
Citation: Karanikiotis, T.;

Diamantopoulos, T.; Symeonidis, A.

Employing Source Code Quality

Analytics for Enriching Code

Snippets Data. Data 2023, 8, 140.

https://doi.org/10.3390/data8090140

Academic Editor: Jamal Jokar

Arsanjani

Received: 27 July 2023

Revised: 28August 2023

Accepted: 29 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Employing Source Code Quality Analytics for Enriching Code
Snippets Data
Thomas Karanikiotis * , Themistoklis Diamantopoulos * and Andreas Symeonidis

Electrical and Computer Engineering Department, Aristotle University of Thessaloniki,
541 24 Thessaloniki, Greece; symeonid@ece.auth.gr
* Correspondence: karanikio@ece.auth.gr (T.K.); thdiaman@issel.ee.auth.gr (T.D.)

Abstract: The availability of code snippets in online repositories like GitHub has led to an uptick in
code reuse, this way further supporting an open-source component-based development paradigm.
The likelihood of code reuse rises when the code components or snippets are of high quality, especially
in terms of readability, making their integration and upkeep simpler. Toward this direction, we have
developed a dataset of code snippets that takes into account both the functional and the quality
characteristics of the snippets. The dataset is based on the CodeSearchNet corpus and comprises
additional information, including static analysis metrics, code violations, readability assessments, and
source code similarity metrics. Thus, using this dataset, both software researchers and practitioners
can conveniently find and employ code snippets that satisfy diverse functional needs while also
demonstrating excellent readability and maintainability.

Keywords: mining software repositories; source code mining; readability; static analysis metrics;
code snippets

1. Introduction

Recently, the open-source model has facilitated a substantial surge in code reuse
through the availability of code snippets in online repositories, such as GitHub, GitLab,
or SourceForge. This approach, sometimes referred to as “component-based reuse” or
“opportunistic programming”, allows developers to easily find and reuse existing code in
their own projects, considerably expediting the development process [1,2]. By leveraging
this paradigm, they not only reduce development time and effort but also encourage
cooperation and contribution within a vast network of projects. Additionally, the relevant
metadata, such as statistics from code hosting, enables easy tracking and analysis of popular
open-source projects, assisting in decisions about which projects to use or contribute to.

While code reuse presents significant advantages, it also poses challenges. When
practicing reuse, developers must clearly understand the workings of the source code to
ensure its proper integration and maintenance. Thus, it becomes paramount to assess the
quality of these code components or snippets, especially in terms of readability. A readable
code snippet is not only integrated more seamlessly but is also easier to modify, fitting
the unique requirements of diverse projects. Moreover, comprehending the code’s logic
and structure simplifies its long-term maintenance, aiding in the swift identification and
rectification of bugs or necessary updates.

There are various systems that mine code snippets and can recommend API calls [3–9] or
even reusable code [10–14]. However, these systems primarily focus on the functional aspect of
the developer query, answering questions like “how to read a csv file?”, and sometimes neglect
quality characteristics. More specifically, out of the characteristics defined in the ISO/IEC 25010
for software quality (including, e.g., performance, reliability, security, etc.), maintainability
and readability are of paramount importance for code reuse [15]. Maintainability ensures
that software can be efficiently modified to address new requirements, fix bugs, or improve

Data 2023, 8, 140. https://doi.org/10.3390/data8090140 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data8090140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0001-6117-8222
https://orcid.org/0000-0002-0520-7225
https://orcid.org/0000-0003-0235-6046
https://doi.org/10.3390/data8090140
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data8090140?type=check_update&version=2

Data 2023, 8, 140 2 of 12

performance, making it adaptable and long-lived [16]. On the other hand, readability pertains
to the clarity of the code. Easily understandable code simplifies maintenance tasks, reduces
the introduction of bugs, and streamlines the onboarding process for new team members [17].
Emphasizing these two characteristics is pivotal for the sustainable development and evolution
of software projects [18]. To facilitate reuse and produce readable and maintainable code, it is
important to consider these characteristics when recommending source code snippets.

In this context, we have developed a dataset of code snippets that comprises a com-
prehensive analysis of both functional and quality characteristics. The dataset is based
on the CodeSearchNet [19] corpus, and includes additional information in the form of
static analysis metrics and violations, as well as readability assessments of the snippets.
Furthermore, considering the functional aspect, our dataset reports the similarity between
the code snippets to facilitate the process of finding similar code. The dataset is provided
in MongoDB dump format, which facilitates reproducibility and provides advanced query-
ing capabilities. As a result, software researchers and practitioners are enabled to easily
retrieve snippets that are relevant to different challenges (e.g., code clone detection [20–23],
code snippet recommendation [10–14], code synthesis [24,25], code summarization [26,27]),
while ensuring a standard of high quality.

Our work presents a distinct contribution in the space of open-source code reposi-
tories and their subsequent reuse. As already mentioned, several approaches mine and
recommend code snippets or API calls for reuse purposes [3–14]. However, most of these
systems mainly focus on the functional aspects of code reuse, and do not emphasize the
imperative non-functional characteristics such as readability and maintainability. This
paper’s novelty emerges from the synthesis of both functional and quality characteristics
in one cohesive dataset. Unlike previous works that may focus predominantly on the
functional domain [28,29], we incorporate static analysis metrics, violations, and readability
assessments into our dataset. Moreover, by introducing a similarity measure between code
snippets, we further facilitate the seamless identification and integration of reusable code,
ensuring developers not only find functionally useful code but also high-quality pieces.

