
Citation: Tolas, R.; Portase, R.;

Potolea, R. GeMSyD: Generic

Framework for Synthetic Data

Generation. Data 2024, 9, 14.

https://doi.org/10.3390/

data9010014

Received: 30 November 2023

Revised: 1 January 2024

Accepted: 9 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Article

GeMSyD: Generic Framework for Synthetic Data Generation
Ramona Tolas * , Raluca Portase and Rodica Potolea

Computer Science Department, Technical University of Cluj Napoca, 400114 Cluj-Napoca, Romania
* Correspondence: ramona.tolas@cs.utcluj.ro

Abstract: In the era of data-driven technologies, the need for diverse and high-quality datasets
for training and testing machine learning models has become increasingly critical. In this article,
we present a versatile methodology, the Generic Methodology for Constructing Synthetic Data
Generation (GeMSyD), which addresses the challenge of synthetic data creation in the context of
smart devices. GeMSyD provides a framework that enables the generation of synthetic datasets,
aligning them closely with real-world data. To demonstrate the utility of GeMSyD, we instantiate
the methodology by constructing a synthetic data generation framework tailored to the domain
of event-based data modeling, specifically focusing on user interactions with smart devices. Our
framework leverages GeMSyD to create synthetic datasets that faithfully emulate the dynamics of
human–device interactions, including the temporal dependencies. Furthermore, we showcase how
the synthetic data generated using our framework can serve as a valuable resource for machine
learning practitioners. By employing these synthetic datasets, we perform a series of experiments to
evaluate the performance of a neural-network-based prediction model in the domain of smart device
interaction. Our results underscore the potential of synthetic data in facilitating model development
and benchmarking.

Keywords: synthetic data generation framework; smart home-appliance dataset; user interaction
data; event-based data processing; open-source framework; usage forecasting

1. Introduction

Recent years are considered to be one of the periods of the greatest growth of tech-
nology. This expansion of technology, together with the invention of smart devices, has
resulted in a constantly growing trend of creation and consumption of data. The reduced
costs of data storage are also a powerful enabler towards the storing, processing, and
extracting of relevant knowledge from data.

Smart devices are equipped with sensors that measure different characteristics of both
the appliance and the surroundings where the appliance is deployed. Events generated
from the interaction of the user with the appliance are also captured and recorded. Most of
the time, these measurements are transmitted via the Internet in data lakes owned by the
smart appliance producers. These data lakes contain large amounts of such measurements
and events.

In this context, a research goal of processing this type of data and extracting useful
information from it has been defined in both the academic and industrial worlds. The
knowledge inference process entails many other pragmatic sub-tasks, such as predictive
maintenance and fault detection [1,2], and the identification of usage patterns and user
profiling [3,4]. The inference of usage patterns, together with user profiling, represent
powerful methods of implementing data-driven decision-making. In a data-driven decision
approach, facts and statistics are used to guide the direction of future strategies, which
brings benefits such as product innovation, customer retention, and informed decisions.

Nowadays, home appliances are also smart devices that produce data. The abundance
of data originating from these appliances underscores the crucial need for sophisticated
software tools. Developing models and learning techniques capable of extracting pertinent

Data 2024, 9, 14. https://doi.org/10.3390/data9010014 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data9010014
https://doi.org/10.3390/data9010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-6236-1114
https://orcid.org/0000-0002-8985-4728
https://orcid.org/0000-0002-7051-3691
https://doi.org/10.3390/data9010014
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data9010014?type=check_update&version=2

Data 2024, 9, 14 2 of 28

information from these data becomes imperative, emphasizing the invaluable utility of
such software. However, research and experiments on such data can be restricted by the
confidentiality of the data. Data generated by smart appliances is owned and stored by the
appliance producers and accessing this data can be hard (even if the purpose is research-
oriented). Confidentiality contracts and restrictions are imposed by data owners in such
cases, which can take a long time to obtain. Regulations about data transfer and GDPR
compliance also contribute to the restricted access of researchers to such types of data.

