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Abstract: AbstractSustainable water quality data are important for understanding historical vari-
ability and trends in river regimes, as well as the impact of industrial waste on the health of aquatic
ecosystems. Sustainable water management practices heavily depend on reliable and comprehensive
data, prompting the need for accurate monitoring and assessment of water quality parameters.
This research describes a reconstructed daily water quality dataset that complements rare historical
observations for six station points along the Chao Phraya River in Thailand. Internet of Things
technology and a Eureka water probe sensor is used to collect and reconstruct the water quality
dataset for the period from June 2022-February 2023, with Turbidity, Optical Dissolved Oxygen,
Dissolved Oxygen Saturation, Spatial Conductivity, Acidity/Basicity, Total Dissolved Solids, Salinity,
Temperature, Chlorophyll, and Depth as the recorded parameters from six different stations. The
presented dataset comprises a total of 211,322 data points, which are separated into six CSV files.
The dataset is then evaluated using the Long Short-Term Memory (LSTM) algorithm with a Mean
Squared Error (MSE) of 0.0012256, and Root Mean Squared Error (RMSE) of 0.0350080. The proposed
dataset provides valuable insights for researchers studying river ecosystems, supporting informed
decision-making and sustainable water management practices.

Dataset: https://dx.doi.org/10.21227/3q8d-jw96
Dataset License: CC-BY 4.0

Keywords: water quality dataset; Internet of Things; real-time monitoring; metropolitan waterworks
authority; Thailand

1. Summary

The assessment of environmental health can be accomplished by considering five key
factors: soil, water, climate, natural vegetation, and landscapes. Out of these elements,
water plays the most critical role in supporting human life and the survival of various
ecosystems [1]. Its importance extends to drinking, household use, food production, and
recreation, making safe and clean water an essential requirement for public health [2].
Therefore, it is vital to maintain proper water quality for preventing significant harm to
human well-being and for maintaining an ecological balance for other species [3]. Water
pollution, a significant global problem, requires ongoing evaluation and international
efforts to effectively manage water resources, from a broader perspective to individual
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wells. Numerous studies have shown that water pollution is a leading cause of death
and illness worldwide, resulting in numerous daily fatalities [4]. In numerous developing
nations, untreated or contaminated water is consumed due to public and administrative
ignorance, coupled with the absence of a water quality monitoring system, leading to severe
health complications [5,6]. Predicting and providing early warnings regarding pollution or
declining water quality can serve as effective preventive measures that can be implemented
promptly, especially in Thailand.

In Thailand, the Metropolitan Waterworks Authority (MWA) has the primary respon-
sibility to supply and distribute water to various regions. They achieve this by mainly
utilizing the raw water resources from the Chao Phraya River. Several research studies
have been carried out in cooperation with the Metropolitan Waterworks Authority (MWA)
on raw water quality management in the Chao Phraya River. Ref. [7] suggested innova-
tive approaches for managing the saltwater influx at the Samlae Water Pumping Station,
which serves as the primary intake station for the MWA (Metropolitan Waterworks Au-
thority) from the Chao Phraya River. Additionally, they emphasized the need for enhanced
cooperation from the MWA in water resource management efforts. Ref. [8] concluded
that the urban water supply systems generally met water quality standards, except for
color and iron issues caused by sedimentation process problems and iron pipe presence.
Ref. [9] proposed the one-dimensional simulation flow model that proved valuable for
optimizing water management, and enabling energy savings and efficient emergency water
discharge planning in the West Water Canal. Ref. [10] identifies the optimal coagulants,
their respective dosages, and cost efficiencies for effectively treating raw water with low,
normal, and high turbidity levels, enabling the Metropolitan Waterworks Authority to meet
water quality standards with greater clarity and cost-effectiveness. Based on the previous
studies that have been conducted, the focus is only on developing methods for distributing
and monitoring the water quality of the Chao Phraya River. However, a complete dataset
concerning the water quality conditions of the river, especially in English, is still lacking.
Therefore, there is a recognized need to provide comprehensive water quality datasets
for researchers. The availability of such data will not only benefit researchers but also
contribute to the sustainable development and protection of this vital natural resource
in Thailand. To ensure the availability of this dataset in real time, which can be accessed
anytime and anywhere, the selection of the right technology is very important.