The rest of this paper is organized as follows. In Section 2, we delve into the detailed
methodology adopted to create, analyze, and curate the dataset of code snippets. Following
that, Section 3 provides a comprehensive view of the dataset generated, encompassing its
various statistics and shedding light on how it can be used to yield meaningful information.
Section 4 explores the numerous ways in which this dataset can be used in answering
pertinent research questions, while, lastly, Section 5 encapsulates the primary takeaways
from our study and underlines its significance in the larger context.

2. Materials and Methods

Figure 1 depicts the architecture of our platform, which comprises six main components,
the Metrics and Violations Analyzer, the Readability Analyzer, the Source Code Parser, the
Abstract Syntax Tree Analyzer, the Tree Distance Extractor, and the Hierarchical Clusterer. The
source code of our system is available online (https://github.com/AuthEceSoftEng/code-
snippets-dataset, accessed on 28 August 2023) to allow for full reproducibility.

Readability
Analyzer

Metrics & Violations
Analyzer

Code Snippets

DATA

MongoDB

Source Code
Parser

ASTs

pq-Grams

Tree Distance
Extractor

Abstract Syntax
Tree Analyzer

Hierarchical
Clusterer

Distance
Matrix

Figure 1. Architecture overview of the system.

https://github.com/AuthEceSoftEng/code-snippets-dataset
https://github.com/AuthEceSoftEng/code-snippets-dataset

Data 2023, 8, 140 3 of 12

As already mentioned, our system uses the data from CodeSearchNet [19], as it is a
well-crafted dataset of source code snippets and docstrings. The code snippets are initially
analyzed using three different components. The Metrics and Violations Analyzer computes
the values of static analysis metrics for each snippet and further detects violations in
their source code. The Readability Analyzer is used to extract metrics relevant to code
readability. Finally, the Source Code Parser extracts the Abstract Syntax Trees (ASTs) of the
snippets. All these outputs are stored in MongoDB, along with the source code and the
metadata of the snippets. The ASTs extracted from the Source Code Parser are further
forwarded to the Abstract Syntax Tree Analyzer that extracts an intermediate representation
for each tree (pq-Grams profile, discussed in detail in Section 2.4), which is used by the
Tree Distance Extractor to compute the distance between any pair of trees (snippets). The
resulting distance matrix is processed by the Hierarchical Clusterer component, which
forms clusters and stores them in the database, allowing for easy retrieval of functionally
equivalent snippets.

Note that our methodology is mostly language-agnostic, especially regarding the
similarity between snippets, since it only requires an appropriate AST extractor from code,
while the rest of the components of our architecture remain as they are. However, in this
paper we provide a proof-of-concept for components written in the Java programming lan-
guage due to its suitability for managing large codebases, the availability of robust libraries,
and a rich ecosystem that promotes snippet reuse, further underpinning our approach. The
components outlined in Figure 1 are analyzed in detail in the following paragraphs.

2.1. Metrics and Violations Analyzer

The first part of our analysis concerns the extraction of useful metrics from the code. To
do so, the Metrics and Violations Analyzer employs the SourceMeter analysis tool (https://
www.sourcemeter.com/ accessed on 31 August 2023) and extracts a set of different method-
level metrics belonging to different categories. These categories correspond to Complexity
(with metrics such as McCabe Cyclomatic Complexity, Nesting Level, etc.), Coupling (with
metrics for the Number of Incoming/Outgoing Invocations), Documentation (with metrics
such as the Comment Density, etc.), and Size (with metrics such as the Lines of Code, etc.).
Furthermore, we employ PMD (https://pmd.github.io/ accessed on 31 August 2023) to
identify source code violations belonging to different categories (Best Practice Rules, Code
Style Rules, Design Rules, Documentation Rules, Error-Prone Rules, Multithreading Rules,
Performance Rules, and Security Rules). We also keep track of the number of violations
per category of rules as well as the number of violations per priority level (minor, major,
or critical).

2.2. Readability Analyzer

The second part of our analysis concerns extracting the readability of source code
snippets. The concept of code readability has been studied by several researchers, and
different methods have been proposed to assess it. In an effort to provide a holistic view
of readability, we extracted different sets of metrics using the tool of Scalabrino et al. [30].
More specifically, the metrics extracted involve (a) the structural metrics identified by
Buse and Weimer [31] (including, e.g., the number of identifiers, the number of loops, etc.),
(b) the structural metrics defined by Posnett et al. [32] (lines of code, entropy, and Halstead’s
Volume), (c) the visual metrics of Dorn [33] (e.g., indentation length) (The Dorn metrics
also include certain metrics that are relevant to spatial perception or natural language;
however, we may also assume that these are relevant to the visual aspect of code.), and
(d) the textual metrics of Scalabrino et al. [30] (e.g., Comments and Identifiers Consistency,
Textual Coherence, etc.).