Having a mechanism for generating synthetic data that has the same characteristics as
those of real-world data represents an enabler for research in the domain. Synthetic data
can be generated with the same complexities as real-world data without exposing sensitive
information and without compromising the proprietary information of the data owner or
appliance user.

The availability of synthetic data also encourages the rapid development of proof-of-
concept learning models and is a good mechanism for benchmarking different learning
approaches (many competitions have synthetic data as benchmarking mechanisms). In this
way, the information extraction systems can be developed and tested prior to obtaining
the real-world data, which, most of the time, is in the form of Big Data and comes with its
own complexities.

The problem of data access is seen in many fields. In [5], it is shown how the lack
of data can lead to delays and cancellations of research projects in the context of using
artificial intelligence in drug development, an important topic in the healthcare system.

A framework for generating synthetic data needs to be flexible in what concerns the
volume of data that can be generated. The framework should be capable of producing large
volumes of data for cases when the focus of the research is tackling the complexity of the
data, reflecting the volume. On the other hand, the same framework should be capable of
generating small snapshots of data for cases when the focus is on building processing proto-
types. In this setup, stages such as preprocessing the real-world data can be postponed until
it is proven with a prototype that a certain strategy might work. Skipping the preprocessing
step is a huge win because real-world data can come with numerous complexities that need
to be tackled. For example in [6], we propose preprocessing strategies for real-world data
obtained from home appliances, and it is shown how complex this step can be, including
reconstructing the running cycles, structuring the data, and syntactic cleaning.

Another important aspect of synthetic data is its availability. Making the generating
system or the synthetic data public is a step forward in the direction of offering the same
opportunities for the researchers. In a context where data is expensive, researchers and
institutions with limited funds can be at a disadvantage. Even if the primary goal of using
synthetic data is to avoid the accidental disclosure of information, this secondary aspect
represents an important benefit.

This work represents a pioneering contribution to the research domain of synthetic
data generation, introducing a general methodology for the creation of synthetic data. We
not only offer a versatile framework but also alleviate the burden on users by providing a
readily deployable solution, obviating the need for them to redo the process. Furthermore,
this framework is open-source, fostering collaboration and adaptation to specific research
needs. In addition to the methodology itself, we also present a tangible demonstration of its
practical utility. Specifically, we showcase an exemplary application of synthetic data in a
deep-learning-based forecasting task. This example serves as a testament to the real-world
effectiveness and relevance of the methodology, providing a valuable benchmark for its
potential adoption in various research contexts. As a summary of the contributions, we
define three primary objectives that govern the focus of this paper:

• Introduction of a general methodology for the creation of synthetic data—GeMSyD
• Instantion of GeMSy—generating synthetic data in the context of user interaction with

smart devices
• Showcasing of the research tasks applied on the generated data

Data 2024, 9, 14 3 of 28

The rest of the paper is organized as follows: First, we give an overview of the
existing research in the domain. Section 3 addresses the first main objective, where we
define GemSyD. In Section 4, we present the instantiation of GemSyD by constructing
a framework for generating event-based synthetic data. We tackle the last objective in
Section 5, where an application scenario with the sythetic data generated as a result of the
second objective is utilized in a usage forecasting scenario. The last section is reserved for
the conclusions and discussion of future research directions.

2. Literature Review

In this section, we provide details of a literature review to produce a comprehensive
overview of the existing research in the field. Topics such as the general characteristics of
synthetic data, the domains where it is used, and the existing methodologies are reviewed.