This paper employs Internet of Things (IoT) technology to collect data, enabling the
monitoring of water quality through sensors immersed in water. By employing diverse
sensors, this system captures various essential parameters from the water. The rapid
advancement of Wireless Sensor Network (WSN) technology has revolutionized real-
time data acquisition, transmission, and processing, allowing users to access sustainable
water quality information remotely. IoT has become a groundbreaking phenomenon with
applications spanning various fields, including smart cities, smart power grids, smart
supply chains, and smart wearables [11]. Although IoT is yet to reach its full potential
in environmental applications, it offers immense opportunities. It can be utilized for
detecting forest fires and early earthquakes, reducing air pollution, monitoring green
houses, preventing landslides, and most importantly, for water quality monitoring and
control systems [12-20]. In the twenty-first century, researchers have placed considerable
emphasis on monitoring water quality, leading to numerous ongoing projects that explore
various aspects of this field. The main objective of these research is to create a monitoring
system for water quality that is both efficient and cost-effective, while also providing real-
time data. This system would integrate wireless sensor networks and the Internet of Things
(IoT), enabling comprehensive monitoring of water quality parameters [21]. In addition
to monitoring systems, another crucial focus is ensuring the availability of datasets for
researchers. These datasets are essential for developing artificial intelligence models aimed
at predicting and preventing disasters related to water quality.

Therefore, in this study, a dataset comprising daily river water quality measurements
collected from six stations along the Chao Phraya River in Thailand was presented. The
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dataset was obtained using IoT technology, specifically the Eureka Water Probe Manta +35
sensors deployed at each station, enabling accurate real-time monitoring of river water
conditions. The Eureka Manta water quality multiprobe underwent rigorous testing at the
U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility to assess its accuracy
and compliance with standards, including ISO 7027 [22] for measuring turbidity and
Standard Methods 2510 B to correct the specific conductance. The results demonstrated
that the Manta met the criteria outlined in the USGS National Field Manual for continuous
water quality monitors, covering parameters such as dissolved oxygen and turbidity.

The sensor measurements encompass parameters such as Turbidity (TURB_NTU),
Optical Dissolved Oxygen (HDO), Dissolved Oxygen Saturation (DO_SAT), Spatial Con-
ductivity (SPCOND), Acidity/Basicity (pH), Total Dissolved Solids (TDS), Salinity (SALIN-
ITY), Temperature (TEMP), Chlorophyll (CHL), and Depth (DEPTH). Water conditions are
recorded and stored in a MySQL database at 10-min intervals. The available dataset can
serve a wide range of applications, encompassing a trend analysis, heat flux calculations,
calibration/validation of water temperature models based on processes, establishing base-
line conditions for future climate projects, analyzing climate drivers, assessing impacts on
ecosystem health, and evaluating water quality.

Previous studies have collected river water quality data with varying recording param-
eters, timings, and locations as summarized in Table 1, which highlights the importance of
conducting this research update. Hence, the specific objectives of this study are as follows:
(1) collecting a novel dataset on water quality in Thailand, specifically along six points of
the Chao Phraya River, and (2) employing the Long Short-Term Memory (LSTM) model, in
order to evaluate the quality of our proposed dataset.

Table 1. Previous river water quality dataset.

Title

Targeted Domain Data Range (Time) Place

Dataset on the assessment of
water quality and water quality
index of Ubogo and Egini rivers,
Udu LGA, Delta State Nigeria [23]

PH value, Total Dissolved Solid,
Water Temperature, variations in
Conductivity, Dissolved Oxygen
Values, Chloride, Biochemical
Oxygen Demands, Turbidity,
Hardness, Nitrate, Sulphate,
Phosphate, Calcium, Magnesium
value, Potassium.

