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Abstract: Conservation management heavily relies on accurate species distribution data. However,
distributional information for most species is limited to distributional range maps, which could not
have enough resolution to take conservation action and know current distribution status. In many
cases, distribution maps are difficult to access in proper data formats for analysis and conservation
planning of species. In this study, we addressed this issue by developing Species Distribution Models
(SDMs) that integrate species presence data from various citizen science initiatives. This allowed us
to systematically construct current distribution maps for 1091 bird species across India. To create
these SDMs, we used MaxEnt 3.4.4 (Maximum Entropy) as the base for species distribution modelling
and combined it with multiple citizen science datasets containing information on species occurrence
and 29 environmental variables. Using this method, we were able to estimate species distribution
maps at both a national scale and a high spatial resolution of 1 km2. Thus, the results of our study
provide species current species distribution maps for 968 bird species found in India. These maps
significantly improve our knowledge of the geographic distribution of about 75% of India’s bird
species and are essential for addressing spatial knowledge gaps for conservation issues. Additionally,
by superimposing the distribution maps of different species, we can locate hotspots for bird diversity
and align conservation action.

Dataset: https://zenodo.org/record/8221113

Dataset License: CC BY-NC-SA.

Keywords: range maps; maxent; birds of India; species distribution modelling

1. Summary

Distributional information is crucial for conservation planning of species. However,
because of the vast distributional range of species and the consequences of habitat loss and
climate change, it is exceedingly difficult to monitor changes in the range of most species
and plan conservation measures.

For many species, expert range maps created using expert knowledge and secondary
literature or as part of threat assessments may effectively identify their coarse ranges. But
at smaller geographical resolutions, such as below 100 km, their false presence rates are
exorbitantly high and significantly overstate actual distribution [1–3]. Also, most species
range maps often exaggerate the real distribution of a species by including regions of
appropriate habitat [2–4]. Past studies have revealed that the range maps for the species
can be overestimates of their distribution ranges, hence further underlining the need
for more accurate species distribution range maps required at a higher resolution for
conservation planning [2–6].

Species presence-only data records from museum samples and records of citizen
science data [7,8], are fine-scale information of species distribution also serve as the basis
for a various of spatial analyses. The most important applications of such data records is in
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correlative species distribution models (SDMs) [9–12]. In such models the presence records
have been extensively used to quantify species-habitat or environment relationships to
identify the appropriate species niche, and predict distributions [13–17]. In view of this
SDMs tools are significantly used to decrease the uncertainty in distribution projections
of species. However these data sets are often susceptible towards sampling bias [18–21].
To Improve the overall accuracy of SDMs, it requires proper handling of presence records
or data of species to assess the impacts of spatial sampling biases and reduction using
procedure i.e., deployed data cleaning and thinning techniques [20,22–26].

Species distribution models have become one of the most common ways to infer distri-
butions from presence-only data provided by citizen science initiatives. Numerous studies
have used SDMs to estimate species ranges and inhabited areas for IUCN Red List evalua-
tions [4,17,27–31]. Several countries have published national-level biodiversity assessments
using SDMs [32–39] with only a small number of species or groups in India have their
distribution evaluated for various applications; including; for example for birds [4,40–52],
for plants [53–64], for mammals [65–71], for invasive and pest species [72–77].

In this study, we aimed to use citizen science occurrence data of bird species re-
ported in India to construct distribution range maps at the national level fine scale using
MaxEnt-based species distribution modelling. These range maps are converted into binary
presence-absence raster maps for broader use. The available data give information on the
possible geographical distribution of birds in India. Different stakeholders, such as policy-
makers, academics, international and local non-government organizations, government
organizations, and birder groups interested in preserving, conserving, and studying Indian
birds, will find this dataset valuable. Inadequate awareness of the regional distribution of
avian biodiversity impedes decision-making for bird conservation in India, which is one of
the goals of making this data available. Authors have used this dataset to assess climate
change impacts on Indian birds [78].