2.1. Unraveling the Concept of Synthetic Data

In [7], a definition of synthetic data is given, that is, data that is not real, but has the
same statistical properties as the real-world data. The authors claim that analysis results
on real-world data and on synthetic data should give the same results. The process of
generating synthetic data is referred to by the authors as synthesis. The authors identify
multiple synthesis models:

• synthesis from real-world data
• synthesis without real-world data: using the analysis background knowledge or

existing models

The authors of the study claim that generating synthetic data from real non-public
datasets can have high utility. This utility is formally described by measuring the extent to
which a synthetic dataset accurately represents the real-world data. A common benchmark
base for development models, an efficient way of accessing the data, and a means of
enabling better data analytics are some of the advantages of having a mechanism for
obtaining synthetic data, as identified by the authors of [7]. Another reason for using
synthetic data is the fact that the development phase does not need to concentrate any
efforts on making the data non-personal if the results of the studies are made public. Real-
world data can contain personal information and publishing such data can only be carried
out with a pre-phase of de-identification.

Synthetic data have found application in diverse fields of research, demonstrating
their versatility and value in generating insights and solutions across a wide spectrum
of disciplines.

2.2. Multidisciplinary Research Based on Synthetic Data

In [8], a complex review of the domains where synthetic data is used for accelerating
the development of learning models is provided. The authors identify a broad list of
scientific fields where simulated data is used, including the economy, house occupancy in
the context of urban planning, transportation, fraud detection systems, network traffic, and
natural behaviors, such as weather, precipitation, and wind. The authors also identify, in
the field of data mining, some use-cases of synthetic data, including text-mining, feature
selection, and performance testing. The importance of the availability of synthetic data in
competitions and workshops where the data is used for benchmarking is also highlighted.
We identified research based on synthetic data in various other fields, such as healthcare [9],
fingerprint-based localization [10], and weather classification [11].

In [12], the authors investigated the effect of multiple data generation systems with
a focus on the quality of the generated data. The authors analyzed several popular and
well-known synthetic data generators, such as Synthetic Data Vault [13] and Data Synthe-
sizer [14].

The computer science field is the greatest consumer of synthetic data, as claimed
by the authors of [15]. This explains the usage of multiple generative models, such as
generative adversarial networks (GANs) [16], for modeling synthetic data generation

Data 2024, 9, 14 4 of 28

frameworks. Although GANs have proven very effective, they can be extremely difficult to
train, a drawback highlighted in [15]. The authors also emphasized the necessity of em-
ploying specialized architectures for simulating tabular data. Studies have also considered
other standard algorithms for generating synthetic data, such as different variations of the
SMOTE [17] algorithm or ADASYN [18]. These are data augmenting algorithms, which
means that a base of data needs to exist and the methods are constructed on top of this
existing base of data. Other methods identified in the literature for generating data in-
clude model-based methods, such as the varying index coefficient autoregression (VICAR)
method used by the authors of [19] for representing non-stationary baseline vibrations
from a planetary gearbox.

2.3. Generating Synthetic Data: Methodological Approaches

In [15], the authors identify the lack of high-quality data and the need for privacy
as the major reasons for investing efforts in the development of reliable synthetic data
generation models. The authors stress the fact that a good synthetic dataset mimics the un-
derlying data distribution of real data. There are multiple domains where data accessibility
is hard to obtain and where generating synthetic data can help researchers to construct
learning models, which can then be applied in real-world data setups. One such domain is
IoT. In [20], the authors define a framework for generating synthetic data that follows the
same characteristics as the real-world data in the context of a hierarchical structure using
XML. The framework consists of extracting structure and value from the real-world data
followed by synthetic data generation using the extracted properties. For real-world data
characterization, multiple steps are cascaded to extract the data patterns from complex
XML documents. These steps represent the structure and value extractors. The structure ex-
tractors explore the real-world dataset in order to establish the distribution of the XML tags.
The value extractor is focused on the computation of statistical distributions of the different
values of the measurements. After aggregating the values of the data from the hierarchical
structure, fitting methods are used in order to decide what distribution function models
the values of a sensor measurement. Multiple distributions are considered, including beta,
Cauchy, chi-squared, exponential, F, gamma, geometric, log-normal, negative binomial,
normal, Poisson, t, and Weibull.