February-July 2010 Ubogo and Egini Rivers, Nigeria

Ref. [23]: the dataset focuses on
evaluating the water quality of
surface water in the Kalingarayan
Canal, specifically concerning
heavy metal pollution in the Tamil
Nadu region [24]

The dataset includes
measurements of eight specific
heavy metals, namely iron,
copper, manganese, chromium,
zinc, cadmium, lead, and nickel.

January 2014-December 2016 Kalingarayan Canal, Tamil Nadu

FIKWater: A Water Consumption
Dataset from Three Restaurant
Kitchens in Portugal [25]

Hot and cold water demand. February-May 2019 Restaurant kitchens in Portugal

Datasets of Groundwater Level
and Surface Water Budget in a
Central Mediterranean Site [26]

Central Mediterranean, the
Salento Peninsula

Hydrological and

atmospheric variables. 21 June 2017-1 October 2022

Reconstructed River Water
Temperature Dataset for Western
Canada [27]

55 river stations across western

1980-2018 Canada

River water temperature.

Raw Water Quality Dataset
(Proposed Dataset)

Turbidity, Optical Dissolved
Oxygen, Dissolved Oxygen
Saturation, Spatial Conductivity,
pH, Total Dissolved Solids,
Salinity, Temperature,
Chlorophyll, and Depth.

Six stations across the Chao

June 2022-February 2023 Phraya River, Thailand
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2. Dataset Description

The collected dataset contains various information such as error logs, wipe schedules,
and sensor logs, therefore filtering data is carried out first to separate sensor logs from other
data. The data obtained from the database are in the form of MySQL (.sql) files that are then
filtered and converted into Comma Separated Values (.csv), which separates data between
stations. The naming of “XX Logs.csv” was performed to make it easier to categorize
by station, where XX is the station ID. There are six CSV dataset files named s1 Logs.csv,
s2 Logs.csv, s3 Logs.csv, s4 Logs.csv, s5 Logs.csv, and s15 Logs.csv. In the dataset, the
comma symbol (,) is employed as a separator between columns, while the dot symbol (.) is
utilized to indicate decimal values. The initial row of the CSV file includes the titles for
each data column, which can be observed in Figure 1. Additionally, the distribution of our
dataset for station 1 is illustrated in Figure 2a—j. The turbidity (NTU) of water should be
lower for better clarity, while a higher optical dissolved oxygen (HDO) level is desirable.
Lower values of Spatial Conductivity (SPCOND) indicate less saltiness, and the pH range
of water should ideally be between 6.5 and 8.5. Lower total dissolved solids (TDS) below
1000 are preferable. Salinity represents the dissolved salt content of a body of water, and
the temperature typically falls within the range of 43 to 68 degrees Fahrenheit.