2.3. Source Code Parser

To further examine code reuse, we performed source code analysis to extract function-
ally equivalent snippets. This type of analysis can be combined with code readability to

https://www.sourcemeter.com/
https://www.sourcemeter.com/
https://pmd.github.io/

Data 2023, 8, 140 4 of 12

allow developers to understand and navigate different solutions for a query and select the
most readable one. Furthermore, by analyzing the structure and organization of reuse can-
didate snippets, developers can identify patterns and potential issues, such as code duplica-
tion or complex control flow. In this context, we parsed and transformed the source code of
the snippets into ASTs, i.e., code representations in tree-like structure, with each node repre-
senting a different element of the code, such as, e.g., a function or a variable. To accomplish
that, we made use of the ASTExtractor tool (https://github.com/thdiaman/ASTExtractor/
accessed on 31 August 2023). It should be noted that, in our methodology, the source code
parser, which translates code snippets into their corresponding ASTs, is the sole component
tailored to specific programming languages. Once the code has been transformed into an
AST, the next phases of our approach are language-independent, leveraging the generated
trees without requiring any modifications.

As an interesting alternative, one could even modify our system to integrate a parser
generator, like ANTLR [34] or Bison [35]. This way, it would be possible to parse different
languages into ASTs, by providing the generator with the corresponding grammar, and
thus achieve language independence.

2.4. Abstract Syntax Tree Analyzer

Given the ASTs of the snippets, the next step is to compute their similarity, which can
be easily performed using a Tree Edit Distance (TED) algorithm [36]. TED is a method for
comparing two trees and measuring their similarity by counting the minimum number of
operations (insertions, deletions, and label changes) required to transform one tree into
another. Various methods have been developed over the years to improve the complexity
of the TED algorithm, but they all have a complexity of O(n2) or greater. To avoid such
computational complexity, we used the pq-Grams algorithm [37] to approximate TED. This
algorithm constructs a pq-Extended tree by adding null (dummy) nodes to the tree (noted
using the symbol “*”). Specifically, p− 1 ancestors are added to the root of the tree, q− 1
children are added before the first and after the last child of each non-leaf node and q
children are inserted to each leaf of T. The pseudocode for constructing the extended tree
is depicted in Algorithm 1.

Algorithm 1 pq-Grams algorithm pseudocode for building the pq-Extended tree.

procedure PQEXTENDEDTREECONSTRUCTION(tree, p, q)
Add p-1 ancestors to the root of the tree
For each non-leaf node in tree:

Add q-1 children before the first child
Add q-1 children after the last child

For each leaf node in tree:
Insert q children

Return the pq-Extended tree
end procedure

The parameters p and q were set to values 2 and 3, respectively. For each pq-Extended
tree, we first calculated a list of all the pq-Grams patterns it contains. A pq-Grams pattern is
defined as a subtree of the extended tree T that consists of an anchor node with p− 1 ances-
tors and q children. Each list of pq-Grams patterns is called a pq-Grams profile. Algorithm 2
depicts the pseudocode for calculating the pq-Grams profile given an pq-Extended tree.
Therefore, practically, each AST of a code snippet is first extended using the procedure of
Algorithm 1, and then the extended tree is given as input into the procedure of Algorithm 2
to build the final pq-Grams profile for the AST.

An example pq-Extended tree construction and extraction of pq-Grams profile for p
equal to 2 and q equal to 3 is shown in Figure 2 (initially presented in [38]).

https://github.com/thdiaman/ASTExtractor/

Data 2023, 8, 140 5 of 12

Algorithm 2 pq-Grams algorithm pseudocode for computing pq-Grams profile.

procedure COMPUTEPQGRAMSPROFILE(tree, p, q)
List pqGramsProfile = empty list
For each node in tree:

If node has p-1 ancestors and q children:
Extract pq-Gram pattern consisting of the node, p-1 ancestors, and q children
Add the extracted pq-Gram pattern to pqGramsProfile

Return pqGramsProfile
end procedure

A

B AC

D E

A

* B

*

*

A

* B

*

A* C **

* ** * D* E **

* ** * **

A

* C

*

B

A

B *

*

C

A

C *

*

*

B

* *

A

*

C

* D

A

*

C

* E

A

D

C

D *

A

E

C

E *

A

*

D

* *

C

*

E

* *

C

*

Initial tree pq-Extended tree

Final pq-Grams profile

Figure 2. pq-Grams example for p = 2 and q = 3 [38]. The initial tree includes the nodes A, B, C, D,
and E, while “*” represents dummy nodes that are used to produce the pq-Extended tree.

2.5. Tree Distance Extractor

Upon having extracted the pq-Grams profiles, one for each AST/snippet, we are now
able to apply the TED metric of the pq-Grams algorithm [37]. Thus, the pq-Grams distance
between two trees T1 and T2 is defined as follows:

distance(T1, T2) = 1− 2 ∗ |P(T1) ∩ P(T2)|
|P(T1) ∪ P(T2)|

(1)

where P(T1) and P(T2) are the pq-Grams profiles for trees T1 and T2, respectively. As
shown by this equation, the distance between two trees depends on the number of mutual
pq-Grams patterns contained in both their profiles divided by the union of the two lists,
which results in a value between 0 and 0.5 [37]. It is obvious that the similarity between
two trees can be easily calculated using the formula 1− distance(T1, T2).

