3.2. Data Cleansing

Data cleansing describes the activity of detecting and correcting mistaken records in a
dataset. The data center has collected demographic, academic, and digital literacy exam
data on students since 2016. We compiled information on digital literacy exams given at
RMUTT between 2016 and 2023. Due to the records coming from various sources, they
were combined with student ID, which can represent a specific source. Insignificant fields
were also removed because there are some repeated values, such as payment type, voucher,
and exam level. Some examples of data cleansing processes used in the study include:

• Removing the duplicated data and unused columns from the raw dataset.
• Joining, merging, and splitting the data among sources using student ID as a key.
• Removing outliers from data sources. For example, the minus values of GPA on a

4.0 scale were removed because the data were sometimes entered incorrectly from
the beginning.

• Transforming some local data to international data units, such as year in B.E. into A.D.
format, and the number of assignments submitted into the four simplified levels.

3.3. Data Anonymization and Release

The dataset anonymization procedure was built in accordance with RMUTT’s ethical
and privacy guidelines. The entire process of creating and releasing datasets is overseen
by the RMUTT administration and approved by the Academic Resources and Information
Technology (ARIT) departments. Self-anonymization is accomplished through a series
of stages. The first step is to replace student and instructor personal information. This
includes the student’s ID number, instructor’s name, and RMUTT-specific identification.

4. Data Evaluation

As a preliminary evaluation, a correlation matrix analysis was conducted on the
dataset. This analysis is performed to identify relationships, explore data, select variables,
and make data-driven decisions. The correlation matrix heatmap, as depicted in Figure 9,
is a visual representation of the correlation values between different variables in a dataset.
Each cell in the heatmap corresponds to the correlation coefficient between two variables.
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The correlation coefficient ranges from negative one to one, indicating the strength and di-
rection of the relationship between the variables. The correlation analysis (Figure 9) reveals
several noteworthy findings concerning the relationships between different variables:

(1) The variables IC3_Score, IC3_Result, and IC3_Exam_Timeused exhibit a high cor-
relation with each other, indicating that a negative correlation is observed between
IC3_Exam_Timeused and performance, suggesting that students who take more time
to complete the exam tend to have lower scores.

(2) Variables such as IC3_Exam_Year, Std_Admit_Year, Class_Id, and Class_Academic_Year
demonstrate a positive correlation with IC3_Score and IC3_Result. This implies that stu-
dents who enrolled after the implementation of the digital literation learning procedure
achieved better scores and higher pass rates.

(3) Std_Entry_GPA and Std_Current_GPA also show a positive correlation with IC3_Score
and IC3_Result. This suggests that students with strong entry and current GPAs tend
to obtain higher IC3 scores and pass the exam.

(4) The variable Class_Teacher_Encoded_Id plays a role in determining IC3_Score and
IC3_Result. This indicates that the selection of a teacher can influence a student′s grades
and overall success, as different teachers may vary in their delivery of course materials.

(5) The frequency of Online_Assignment_Submission is also correlated with IC3_Score
and IC3_Result. A lower frequency of assignments given in a class is associated with
lower scores and pass rates for students.
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As a further method of evaluation, an open-source Orange [16] application was used
to evaluate this dataset. Data may now be dynamically analyzed and more aesthetically
visualized using Orange. Additionally, supported by this program are a number of ma-
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chine learning methods that may be quickly and easily set up using a visual workflow.
Figure 10 depicts the workflow used in this study. Six algorithms, Naïve Bayes [17], Logistic
Regression [18], kNN [19], Random Forest [20], Support Vector Machine (SVM) [21], and
Neural Network [22], were used to assess the accuracy of student certification results as
predictors. Using a stratified tenfold cross-validation sample type with the average across
classes as the target class, the data population was randomly chosen to be a sample dataset.
Figure 11 shows the features and target used, based on the correlation analysis.
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Algorithm performance comparison can be seen through the Receiver Operating
Characteristic (ROC) curve [23]. The evaluation results are then presented in the form
of a confusion matrix based on Equations (1)–(6) regarding accuracy, true positive (TP)
rate, false positive (FP) rate, recall, precision, and F1 measure [24]. Figure 12a–f shows
each of the confusion matrices of the six algorithms used. A comparative evaluation of
the six algorithms is presented in Table 3. Classification accuracy (CA), precision rate, area
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under the ROC curve (AUC), F1 score, and recall were the metrics used to evaluate the data
mining classifiers.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

True positive rate =
TP

TP + FN
(2)

False positive rate =
FP

FP + TN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1Measure =
2× Precision× Recall

Precision + Recall
(6)
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Table 3. Evaluation results.

Model AUC CA F1 Precision Recall

Logistic Regression 0.976 0.925 0.926 0.930 0.925
kNN 0.976 0.921 0.921 0.922 0.921
Random Forest 0.974 0.914 0.914 0.915 0.914
Neural Network 0.974 0.902 0.902 0.902 0.902
Naïve Bayes 0.952 0.896 0.896 0.899 0.896
SVM 0.934 0.889 0.889 0.892 0.889

The ROC curve can be used to graphically assess the accuracy of predictions. Plotting
the anticipated true positive (TP) rate against the predicted false positive (FP) rate as a
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gauge of the effectiveness of the classification algorithm led to the creation of the ROC
curve. Figure 13a,b presents the ROC curve for the prediction analysis of pass and fail
student certification scores, illustrating the differences in the predictive performance of
the six methods. As the final stage of evaluation, visualization of the data was carried
out into a scatter plot so that the data could be read more easily. Figure 14 shows the
relationship between the IC3 score and IC3 exam time used, illustrating that students who
spend more time tend to have lower scores, as mentioned in the correlation matrix heatmap.
Meanwhile, Figure 15 shows the relationship between the faculties and the results of the
IC3 certification result, where almost all students from the faculty of Fine and Applied Arts
experience failure. This is because the majority of the education provided by this faculty is
not primarily related to basics of ICT skills. Moreover, Figure 16 shows the relationship
between the teachers who teach the course and the IC3 certification result. This means that
teachers also affect the students’ experience of failure or success.
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5. Conclusions

This data descriptor presents a dataset created based on data obtained from the
Rajamangala University of Technology Thanyaburi (RMUTT) called the RMUTT-DLD
dataset, including the collection methodology for data preparation. This dataset is an
amalgamation of several separate databases related to IC3 digital literacy certification
results for students enrolled in the RMUTT CITS course. This dataset contains 45,603 records
with 24 main variables and was collected between 2016 and 2023, including students’
profiles and demographics, academic records, and IC3 digital literacy exam results. Also,
the digital literacy learning procedure used between 2016 and 2018 was changed to the
new implementation for improvement used between 2019 and 2023. Evaluation of the
dataset was carried out by applying six machine learning algorithms. Making the right
model based on this dataset will benefit students by implementing the right strategy to
support student certification pass rates, especially in the field of digital literacy. To predict



Data 2023, 8, 121 15 of 16

student/instructor performance and recognize pupils at risk of failing, new or improved
models are required. In summary, the availability of the RMUTT-DLD dataset, along with
the detailed methodology and evaluation results, presents numerous opportunities for
teachers, universities, and researchers. It enables them to leverage the dataset for research,
replicate the methodology for data collection in their own contexts, and gain insights to
improve digital literacy programs and support student success. Furthermore, this dataset
is useful for researchers who wish to conduct comparative studies on the performance of
student digital literacy competencies and for training in the field of machine learning.
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