date time turb_ntu hde hdo_sat spcond ph tds salinity temp <chl depth created_at update_at
S1 2022-06-14  13:40:00 6552 2.1 297 419 T7.36 2687 0.20 3189 277 020 2022-06-1406:49:24 2022-06-18 15:09:40
S1 2022-06-14  13:50:00 4396 209 295 419 T7.36 2684 0.20 3190 241 020 2022-06-14 06:52:25 2022-06-18 15:09:41
S1 2022-06-14 14:00:00 3612 206 290 421 736 2698 020 3191 220 0.20 2022-06-14 07:01:25 2022-06-18 15:09:41
S1 2022-08-14  14:10:00 4462 204 288 430 T34 2752 020 3192 282 0.20 2022-06-14 07:10:25 2022-06-18 15:09:41
S1  2022-06-14  14:20:00 38.01 209 29.4 421 T.36 2694 0.20 3193 227 020 2022-06-14 07:22:27 2022-06-18 15:09:41
S1  2023-02-15 06:40:00 1238 377 484 361 723 2311 017 2803 315 183 2022-09-1222:10:48 2023-02-14 23:4017
S1 2023-02-15  06:50:00 12.06 3.76 483 361 T.24 2312 047 2802 314 1.84 2022-09-12 22:10:48  2023-02-14 23:5016
S1  2023-02-15 07:00:00 11.47 375 482 361 723 2313 017 2803 3.44 1.85 2022-09-12 22:10:48 2023-02-15 00:00:17
S1 2023-02-15 07:10:00 1316 375 481 361 723 2314 017 2803 3.09 185 2022-09-12 22:10:48 2023-02-15 00:10:17
S1 2023-02-15 07:20:00 1235 373 479 361 723 2315 017 2803 3.34 187 2022-09-12 22:10:48 2023-02-15 00:20:17
Figure 1. CSV format dataset sample.
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Figure 2. Average data distribution chart by date for station 1. (a) Chlorophyll; (b) Depth; (c) Dis-
solved Oxygen; (d) Dissolved Oxygen Saturation; (e) pH; (f) Salinity; (g) Spatial Conductivity;
(h) Total Dissolved Solids; (i) Temperature; (j) Turbidity.

The dataset consists of 16 columns with ID values as the primary one and station_id
as markers for each station. Table 2 describes each of the water quality parameters’ data
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collected from sensors at each station. The dataset obtained still contains noise in the form
of lost values due to disconnected internet connections, therefore data cleansing is carried
out using formula (1) where d; is noise data, and ;_; and ;;; correspond to the previous
and next valid measurements relative to the missing data point ;.

i = diq ;dzﬂ 1)
Table 2. Dataset column name and type.
No. Column Data Type Description Data Range
[0, 35,316) for S1, [0, 35,741) for S2,
1 id int64 Record ID [0, 34,612) for S3, [0, 35,185) for 54,
[0, 34,691) for S5 and [0, 35,777) for S15
2 station_id object Station ID ‘S1/,S2!,'S3!, 'S4/, ‘S5, ‘S15’
3 date datetime64[ns] Local time YYYY:MM:DD June 2022 to February 2023
4 time object Local time HH:MM:SS From 12:00 AM until 11:59 PM
5 turb_ntu float64 Turbidity value 0 to 1000 FNU
6 hdo float64 Optical Dissolved Oxygen value 0to20mg/L
7 hdo_sat float64 Dissolved Oxygen Saturation value 0 to 500% saturation
8 spcond int64 Spatial Conductivity value 0 to 5000 pS/cm
9 ph float64 Acidic/Basic value 0 to 14 units
10 tds float64 Total Dissolved Solids value Oto65¢g/L
11 salinity float64 Salinity value 0to 70 PSU
12 temp float64 Temperature value —5t0 50 °C
13 chl float64 Chlorophyll value 0to 100 png/L
14 depth float64 Depth value 0to3.25m
15 created_at object Local time YYYY:MM:DD: HH:MM:SS -
16 update_at object Local time YYYY:MM:DD: HH:MM:SS -

Data preprocessing holds significant importance within the data analysis and machine
learning pipeline. It encompasses the identification and rectification of errors, inconsis-
tencies, and inaccuracies in a dataset to enhance its quality and reliability. In the current
scenario, the provided datasets were collected from six distinct water stations, which has
introduced inconsistencies in the data formats. To address the issue of missing data, the
standard data range was outlined in Table 2. This step ensures that the dataset remains
consistent and reliable for further analysis.