Data 2023, 8, 140 6 of 12

2.6. Hierarchical Clusterer

We used Agglomerative Hierarchical Clustering, a bottom-up approach, to group code
snippets, based on their distances calculated in the previous step. The optimal number of
clusters was determined using average silhouette score, defined for each point i as

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2)

where the calculation of the silhouette coefficient uses the mean intracluster distance and
the minimum nearest cluster distance. The mean intracluster distance for the data point i is
defined as the average distance of i to all other points in the same cluster as i (Ci)

a(i) =
1

|Ci| − 1 ∑
j∈Ci
j 6=i

d(i, j) (3)

The minimum nearest cluster distance is defined as the average distance from the
points of the nearest cluster of data point i, except for cluster Ci:

b(i) = min
k 6=i

1
|Ck| ∑

j∈Ck

d(i, j) (4)

After performing the cluster analysis, we examined the generated clusters (maximum
silhouette equal to 0.78) and maintained the clusters that contained a minimum number of
data points (100 snippets) to ensure that the snippet implementations are generic enough.
Listings 1 and 2 depict two snippets that have been put together in the same cluster. Both
snippets check for null values and call the .get() function on an object.

Listing 1. Example snippet that is in the same cluster with the snippet of Listing 2.

public s t a t i c E a r t h E l l i p s o i d getType (S t r i n g name) {
i f (name == null)

return null ;
return hash . get (name) ;

}

Listing 2. Example snippet that is in the same cluster with the snippet of Listing 1.

public Object getUserProperty (Object key) {
i f (userMap == null)

return null ;
return userMap . get (key) ;

}

3. Results

Figure 3 depicts the schema of our database, which comprises four different collections,
the snippets, the analysisMetrics, the violations, and the readabilityMetrics. The data are
available as a MongoDB database (in .bson format, which is a binary-encoded serialization
of JSON documents).

Data 2023, 8, 140 7 of 12

_id
url
BW
 assignment_average
 blank_lines_average
 commas_average
 comments_average
 comparisons_average
 identifiers_length_average
 conditionals_average
 indentation_average
 keywords_average
 line_length_average
 loops_average
 number_of_identifiers_average
 ...
Posnett
 entropy
 volume
 lines
Dorn
 dft_assignments
 dft_commas
 dft_comments
 dft_comparisons
 dft_conditionals
 dft_indentations
 dft_keywords
 dft_linelengths
 dft_loops
 dft_identifiers
 dft_numbers
 dft_operators
 ...
Scalabrino
 readability
 identifiers_words_average
 identifiers_words_minimum
 abstractness_words_average
 abstractness_words_maximum
 abstractness_words_minimum
 commented_words_average
 commented_words_maximum
 method_chains_average
 method_chains_maximum
 method_chains_minimum
 comments_readability
 ...

oid
str
obj

num
num
num
num
num
num
num
num
num
num
num
num

...
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num

...
obj

num
num
num
num
num
num
num
num
num
num
num
num

...

readabilityMetrics

_id
url
type
repo
sha
path
functionName
code
docstring
codeTokens
docstringTokens
ast
astCode
clusterID

oid
str
str
str
str
str
str
str
str
arr
arr
str
str

num

snippets

_id
url
HCPL
HDIF
HEFF
HNDB
HPL
HPV
HTRP
HVOL
MIMS
MI
MISEI
MISM
McCC
NL
NLE
NII
NOI
CD
CLOC
DLOC
TCD
TCLOC
LOC
LLOCPAR
NOS
TLOC
TLLOC

oid
str

num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num

analysisMetrics

_id
url
WarningCritical
WarningMajor
WarningMinor
Best Practice Rules
Code Style Rules
Design Rules
Documentation Rules
Error Prone Rules
Multithreading Rules
Performance Rules
Security Rules
PMD_ACWAM
PMD_AMG
PMD_AISD
PMD_AMDF
PMD_APST
PMD_ARCV
PMD_ARLV
PMD_ARP
PMD_ASBF
PMD_AUHCIP
PMD_CRS
PMD_CII
PMD_DLNLISS
PMD_DBI
PMD_FLCBF
PMD_FLVC
PMD_GLS
PMD_JUASIM
PMD_JUTCTMA
PMD_JUTSIA
PMD_LFIC
PMD_LoC
PMD_MRIA
PMD_MO
PMD_ODPL
PMD_PST
PMD_SSSHD
PMD_SP
PMD_UA
PMD_UnI
PMD_ULV
PMD_UPF
PMD_UPM
PMD_UAEIOAT
...

oid
str

num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num

...

violations

url

url url

Figure 3. The schema of our database.

Our decision to provide the dataset in MongoDB dump format was based on the
inherent advantages of MongoDB for handling large-scale datasets. MongoDB, as a NoSQL
database, offers flexibility in storing diverse data types and is renowned for its scalability
and performance. The dump format ensures that the entire database, including its structure
and contents, can be easily shared, restored, and queried, promoting reproducibility. The
capabilities of MongoDB in managing and querying vast datasets are well-documented in
the database and big data literature [39].

It should be noted that all the collections use “url” as a “primary key” to identify the
code snippet they refer to. As already mentioned, our dataset consists of four collections:

• Snippets: This collection contains the code and the docstring of each snippet, informa-
tion about its origin, the AST and the id of the cluster it belongs to, which can be used
to group snippets into clusters (i.e., similar snippets).

• AnalysisMetrics: This collection includes the static analysis metrics calculated by the
SourceMeter analysis tool.