2.4. Synthetic Data in Household Data Processing

In this section, we explore the state of the art in the consideration of processing
household data and unlocking hidden insights from it. In recent times, the analysis
of household data has gained immense popularity, offering a wealth of possibilities in
fields such as smart homes, energy conservation, and lifestyle enhancement. We will
showcase diverse examples of household data processing and illustrate how synthetic data,
in particular, is shaping the landscape by enabling the development of highly efficient
learning models.

The need for software solutions for insightful analysis is recognized in [21] where the
authors tackle the topic of Big Data generated by the deployment of smart devices. The
authors claim that such data is an important source of exploration, being a popular research
topic both in academia and industry, for specific tasks such as load forecasting, demand
response, and load disaggregation (an important application of smart grids involving
the identification of what appliances are used in a home and their individual power
consumption by considering as input only the aggregated power consumption of the entire
smart home). The work focus is the use of smart meters for electricity consumption. The
authors propose a method for detecting and estimating individual home appliance loads
from aggregated power signals collected by smart meters. The usage of aggregated data
is considered to be close to reality because, in many realistic situations, the measurement
of power consumption for a home is obtained only in aggregate. The efficiency of the
proposed methods is demonstrated with experiments on synthetic and real generated data
using a hidden Markov model to model the electricity consumption. The authors place

Data 2024, 9, 14 5 of 28

this study in a practical and usable context by giving an example of the practical usage
of the results. The users of such an analysis tool can be notified by the analysis system to
replace their refrigerator with a newer version which would be capable of using the energy
more smartly, in order to save money. While we recognize the contribution of this work to
the scientific community, we believe that serious improvements can be achieved by also
using data from individual appliances in combination with the electricity consumption
aggregate data. Having synthetic data in this case would be an enabler for comparing
different models and obtaining quick feedback.

In [22,23], the authors tackle the topic of usage inference from event-based data,
such as data produced by a smart refrigerator (the considered events are generated by
the interaction of the user with the smart device, closing and opening the door being an
example of interaction events). The authors use various machine learning techniques,
such as unsupervised clustering (DBScan [24]), fast Fourier transform [25], and wavelets
for feature extraction from time series. All these methods are used in combination with
synthetic data. This offers the benefit of programmatically labeling the data for evaluation
purposes. However, the methodology for data generation is only briefly described and
the data are not publicly accessible. As a consequence, other studies need to repeat the
data generation process in order to provide a comparison of results. Such a methodology
would also be inaccurate, as the results would be reported on different datasets. Having a
framework for generating such data would greatly benefit this kind of research setup.

2.5. Conceptual Foundations Explored in the Literature

In this section, we explore the foundational theoretical concepts that emerged from our
literature review, providing the reader with a foundation for understanding the theoretical
issues considered in the remainder of this work.

2.5.1. Finding the Probability Distribution for a Signal

The problem of finding the probability distribution for a signal has been tackled
thoroughly in the literature [26,27]. Being a topic of interest, multiple frameworks have
been developed to handle this problem. Some of the most popular include the fitter [28]
and Scipy fitter [29] approaches.

These frameworks consider multiple probability distribution functions and the dis-
tribution that fits the best (the parameters are varied) is chosen. In order to optimize the
results, the user needs to know what the available PDFs (probability density functions)
are. The most popular probability distribution density functions identified in the literature
include the normal distribution (identified in the rest of this document as norm), the expo-
nential distribution (identified in the rest of this document as expon), the exponentiated
Weibull distribution (identified in the rest of this document as exponweib), and the gamma
distribution (identified in the rest of this document as gamma).