2. Data Description

This dataset aims to offer an easy-to-use resource that will allow non-specialists from
various user groups to get fast insights into the current distribution of Indian bird species,
hence contributing to the enhancement of usability. As a result, the dataset is provided
in the ubiquitous Geo tiff raster geodata format to give information in a single file and
facilitate simple use with all available GIS software.

As an example, we present the distribution map of four birds species: (a) Rufous-faced
warbler (Abroscopus albogularis, (Moore, 1854)), (b) Indian courser (Cursorius coromandelicus,
(Gmelin, JF, 1789)), (c) Red-necked falcon (Falco chicquera, Daudin, 1800) and (d) Spot-bellied
eagle-owl (Bubu nipalensis, (Hodgson, 1836)) in Figure 1. These datasets contain the spatial
distribution data for 968 birds along with the metadata. Details like species, sample size,
MaxEnt Model validation results, etc., are included in the metadata table (Supplementary
File S1). The dataset contains range maps in Geo Tiff raster format as presence absence
maps covering the geographic area of India. Each raster map is approximately 1 km in
resolution and in WGS 1984 datum.
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Figure 1. Potential distribution range map of (a) Rufous-faced warbler (Abroscopus albogularis, 
(Moore, 1854)), (b) Indian courser (Cursorius coromandelicus, (Gmelin, JF, 1789)), (c) Red-necked fal-
con (Falco chicquera, Daudin, 1800) and (d) spot-bellied eagle-owl (Bubu nipalensis, (Hodgson, 1836)). 

3. Methods 
3.1. Species Presence Data  

We have utilized online, open-access citizen science databases (Global Biodiversity 
Information Facility GBIF; https://www.gbif.org/(accessed on 25 September 2021) ][79] 
and eBird https://ebird.org (accessed on 25 December 2021) [8]. These databases have pres-
ence-only records of bird species occurring in India compiled by citizens during bird 
watching. This comprises ~28.4 million record locations of 1344 bird species in India across 
the Indian Sub-continent. We used only data from 1950 onwards to match the temporal 
duration of climatic data [80,81]. We also removed inaccurate species presence records 
using comprehensive range maps of species compiled by Birdlife International and Hand-
book of the Birds of the World [82], while keeping genuine species records through expert 
evaluation. To decrease the risk of errors in species identification and location, we used 
the research-grade presence-only occurrence data of each species using citizen science 
platforms like eBird and iNaturalist, where each record is reviewed by an experienced 
reviewer [83–85].  

Figure 1. Potential distribution range map of (a) Rufous-faced warbler (Abroscopus albogularis, (Moore,
1854)), (b) Indian courser (Cursorius coromandelicus, (Gmelin, JF, 1789)), (c) Red-necked falcon (Falco
chicquera, Daudin, 1800) and (d) spot-bellied eagle-owl (Bubu nipalensis, (Hodgson, 1836)).

3. Methods
3.1. Species Presence Data

We have utilized online, open-access citizen science databases (Global Biodiversity
Information Facility GBIF; https://www.gbif.org/ (accessed on 25 September 2021)) [79]
and eBird https://ebird.org (accessed on 25 December 2021) [8]. These databases have
presence-only records of bird species occurring in India compiled by citizens during bird
watching. This comprises ~28.4 million record locations of 1344 bird species in India
across the Indian Sub-continent. We used only data from 1950 onwards to match the
temporal duration of climatic data [80,81]. We also removed inaccurate species presence
records using comprehensive range maps of species compiled by Birdlife International and
Handbook of the Birds of the World [82], while keeping genuine species records through
expert evaluation. To decrease the risk of errors in species identification and location, we
used the research-grade presence-only occurrence data of each species using citizen science
platforms like eBird and iNaturalist, where each record is reviewed by an experienced
reviewer [83–85].