• Violations: This collection contains the source code violations identified by the PMD tool.
• ReadabilityMetrics: This collection includes the extracted readability metrics, which are

split into four categories, with respect to the research approach they refer to (Buse and
Weimer—BW, Posnett, Dorn, and Scalabrino).

Table 1 depicts certain statistics about the collected dataset. The statistics presented
have been chosen to provide a comprehensive overview of the scale and organization

Data 2023, 8, 140 8 of 12

of the dataset. They practically indicate the range of code samples in our dataset, their
distribution across different projects, and how often certain patterns or functionalities
are repeated.

Table 1. Dataset statistics.

Metric Value

Number of Documents/Snippets 496,685
Number of Repositories 500
Number of Clusters 893

Data Size 11.3 GB (940.3 MB compressed)

Additionally, Listing 3 illustrates a sample query that can be used for data extraction
purposes; it retrieves the static analysis metrics and the readability metrics of the cluster
of Listings 1 and 2. Queries such as this can be issued from multiple environments. For
example, one could use MongoDB Compass (https://www.mongodb.com/products/
compass accessed on 31 August 2023) to explore the data or form and issue queries. And, of
course, it is also possible to issue requests using a programming language, e.g., for Python,
one can use the pymongo library (https://pymongo.readthedocs.io/en/stable/ accessed
on 31 August 2023).

Listing 3. Example query that retrieves static analysis metrics and readability metrics of a cluster.

db . g e t C o l l e c t i o n (" sn ippets ") . aggregate ([
{

" $match " : {
" c l u s t e r I D " : 1

}
} ,
{

" $lookup " : {
" from " : " a n a l y s i s m e t r i c s " ,
" l o c a l F i e l d " : " u r l " ,
" f o r e i g n F i e l d " : " u r l " ,
" as " : " s a t m e t r i c s "

}
} ,
{

" $lookup " : {
" from " : " r e a d a b i l i t y m e t r i c s " ,
" l o c a l F i e l d " : " u r l " ,
" f o r e i g n F i e l d " : " u r l " ,
" as " : " readmetr ics "

}
}

])

Thus, using our dataset, one can extract useful insight for the relations between metrics.
For instance, given the query of Listing 3, we can plot the diagram of Figure 4, depicting
the Scalabrino readability value versus Comment Density (CD). If we further highlight
their relation using linear regression (dashed line in diagram), we see that the two metrics
are positively correlated, which is expected if we consider that comments typically enhance
the readability of the code.

https://www.mongodb.com/products/compass
https://www.mongodb.com/products/compass
https://pymongo.readthedocs.io/en/stable/

Data 2023, 8, 140 9 of 12

0.4 0.5 0.6 0.7
Comment Density (CD)

0.80

0.85

0.90

0.95

Re
ad

ab
ilit

y

Figure 4. Example plot depicting the Scalabrino Readability metric versus Comment Density (CD)
for a cluster.

4. Discussion

Concerning the structure and the design of the dataset, retrieving and reproducing it is
straightforward, as it only requires a MongoDB instance. As already mentioned, MongoDB
ensures scalability and offers advanced storing, retrieving, and querying capabilities;
thus, it is ideal for managing the varied and dynamic nature of source code snippets and
the associated metrics [39]. Our dataset can be used to confront several challenges in
current research. First of all, in examining source code readability, researchers can use
our dataset to empirically study the various aspects that contribute to or detract from
code understandability. Consider a real-world scenario wherein a developer has to choose
between multiple similar implementations of a function or algorithm. With our dataset, one
could identify similar code snippets and run user experiments. For example, comparing
the readability of iterative versus recursive implementations of a factorial function can
help determine which version is deemed more readable by a broader audience. Moreover,
the data facilitate the design and development of readability models, either by using the
source code directly [40,41] or the associated static analysis metrics [42–44]. When doing
so, comparison with the state of the art is straightforward, as our dataset includes different
metrics for readability [30–33].

The similarity data in our dataset make it an invaluable resource for code clone
detection [20–22]. For instance, researchers are able to detect whether two different open-
source projects inadvertently employ the same code implementation, indicating potential
for reuse. By utilizing the tokens and ASTs of the provided snippets, researchers can
compare different clone detection methods. Furthermore, our dataset paves the way for
studies investigating correlations between code clones and metrics like static analysis or
readability. For instance, a pertinent question may be whether code clones inherently suffer
from reduced readability due to repeated patterns. Finally, one could even try to determine
whether it is possible to identify code clones based on these metrics [23].

Concerning code similarity challenges, consider the potential application in code
search engine scenarios. For example, when a developer submits a textual query looking for
a “quicksort algorithm implementation”, our dataset can not only help in retrieving relevant
snippets, [10–14,19,45], but it can also rank them based on their readability or quality
score [46,47]. Moreover, it can be used for pattern matching tasks, by detecting whether
certain snippets follow nano-patterns, study how these nano-snippets are implemented,
and even examine their readability [48].

Venturing into the realm of code synthesis [24,25], imagine an automated tool that can
take a cluster of similar code snippets and synthesize a new version by amalgamating the
best parts of each snippet. For instance, if the cluster contains various ways to implement
a database connection [49], the tool could create a single, clean, and readable version
that incorporates the most efficient and readable elements from the cluster. Lastly, our

Data 2023, 8, 140 10 of 12

dataset offers a fertile ground for advancements in code summarization [26,27]. With the
burgeoning complexity of today’s software projects, being able to automatically summarize
a lengthy function into a few descriptive lines or even comments can significantly expedite
code reviews and maintenance.