The PDF of the normal distribution [30] is given by:

f (x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

where:

µ is the mean (average)

σ is the standard deviation

The PDF of the exponential distribution [31] is defined as:

f (x|λ) = λe−λx,

where:

λ is the rate parameter

Data 2024, 9, 14 6 of 28

The PDF of the Weibull distribution [32] is given by:

f (x|c, λ) =
c
λ

(x
λ

)c−1
e−(x/λ)c

,

where:

c is the shape parameter

λ is the scale parameter

The PDF of the gamma distribution [33] is defined as:

f (x|a, λ) =
xa−1e−x/λ

λaΓ(a)
,

where:

a is the shape parameter

λ is the scale parameter

Γ(a) is the gamma function

2.5.2. Evaluating Time-Series Forecasting

In a forecasting problem, the ultimate goal is to make accurate predictions of future
events based on historical data. In the context of forecasting on time series data, R-squared
(R2) can be used as a measure of the accuracy of the model’s predictions. The R2 value
is a statistical measure that indicates the proportion of the variance in the dependent
variable that can be explained by the independent variable(s). If the dependent variable is
considered the variable that the forecasting model is trying to predict and the independent
variable is the ground truth signal, this measure offers an overview of how correlated the
two signals are.

Equations (1) and (2) show how R2 is computed. In Equation (2), the mean value
is represented which is used in Equation (1) for computing the total sum of squares
(proportional to the variance of the data). In Equation (1), ŷ represents the forecasted value.

R2 = 1 − ∑n
i=1 (yi − ŷ)2

∑n
i=1 (yi − y)2 (1)

y =
1
n

n

∑
i=1

yi (2)

The root mean square deviation, also known as the root mean square error (RMSE),
is also a popular and widely used evaluation metric in the context of forecasting time
series [34–36]. The popularity of RMSE is based on the fact that it is easy to understand. It
is computed by taking the square root of the average of the squared differences between
the predicted and the actual values, as shown in Equation (3).

RMSE =

√
∑n

i=1 (y − ŷ)2

n
(3)

3. GeMSyD: Generic Methodology for Constructing a Synthetic Data
Generation Framework

This section is focused on describing the methodology for constructing a synthetic
data generation framework. Its applicability is general and it can be applied to various
needs. In the literature, we identified two main directions for obtaining synthetic data:
leveraging existing real-world data or generating data based on a formal description or
a mathematical model. In this work we explore the first approach, starting from existing
real-world data.

Data 2024, 9, 14 7 of 28

The framework consists of several layers of processing. A high-level visual grouping
of these steps and their dependencies is presented in Figure 1. The methodology consists
of different processing steps (represented with yellow in the schema) applied on inputs
such as the real-world data, the results of other processing steps, or user configurations.
The green-colored schema boxes represent the results of a processing step defined by the
methodology and the blue-colored boxes represent the input for the overall methodology.

Figure 1. High-level view of synthetic data generation framework layers.

The first processing layer is represented by the extraction of real-world data charac-
teristics. As a result, a set of real-world data descriptors is obtained. This processing step
contains a combination of different methods for constructing a model of the real-world
data from which the synthetic data can be obtained. The use of statistical methods such
as the probability distribution represent a valid mechanism for obtaining a real-world
data descriptor. Data distribution analysis, volume analysis, type of noise identification,
and syntactical analysis of real-world data are other methods of obtaining real-world data
descriptors. Choosing the methods for generating the descriptors is directly linked with the
nature of the data and the characteristics of the data that are important to be considered.

The real-world data descriptors, together with the user configuration, represent the
input for the data generation layer. The user configuration consists of options such as how
the data is stored (the system can generate a file, push data into the cloud, or store data in a
local database), the period of time for which the data is generated, and the configured level
of noise.

The remainder of this section details the methods and mechanisms for obtaining the
real-world data descriptors.

3.1. Syntactical Form Descriptor: Establishing a Syntactical Representation of the Data

Deciding the syntactical form of the data generated is an important step because it
impacts the usability of the data—the generated data should be in a format easy to process
and it should convey existing syntactical standards. This can be obtained by applying
queries to the real-world data and applying different visualization techniques (visualization
type is dependent on the current research context) on the real-world data.