Citizen science data suffers from sampling biases [85,86]. We removed all the du-
plicates and low precision coordinates, and kept only unique records occurring within a
1 × 1 km2 cell to fit into the similar spatial resolution of the climatic data. We further used

https://www.gbif.org/
https://ebird.org


Data 2023, 8, 144 4 of 11

rarefication on occurrence using “SpThin” [87,88] package in R 3.4.0 [89]. We also elimi-
nated species with fewer than thirty independent localities [90,91]. Furthermore, species
with smaller sampling areas (i.e., n < 10,000 km2) were removed from further analysis [78].
This includes species with small range areas, e.g., small range, pelagic, coastal, or island
species. We have also removed species with less than 30 presence records for further
modelling.

The Sampling errors or biases in the geographic positioning co-ordinates and incom-
plete information about the species in biodiversity studies may have serious concerns that
must be addressed [22,92–94]. Thus, we used the “sampbias” package [95] in R [89] to
measure the impact of sample error or biases via procedure of data cleaning i.e., removing
duplicate, incorrect or incomplete data. The findings of our data cleaning procedure sug-
gested that our processed datasets have less sampling errors or bias than the initial datasets.
Figure S1 in Supplementary File S2 has further information on bias correction.

After removing the biases and inconsistencies in species presence records, the cor-
rected final presence occurrence database consists of ~1.9 million independent records of
1091 terrestrial avian species out of 1344 species. We used ~1.9 million location to develop
models for of 1091 species [78,80,81].

3.2. Climate Data

The generation of SDMs is contingent on a variety of environmental conditions as-
sociated with the places where certain bird species exist. We compiled 29 environmental
variables (EVs), which include 19 bioclimatic variables that summarized temperature and
precipitation downloaded from WorldClim 1.4 layers [96], five variables related to topog-
raphy [96], and five variables from ENVIREM [http://envirem.github.io/ accessed on 9
September 2023] [97]. The Supplementary Files S2 Table S1 contain a list of the total 29 EVs
used in SDMs. The topographic and ENVIREM variables are the are proximally correlated
with species’ physiological requirements (e.g., microclimate, edaphic conditions) [66,98–
102]. Because MaxEnt’s built-in variable selection is dependable due to L1-regularization
and is insensitive to correlation among variables, we preserved all 29 variables for SDM.
If additional variable selection methods are imposed before MaxEnt is run for all species
under consideration, the model’s accuracy could be compromised [103,104].

3.3. Species Distribution Modelling

In this study, we used MaxEnt 3.4.4 platform to predict the species distribution [105].
Using presence-only data, it uses a machine learning approach to produce reliable re-
sults [106]. To determine the model calibration region, we applied the minimal convex
polygon (MCP) method to species occurrence data with a buffer of two-degree [106,107].

By considering locations of occurrence of all bird species across the Indian sub-
continent, we used the target-group background selection strategy [22,24,108] to diminish
the impact of spatial sampling bias [78,109–111]. The background data define the study’s en-
vironmental dimensions, while the presence data indicate conditions likely to be associated
with species occurrence.

We used “ENMeval” [112,113] package in R [89] to fine-tuned MaxEnt models, which
helps in choosing model parameters exhibiting the greatest performance.

By using the checkerboard2 approach to segment the occurrence data, we were able
to do 4-fold cross-validations. We used ENMeval to fine-tune 48 distinct species models
with RM (Regularization Multiplier) values ranging from 0.5 to 4.0 (in the increments of
0.5) and six distinct Feature Classes (FCs). The Feature Classes (FCs) combinations were L,
LQ, H, LQH, LQHP and LQHPT, where L = linear, Q = quadratic, H = hinge, P = product,
and T = threshold).

The test omission rate of the top model we deployed was the lowest, while the
validation area under the AUC curve (receiver operating characteristic curve was the
largest. [16,88]. In Supplementary File S1, details of the ideal model tuning parameters are

http://envirem.github.io/
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given. We opt for the MaxEnt’s Cloglog output format because it reduces the impacts of
sample selection bias, which can enhance model performance [105].