All in all, our dataset can be useful for confronting several research challenges. Consid-
ering its limitations, and thus identifying possible future research directions, we may note
that the data include method snippets, while complete project information is omitted. As a
result, the dataset cannot be used for challenges at the project and/or library level (e.g., ex-
tracting the semantics of software libraries and using them for code comprehension [50]).
Given also that the data are only drawn from GitHub, they may not always include generic
solutions for all possible developer queries. As future work, we plan to link the method
snippets to their original source repositories, which would offer interesting metadata, and
even integrate other sources, such as Stack Overflow, which includes snippets that are
generally regarded as high-quality code [51].

5. Conclusions

In this work, we have aimed to improve the research and practice on code reuse and
readability by creating a dataset of code snippets that involves both functional and quality
characteristics. The dataset is based on the CodeSearchNet corpus and includes additional
information in the form of static analysis metrics and violations, readability assessments,
and code similarity metrics. Thus, using our dataset, one can confront different research
challenges in the areas of code reuse/readability, as well as combine these areas with
the aim of optimizing the process of identifying, integrating, and maintaining reusable
code. Future work could include incorporating additional representations of the code, such
as control flow graphs, and even augmenting the dataset, e.g., by using also data from
code-hosting repositories.

Author Contributions: Conceptualization, T.K., T.D. and A.S.; methodology, T.K., T.D. and A.S.;
software, T.K., T.D. and A.S.; validation, T.K., T.D. and A.S.; formal analysis, T.K., T.D. and A.S.;
investigation, T.K., T.D. and A.S.; resources, T.K., T.D. and A.S.; data curation, T.K., T.D. and A.S.;
writing—original draft preparation, T.K., T.D. and A.S.; writing—review and editing, T.K., T.D. and
A.S.; visualization, T.K., T.D. and A.S.; supervision, T.K., T.D. and A.S.; project administration, T.K.,
T.D. and A.S.; funding acquisition, T.K., T.D. and A.S. All authors have read and agreed to the
published version of the manuscript.

Funding: Parts of this work have been supported by the Horizon Europe project ECO-READY (Grant
Agreement No 101084201), funded by the European Union.

Data Availability Statement: The data presented in this study are openly available in Zenodo at
https://zenodo.org/record/7893288.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crnkovic, I.; Larssom, M. Challenges of Component-Based Development. J. Syst. Softw. 2002, 61, 201–212. [CrossRef]
2. Brandt, J.; Guo, P.J.; Lewenstein, J.; Klemmer, S.R. Opportunistic Programming: How Rapid Ideation and Prototyping Occur in

Practice. In Proceedings of the 4th International Workshop on End-User Software Engineering, New York, NY, USA, 10–18 May
2008; pp. 1–5.

3. Nguyen, T.; Rigby, P.C.; Nguyen, A.T.; Karanfil, M.; Nguyen, T.N. T2API: Synthesizing API Code Usage Templates from English
Texts with Statistical Translation. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, New York, NY, USA, 13–18 November 2016; pp. 1013–1017.

4. Xu, C.; Sun, X.; Li, B.; Lu, X.; Guo, H. MULAPI: Improving API method recommendation with API usage location. J. Syst. Softw.
2018, 142, 195–205. [CrossRef]

5. Nguyen, P.T.; Di Rocco, J.; Di Ruscio, D.; Ochoa, L.; Degueule, T.; Di Penta, M. FOCUS: A Recommender System for Mining API
Function Calls and Usage Patterns. In Proceedings of the 41st International Conference on Software Engineering, IEEE Press,
Montréal, QC, Canada, 25–31 May 2019; pp. 1050–1060.

6. Gu, X.; Zhang, H.; Zhang, D.; Kim, S. Deep API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, New York, NY, USA, 13–18 November 2016; pp. 631–642.

https://zenodo.org/record/7893288
http://doi.org/10.1016/S0164-1212(01)00148-0
http://dx.doi.org/10.1016/j.jss.2018.04.060

Data 2023, 8, 140 11 of 12

7. Cai, L.; Wang, H.; Huang, Q.; Xia, X.; Xing, Z.; Lo, D. BIKER: A Tool for Bi-Information Source Based API Method Recommendation.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, New York, NY, USA, 3–9 December 2019; pp. 1075–1079.

8. Li, X.; Jiang, H.; Kamei, Y.; Chen, X. Bridging Semantic Gaps between Natural Languages and APIs with Word Embedding. IEEE
Trans. Softw. Eng. 2018, 46, 1–17. [CrossRef]

9. Chen, C.; Peng, X.; Sun, J.; Xing, Z.; Wang, X.; Zhao, Y.; Zhang, H.; Zhao, W. Generative API Usage Code Recommendation with
Parameter Concretization. Sci. China Inf. Sci. 2019, 62, 192103. [CrossRef]

10. Ponzanelli, L.; Bacchelli, A.; Lanza, M. Seahawk: Stack Overflow in the IDE. In Proceedings of the 2013 International Conference
on Software Engineering, Piscataway, NJ, USA, 18–26 May 2013; pp. 1295–1298.