Table 3 shows the distribution of the sum, mean, standard deviation, minimum value,
and maximum value for Station 1 after the data preprocessing step. The correlation between
the collected sensor parameters is presented in Figure 3. One important relationship is
between hdo_sat and hdo, which demonstrates a close correlation because the value of
dissolved oxygen in units of mg/1 is converted to a percentage (%) referred to as dissolved
oxygen saturation. Additionally, spcond exhibits a close correlation with both tds and
salinity, indicating their interdependence. Interestingly, tds, salinity, and spcond are nega-
tively correlated with both hdo and hdo_sat, suggesting that an increase in these variables
may result in a decrease in water quality. On the other hand, variables such as turb_ntu,
pH, chl, and temp exhibit low to medium correlations with other variables, implying that
their impact on water quality might be more nuanced and influenced by additional factors.
Understanding these interconnections aids in comprehending the complex dynamics of
water quality assessment and management. For more details, Figure 4 presents a graph
showing the correlation between the Spatial Conductivity, TDS, and Salinity parameters, as
these three variables influence each other. Figure 5 displays the correlation between HDO
and HDO Saturation values, where HDO influences HDO Saturation.
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Table 3. Dataset range value.
turb_ntu HDO HDO_sat Spcond pH TDS Salinity Temp chl Depth
Count 35,316 35,316 35,316 35,316 35,316 35,316 35,316 35,316 35,316 35,316
Mean 43176283  2.79217  37.10983  314.4010  7.20433  201.2760  0.14704  29.42158  4.30925 1.35832
Std 45392016  1.07877  14.47037  90.41907  0.24021  58.11721  0.04287  2.145848  4.00676 0.65397
Min 0.000000  0.00000  0.000000  0.00000 0.00000  0.000000  0.00000  0.010000  0.00000 0.00000
25% 17.470000 2.09000  26.60000 227.0000  7.08000 1457000  0.11000  28.56000  2.02000 0.93000
50% 25.870000  2.90000  38.70000  322.0000  7.16000  206.4000  0.15000  30.05000  3.37000 1.21000
75% 64295000 3.57000  47.40000  395.0000  7.36000  252.8000  0.18000  30.67000  5.78000 1.75000
Max 1000.0000  8.66000  106.0000  503.0000  10.7300  322.5000  0.40000  37.44000  86.0500 3.25000
-10
Turbidity . . 041 -0.42 0.23 -0.42 -0.42 0.19 -0.12 0.21
Optical Dissolved Oxygen [XEY -0.67 01381 -0.67 -0.66 0.14 -0.25 0.23 o8
Dissolved Oxygen Saturation BRIl -0.68 [0/42 -0.67 -0.67 |0.27 -0.28 0.21 [ s
Specific Conductivity  RuIR 70.68~0.09 0.99 0.99 EUPERNVIEEL]
pH 0.42 -0.09 EHR-0.13 -0.09 0.23 -0.14 -0.11 o4
Total Dissolved Solids  RCZARNIAREIA 0.99 RUSE] 1.00 0.98 RUPERERREL! o2
PNINTTR ©-42 -0.66 -0.67 UEEN-0.09 RELRBRY -0.32 0.07 0.38
Temperature . 5 0.27 -0.28 0.23 -0.23 -0.32 -0.22 -0.07 o
IONIST LYl 012 -0.25 -0.28 0.06 -0.14 0.03 0.07 -0.22-0,18 -0.2
Depth . .23 0.21 -0.38 -0.11 -0.38 -0.38 -0.07 -0.18 [fRY}
-0.4
"Tif : (%
3 8 2 i =
S5 8% 3

Figure 3. Data frame correlation matrix.

Spcond. TDSs and Salinity by Year, Quarter, Month and Day
®Spcond @TDS @ Salinity
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Spcond. TDS and Salinity
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Figure 4. Correlation between spatial conductivity, TDS, and salinity.
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hdo and hdo_sat by Year, Quarter, Month and Day

® hdo ®hdo_sat
10K

helo and hdo_sat

Jul 2022

Aug 2022 Sep 2022 Oct 2022 Mov 2022 Dec 2022 Jan 2023

Year

Figure 5. Correlation between HDO and HDO saturation.