To create ‘present/absence’ binary maps from Cloglog raster outputs, we used the
10th percentile training presence threshold [88,91,114,115]. The 10th percentile training
presence threshold improves species distributions and decreases overpredictions in final
binary maps [115]. All the data needed for species distribution models is in Supplementary
File S1.

To measure the effectiveness of species distribution models (SDMs), we evaluated
the final models using multiple threshold-dependent and independent criteria [116–119].
We derived model training and validation AUC (AUCTRAIN, AUCVAL) and estimated the
difference between the two (AUCDIFF). This difference is expected to be large in overfitted
models [119]. We also calculated ORMTP (‘Minimum Training Presence’ omission rate) and
OR10 (training omission rate of 10%) to quantify model overfitting [88,116,117,120]. Using
the R package “kuenm” [121], the AUC ratio (pAUC Ratio) was calculated based on the
partial ROC performance metric. We also calculated the Continuous Boyce Index (CBIVAL,
CBITRAIN) for training and validation data. This index is a measure of the variation of
the model predictions from the randomly distributed presence observations across the
prediction gradients [122].

We retained data of 968 species out of total 1149 species having AUCTRAIN and
CBITRAIN greater than 0.7, indicating appropriate model performance and better model
abilities to discriminate between conditions of occurrence area and those of background
area [116,123].

These resulting models of 968 bird species demonstrated mean AUCTRAIN = 0.86 and
AUCVAL = 0.85. We also estimated the mean pAUC Ratio = 1.95, indicating that models
performed better than the random models. We obtained mean CBIVAL = 0.89 and mean
CBITRAIN = 0.97, indicating excellent model performance.

Information used for model validation and evaluation for species distribution models
is provided in Supplementary File S1.

4. Potential Constraints and Future Directions

Our method is based on universal premises seen in all multi-species studies that use
species distribution models. These models initially assume that species are in balance with
the environment and that all relevant climatic parameters that may have an impact on
species existence are taken into account in order to compute climatic tolerance from the
observed distribution of the species. The primary disadvantages of this approach include
the probable removal of crucial climatic variables from models and the potential impact of
several other factors, such as habitat loss, hunting, and exploitation, on the existing and
future distribution of bird species. Because of this, species distribution model assumptions
are frequently broken [124].

The assumption that different species adapt to climate change individually is another
weakness of species distribution models, which ignore interspecies interactions because
species interactions both within and across trophic levels may significantly affect whether
a particular taxon can persist in its current range or colonize new areas [125,126].

All species distribution models incorporate some degree of uncertainty. We attempted
to lessen the sampling bias by target background selection strategy combined with rar-
efication of presence-only data and exploited ~70 years of presence only data to decrease
temporal sampling disparities. This work might be regarded as among the earliest efforts in
India to undertake a comprehensive assessment of distributions of birds based on presence
only data. The increasing popularity of bird watching via citizen science projects and
the enhancement of data quality and quantity provide unparalleled availability of bird
distribution data for various purposes. We hope that future studies will regularly update
analysis as done in this study using more data as they become available that will help meet
diverse difficulties encountered in biodiversity protection.
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This dataset is available at a coarse resolution of 1 km2. Hence, it will be more suitable
for large-scale or national level analysis like conservation area prioritization and hotspot
mapping. This dataset might not be ideal for local level analysis or planning purposes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/data8090144/s1, Supplementary File S1, Table S1: All species distribution
models specifics, including data, model assessments, and parameters used for validation.; Supple-
mentary File S2, Table S1: A complete list of environmental variables used in MaxEnt modelling;
Supplementary File S2, Figure S1: Results of bias correction for presence data used in our study using
“sampbias” packages. References [96,97,127] are cited in the supplementary file.
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