11. Campbell, B.A.; Treude, C. NLP2Code: Code Snippet Content Assist via Natural Language Tasks. In Proceedings of the 2017 IEEE
International Conference on Software Maintenance and Evolution, Los Alamitos, CA, USA, 17–24 September 2017; pp. 628–632.

12. Diamantopoulos, T.; Oikonomou, N.; Symeonidis, A. Extracting Semantics from Question-Answering Services for Snippet Reuse.
In Proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, Dublin, Ireland, 25–30
April 2020; pp. 119–139.

13. Gu, X.; Zhang, H.; Kim, S. Deep Code Search. In Proceedings of the 40th International Conference on Software Engineering, New
York, NY, USA, 26–27 May 2018; pp. 933–944.

14. Papathomas, E.; Diamantopoulos, T.; Symeonidis, A. Semantic Code Search in Software Repositories using Neural Machine
Translation. In Proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, Munich,
Germany, 2–7 April 2022; pp. 225–244.

15. ISO/IEC 25010:2011. 2011. Available online: https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en (accessed on 28
August 2023).

16. Spinellis, D. Code Quality: The Open Source Perspective; Adobe Press: San Jose, CA, USA, 2006.
17. Sedano, T. Code Readability Testing, an Empirical Study. In Proceedings of the 2016 IEEE 29th International Conference on

Software Engineering Education and Training (CSEET), 5–6 April 2016; pp. 111–117.
18. Pfleeger, S.L.; Atlee, J.M. Software Engineering: Theory and Practice; Pearson Education India: Noida, India, 1998.
19. Husain, H.; Wu, H.H.; Gazit, T.; Allamanis, M.; Brockschmidt, M. CodeSearchNet Challenge: Evaluating the State of Semantic

Code Search. arXiv 2019, arXiv:1909.09436.
20. Kamiya, T.; Kusumoto, S.; Inoue, K. CCFinder: A Multilinguistic Token-Based Code Clone Detection System for Large Scale

Source Code. IEEE Trans. Softw. Eng. 2002, 28, 654–670. [CrossRef]
21. Jiang, L.; Misherghi, G.; Su, Z.; Glondu, S. DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In Proceedings

of the 29th International Conference on Software Engineering, Minneapolis, MN, USA, 19–27 May 2007; pp. 96–105.
22. White, M.; Tufano, M.; Vendome, C.; Poshyvanyk, D. Deep Learning Code Fragments for Code Clone Detection. In Proceedings

of the 31st IEEE/ACM International Conference on Automated Software Engineering, New York, NY, USA, 3–7 September 2016;
pp. 87–98.

23. Aktas, M.S.; Kapdan, M. Structural Code Clone Detection Methodology Using Software Metrics. Int. J. Softw. Eng. Knowl. Eng.
2016, 26, 307–332. [CrossRef]

24. Terragni, V.; Liu, Y.; Cheung, S.C. CSNIPPEX: Automated Synthesis of Compilable Code Snippets from Q&A Sites. In Proceedings
of the 25th International Symposium on Software Testing and Analysis, New York, NY, USA, 18–20 July 2016; pp. 118–129.

25. Raghothaman, M.; Wei, Y.; Hamadi, Y. SWIM: Synthesizing What i Mean: Code Search and Idiomatic Snippet Synthesis. In
Proceedings of the 38th International Conference on Software Engineering, New York, NY, USA, 18–20 May 2016; pp. 357–367.

26. Haiduc, S.; Aponte, J.; Marcus, A. Supporting Program Comprehension with Source Code Summarization. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering—Volume 2, New York, NY, USA, 1–8 May 2010; pp. 223–226.

27. Katirtzis, N.; Diamantopoulos, T.; Sutton, C. Summarizing Software API Usage Examples using Clustering Techniques. In
Proceedings of the 21th International Conference on Fundamental Approaches to Software Engineering, Thessaloniki, Greece,
14–21 April 2018; pp. 189–206.

28. Janjic, W.; Hummel, O.; Schumacher, M.; Atkinson, C. An Unabridged Source Code Dataset for Research in Software Reuse.
In Proceedings of the 10th Working Conference on Mining Software Repositories, San Francisco, CA, USA, 18–19 May 2013;
pp. 339–342.

29. Gelman, B.; Obayomi, B.; Moore, J.; Slater, D. Source code analysis dataset. Data Brief 2019, 27, 104712. [CrossRef] [PubMed]
30. Scalabrino, S.; Linares Vasquez, M.; Oliveto, R.; Poshyvanyk, D. A Comprehensive Model for Code Readability. J. Softw. Evol.