3. Methods

This research selected six stations in Thailand based on the geographical location from
upstream to downstream. In terms of implementation, a total of twenty-two stations have
been strategically deployed along the Chao Phraya River. However, this dataset presents
data on six stations that have obtained permission from the authorities. The location of each
station is shown in Table 4. Figure 6a shows the specific location of the station installation in
central Thailand. Figure 6b presents the distribution of stations along the river. Figure 6c-h
provides detailed information on the location of the six stations from the satellite imagery.

Table 4. Locations of six stations.

Station Name Location Longitude Latitude
S1 Sam Lae 14.040804860627668 100.55605001072698
52 Rangsit Siphon 13.973218413649697 100.57142462277918
S3 Wat Phai Lom 14.07795702917611 100.5258774272095
S4 Wat Makham 14.004070095419458 100.540581425073
S5 Wat Pho Taeng Nuea 14.131251392764735 100.52449883577663
S15 Bangkhen Water Treatment Plant 13.8840299 100.5524927

S5 -Wat Pho Taeng Nuea
A

S3 Wat:Phai Lom

AAA

1S4, Sam Lae
' VA

%

~54 Wat Makham
#

$2\Rangsit SIPROMAN

(@)

Figure 6. Cont.
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Figure 6. Six stations from the satellite. (a) Stations’ locations based on Thailand map; (b) detailed
location of each station; (c) Station 1; (d) Station 2; (e) Station 3; (f) Station 4; (g) Station 5; (h) Station 15.

3.1. Hardware Specification

The Eureka Manta +35 (Austin, TX, USA) multiprobe sensor (Figure 7) is used as a
sensor to retrieve water quality data. Data from the sensors are then collected using a
Mini PC K6-F13D (Bangkok, Thailand) as an loT Gateway and are stored in a database.
Figure 8 shows the deployment of one of the stations. To maintain the quality of the raw
data collected, the Metropolitan Waterworks Authority of Thailand conducts a sensor
calibration process every once per month (Figure 9).

éureka

Figure 7. Eureka water probe.
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Figure 8. IoT hardware deployment.
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Figure 9. Sensor calibration activity.

3.2. System Overview

The data obtained are then stored in a database and displayed on http://rwc.mwa.
co.th/page/info/ (accessed on 1 March 2023), which is a platform for displaying water
quality data. The overview of the monitoring system used in collecting data is depicted in
Figure 10. This system is divided into three main parts, namely Local Area Network (LAN),
Cloud Server, and Web-Based data visualization. For the LAN section, the sensor is read
in Python and then connected to the IoT gateway via a Serial Communication protocol.
Furthermore, the data that have been obtained at each station are connected to the cloud
server (MySQL) with the HTTP protocol. The data that have been collected can be accessed
by the public on web-based applications.

3.3. Neural Network

The concept of a Neural Network (NN) is an imitation of the structure of the human
brain’s neural network. Neural networks, a fundamental component of deep learning,
consist of multiple layers that work in harmony to process and analyze data. The key
layers in a neural network include the input layer, hidden layer(s), and output layer. The
input layer receives the initial data and serves as the network’s entry point. Hidden
layers, positioned between the input and output layers, extract meaningful patterns and
representations from the input. Finally, the output layer provides the final predictions or
results of the network’s computations.
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Figure 10. Real-time monitoring system overview.

Neural networks utilize forward propagation to generate predictions by passing data
through the layers, and backward propagation to adjust parameters based on prediction
errors during training [28]. Many types of neural network algorithms are well known in
the world. Neural networks use interconnected layers for processing data, with forward
propagation generating predictions and backward propagation adjusting parameters to
minimize errors. This iterative process enables accurate predictions and the learning of
complex relationships in various tasks. Figure 11 shows the commonly used three-layer
neural network structure, consisting of input, hidden, and output layers [29].

Hidden Layer Output Layer

Figure 11. Three-layer neural network structure diagram.