Process 2018, 30, e1958. [CrossRef]
31. Buse, R.P.L.; Weimer, W.R. Learning a Metric for Code Readability. IEEE Trans. Softw. Eng. 2010, 36, 546–558. [CrossRef]
32. Posnett, D.; Hindle, A.; Devanbu, P. A Simpler Model of Software Readability. In Proceedings of the 8th Working Conference on

Mining Software Repositories, New York, NY, USA, 21–22 May 2011; pp. 73–82.
33. Dorn, J. A General Software Readability Model. Master’s Thesis, The University of Virginia, Charlottesville, VA, USA, 2012.
34. Parr, T.J.; Quong, R.W. ANTLR: A Predicated-LL(k) Parser Generator. Softw. Pract. Exper. 1995, 25, 789–810. [CrossRef]
35. Donnelly, C.; Stallman, R. Bison: The Yacc-Compatible Parser Generator; Free Software Foundation: Boston, MA, USA, 2015.
36. Tai, K.C. The Tree-to-Tree Correction Problem. J. ACM 1979, 26, 422–433. [CrossRef]

http://dx.doi.org/10.1109/TSE.2018.2876006
http://dx.doi.org/10.1007/s11432-018-9821-9
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
http://dx.doi.org/10.1109/TSE.2002.1019480
http://dx.doi.org/10.1142/S0218194016500133
http://dx.doi.org/10.1016/j.dib.2019.104712
http://www.ncbi.nlm.nih.gov/pubmed/31763386
http://dx.doi.org/10.1002/smr.1958
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1145/322139.322143

Data 2023, 8, 140 12 of 12

37. Augsten, N.; Böhlen, M.; Gamper, J. The Pq-Gram Distance between Ordered Labeled Trees. ACM Trans. Database Syst. 2008, 35,
1–36. [CrossRef]

38. Diamantopoulos, T.; Symeonidis, A. Localizing Software Bugs using the Edit Distance of Call Traces. Int. J. Adv. Softw. 2014,
7, 277–288.

39. Parker, Z.; Poe, S.; Vrbsky, S. Comparing nosql mongodb to an sql db. In Proceedings of the 51st ACM Southeast Conference,
Savannah, Georgia, 4–6 April 2013; pp. 1–6.

40. Mi, Q.; Keung, J.; Xiao, Y.; Mensah, S.; Gao, Y. Improving code readability classification using convolutional neural networks. Inf.
Softw. Technol. 2018, 104, 60–71. [CrossRef]

41. Choi, S.; Kim, S.; Kim, J.; Park, S. Metric and Tool Support for Instant Feedback of Source Code Readability. Inf. Softw. Technol.
2020, 15, 221–228.

42. Karanikiotis, T.; Papamichail, M.D.; Gonidelis, I.; Karatza, D.; Symeonidis, A.L. A Data-driven Methodology towards Interpreting
Readability against Software Properties. In Proceedings of the 15th International Conference on Software Technologies, Held
Online, 7–9 July 2020; pp. 61–72.

43. Fakhoury, S.; Roy, D.; Hassan, S.A.; Arnaoudova, V. Improving Source Code Readability: Theory and Practice. In Proceedings of
the 27th International Conference on Program Comprehension, Montreal, QC, Canada, 25–26 May 2019; pp. 2–12.

44. Roy, D.; Fakhoury, S.; Lee, J.; Arnaoudova, V. A Model to Detect Readability Improvements in Incremental Changes. In
Proceedings of the 28th International Conference on Program Comprehension, New York, NY, USA, 13–15 July 2020; pp. 25–36.

45. Papoudakis, A.; Karanikiotis, T.; Symeonidis, A. A Mechanism for Automatically Extracting Reusable and Maintainable Code
Idioms from Software Repositories. In Proceedings of the 17th International Conference on Software Technologies (ICSOFT),
Lisbon, Portugal, 11–13 July 2022; pp. 79–90.

46. Diamantopoulos, T.; Thomopoulos, K.; Symeonidis, A.L. QualBoa: Reusability-aware Recommendations of Source Code
Components. In Proceedings of the IEEE/ACM 13th Working Conference on Mining Software Repositories, Austin, TX, USA,
14–16 May 2016; pp. 488–491.

47. Michailoudis, A.; Diamantopoulos, T.; Symeonidis, A. Towards Readability-aware Recommendations of Source Code Snippets. In
Proceedings of the 18th International Conference on Software Technologies (ICSOFT), Rome, Italy, 10–12 July 2023; pp. 688–695.

48. Gil, Y.; Marcovitch, O.; Orrú, M. A Nano-Pattern Language for Java. J. Comput. Lang. 2019, 54, 100905. [CrossRef]
49. Diamantopoulos, T.; Karagiannopoulos, G.; Symeonidis, A. CodeCatch: Extracting Source Code Snippets from Online Sources. In

Proceedings of the IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE), Gothenburg, Sweden, 27 May–3 June 2018; pp. 21–27.

50. Kuhn, A.; Ducasse, S.; Gírba, T. Semantic Clustering: Identifying Topics in Source Code. Inf. Softw. Technol. 2007, 49, 230–243.
[CrossRef]

51. Sillito, J.; Maurer, F.; Nasehi, S.M.; Burns, C. What Makes a Good Code Example? A Study of Programming Q&A in StackOverflow.
In Proceedings of the 2012 IEEE International Conference on Software Maintenance (ICSM), Trento, Italy, 23–28 September 2012;
pp. 25–34.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1670243.1670247
http://dx.doi.org/10.1016/j.infsof.2018.07.006
http://dx.doi.org/10.1016/j.cola.2019.100905
http://dx.doi.org/10.1016/j.infsof.2006.10.017

	Introduction
	Materials and Methods
	Metrics and Violations Analyzer
	Readability Analyzer
	Source Code Parser
	Abstract Syntax Tree Analyzer
	Tree Distance Extractor
	Hierarchical Clusterer

	Results
	Discussion
	Conclusions
	References