The utilization of Backpropagation (BP) in neural network architectures involves
various specific procedures, beginning with the initialization of weights and biases within
the range of —1 to 1. Subsequently, the input value for each node in the hidden layer is
calculated, as depicted in Equation (1). Equation (2) is then used to compute the output
value for each node in the hidden layer. Equations (1) and (2) are reused to calculate input
and output values at the output layer. The error value that occurs between the predicted
and real values is calculated using Equation (3) and then BP is carried out. The error
value in the hidden layer is calculated using Equation (4), then an update is made of the
weight between each nerve node with Equations (5) and (6). Apart from the weight, the
bias also needs to be updated using Equations (7) and (8). The process of calculating
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Equations (2)—(11) continues to be carried out sequentially until the conditions are met.
Table 5 provides the symbols” descriptions for equations used in this article.

I = 2 W;iO; + 6; )
1
1
Oi= —— ®)
14l
Errj = 0j(1-05)(T; - 0)) (4)
E?‘Tj = O](l - O]) ;Errijk (5)
AWZ']' = (Z)ET’T’]'OZ' (6)
Wij = Wi]' + AWij (7)
9]' = 9]‘ + A@j 9)
Table 5. Nomenclature.
Wij the weight attributed to the upper layer node hi_q the final LSTM output value at time t — 1
b; the bias of the node Xt the input at time ¢
I signifies the value inputted into the neural node o the activation function of sigmoid
O; the output value of the upper layer of the node fi the output of input gate at time ¢
O; denotes the resulting value of the node’s output it denotes t.he output Valu.e pr(?duced by
] the input gate during time ¢
T; represents the actual value of the node ot the output of the output gate at time ¢
Err; the error value of the node Ct the candidate cell state at time ¢
denotes the error value of the node’s connected N
Erry s C refers to the state of the cell during time ¢
neural unit in the output layer
Wik the output layer weight connected by the node Wy the weight of the forget gate
AW;; the value of weight change W; the weight of the input gate
Ab; change in the bias value W, the weight of the output gate
l the learning rate of the neural network We the weight of the candidate input gate
Ciq the cell state at time t — 1 hy the cell state at time ¢
by the weight of the forget gate be the bias of the candidate input gate
b; the weight of the input gate b, the bias of the candidate output gate
hy the final output value

4. Dataset Experiments and Evaluation

In this study, LSTM is used to evaluate water quality datasets, especially those in-
volving time series data. LSTM is an algorithm developed from the Recurrent Neural
Network (RNN), and this algorithm is designed based on traditional RNN problems related
to explosions and the loss of gradients from data stored for a long time [30]. The significant
difference seen in the standard RNN structure with the LSTM is the number of repeating
modules. Standard RNN has a simple structure, for example, RNN only has one tanh
layer, whereas LSTM has more than one tanh layer and they interact in a unique way [30].
Figure 12 shows the three main parts of the LSTM architecture, namely Forget, Input, and
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Output Gate (FG, IG, OG). In calculations (10)—(15) it can be seen that h;_; (which is output)
and x; (which is input) are inputs from FG, IG, Cell Update, and OG at time t.

fi = o (Wil a, %] + by) (10)
it = o (Wilhy_1, xi] + b;) (11)
Ct = tanh(We[hy_1, x¢] + be) (12)
Ci = fi x Ci_1 + i x Ct (13)
0r = o (Wolhs_1, (] + bo) (14)
hy = of X tanh(Cy) (15)
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Figure 12. LSTM architecture.

LSTM’s ability to capture long-term dependencies and handle sequential data makes it
suitable for analyzing and predicting water quality parameters over time. The dataset used
has gone through the process of data preparation and pre-processing. At this experiment
and evaluation stage, data obtained at the S1-Sam Lae station were used. The dataset is
then divided into two for training and testing purposes as shown in Figure 13. The training
dataset spanned from July 2022 to December 2022 (75%), while the testing dataset covered
the period from January 2023 to February 2023 (25%).

The parameter settings used in this study can be seen in Table 6, where Adam is used
as the optimizer algorithm. We conducted an assessment of the LSTM model’s predictive
capabilities over a 45-day horizon, revealing its accurate prediction of a 10-day span. This
outcome precisely corresponds to a calculated accuracy of 22.2%. In this scenario, the error
rate is exceptionally high, leading to a correspondingly low level of accuracy achieved,
which is because fine-tuning of the model has not been carried out yet. Evaluation of the
LSTM model trained using test data is carried out by calculating performance metrics
such as mean squared error (MSE) and root mean squared error (RMSE) to assess model
accuracy in predicting water quality parameters. Statistical results for evaluating turbidity
predictions can be seen in Figure 14 and Table 7. The MSE and RMSE metrics are in
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common use and are especially suitable when the underlying data distribution follows a
Gaussian behavior assuming normality of the data in this research. While the choice of MSE
and RMSE is reasonable based on Gaussian assumptions, it is important to recognize that
real-world datasets may exhibit deviations from this ideal distribution. Ref. [31] provides
illustrative examples of situations where the data behavior deviates from normality. This
reference highlights the importance of considering non-Gaussian behavior in practical
applications, particularly in the context of water analysis and risk assessment. This can be
material for further research for other researchers.
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Figure 13. Training and testing dataset.
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Figure 14. Experimental result of LSTM in predicting turbidity value.

Table 6. LSTM tuning parameters setting.

Parameters Value
This transfers function information from the input layer to the hidden layer Sigmoid
The function responsible for activating the neural network Tanh
The function used for optimizing the neural network Adam
The count of elements in the input layer 1
The number of neurons in the hidden layer 64
The count of elements in the output layer 1
The size of each batch used for training 32
The time step used in the neural network model 60

The rate at which the neural network learns and adjusts its weights 0.001
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Table 7. LSTM prediction statistic results.

Statistic Value
Mean Squared Error (MSE) 0.0012256
Root Mean Squared Error (RMSE) 0.0350080

5. Conclusions

In this study, a novel dataset has been successfully gathered, comprising observations
from six strategically positioned stations along the Chao Phraya River in Thailand. To
obtain a comprehensive understanding of the river’s water quality conditions, ten key
parameters were recorded using sensors. These parameters include Turbidity, Optical
Dissolved Oxygen, Dissolved Oxygen Saturation, Spatial Conductivity, pH level, Total
Dissolved Solids, Salinity, Temperature, Chlorophyll, and Depth. Water clarity is enhanced
when turbidity (NTU) levels are lower, and higher optical dissolved oxygen (HDO) levels
are preferable. Lower conductivity (SPCOND) values indicate reduced saltiness and
maintaining a pH range between 6.5 and 8.5 is ideal. Moreover, lower total dissolved solids
(TDS) below 1000 are preferable, while salinity reflects the dissolved salt content of water.
Additionally, the temperature typically falls within the range of 43 to 68 degrees Fahrenheit.
Based on the dataset distribution that has been collected, water quality standards were
found to be met in some parameters of the Chao Phraya River, including HDO, pH,
and TDS.

There are also correlations between Spatial Conductivity, TDS, and Salinity param-
eters, and they influence each other. Similarly, the relationship between HDO and HDO
Saturation values indicates that these parameters are also influencing each other. For a
comprehensive understanding, further exploration of these correlations is recommended.
After the data collection phase, data preprocessing and evaluation has been performed on
the dataset. Based on the parameters observed in the proposed dataset, it can be seen that
the quality of water along the Chao Phraya River is good between August and Novem-
ber, likely due to the rainy season in Thailand. During the evaluation process, a deep
learning LSTM model was employed, which exhibited suboptimal accuracy in predicting
water quality. However, this dataset holds immense potential as a valuable resource for
future research endeavors focused on monitoring water quality and establishing early
warning systems for pollution-related disasters in Thailand. The insights from this study
provide a foundation for advancing our understanding and management of water quality
in the region.
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