3.2. PDF Real-World Data Descriptor: Fitting a Signal to a Probability Density Function

The primary goal of generating synthetic data is to create data that closely resemble
real-world data. If the distribution of synthetic data does not match the distribution of
real-world data, the synthetic data may not accurately represent the underlying patterns,

Data 2024, 9, 14 8 of 28

characteristics, and behaviors of the real-world system or dataset. This can lead to mislead-
ing results and conclusions when using synthetic data for analysis, modeling, or testing.
More than that, many machine learning and statistical models assume that the data is
drawn from a specific distribution (e.g., a Gaussian distribution). If the synthetic data
do not follow the same distribution as the real-world data, it may lead to poor model
performance and incorrect parameter estimates.

In Figure 2, we present the processing steps for extracting this important real-world
data descriptor. The processing pipeline includes, as a first step, the identification of the
signal of interest from the entire real-world dataset. Depending on the nature of the real-
world data, some processing steps might be required to be applied on the signal of interest
before applying the algorithm for fitting the signal to a probability distribution.

The real-world data descriptor consists of fitting the signal of interest from the real-
world data to one of the available PDFs. This real-world data descriptor should be generated
for all the signals that will compose the synthetic data. The real-world data descriptor will
be used in the data generation processing phase from the synthetic data generation process
presented in Figure 1 when generating the values for that signal of the synthetic data.

Figure 2. Processing steps for extracting the PDF real-world data descriptor.

It is important to address the fact that the real-world signal might not follow any of the
available PDFs known by the PDF discovery framework that is chosen for the PDF search
step. In this case, depending on the implementation of the PDF discovery framework, the
construction of the PDF real-world data descriptor can fail, or a PDF that most resembles
the signal can be selected.

3.3. High-Level Patterns Descriptor: Extracting Relevant Patterns

Real-world data often contain complex patterns, relationships, and structures that
are challenging to replicate accurately without understanding them. By analyzing the
real-world data, these intricacies can be captured and synthetic data can be created that
closely resemble real-world scenarios, making the analysis more realistic. Real-world data
patterns help in creating synthetic data that generalize well to different situations. When
patterns from real-world data are accurately captured, synthetic data can simulate various
scenarios and unforeseen variations, improving the robustness of the models and systems
trained on it.

In Figure 3, we present the high-level processing steps for extracting the patterns
available in real-world data. The steps are generic to accommodate different characteristics
of the data.

Data 2024, 9, 14 9 of 28

Patterns extracted from the real-world data can be generated by one signal or by the
composition of multiple signals. The first step in the proposed pipeline for extracting
patterns is the identification of these signals. Depending on the nature of the signal,
preprocessing steps might be required. On the processed signals, a feature extraction
step is applied. Feature extraction is a topic intensively studied in the literature and
multiple solutions are available, mapped to the characteristics of the real-world data. After
applying different machine learning techniques, such as clustering and XAI (explainable
AI), the patterns are extracted. Clustering is employed in pattern identification by grouping
similar data points together, revealing inherent structures and facilitating the recognition of
patterns within datasets [22]. XAI enhances pattern recognition by providing interpretable
insights into the decision-making process of machine learning models, enabling a clearer
understanding of how patterns are identified and aiding in model transparency [23].

Figure 3. Processing steps for a real-world data descriptor which characterize the patterns available
in the real-world data.

One or more relevant patterns can be extracted, consisting of a set of real-world data
descriptors. Together with the patterns, the characteristics of the patterns are also extracted
in order to offer to the user of the synthetic data generation framework a mechanism for
configuring the patterns in the data. This is used for planting different behaviors in the data.

3.4. Noise Descriptors

Real-world data often contain inherent variability and errors, which are crucial to
capture in the synthetic data to ensure that they accurately reflect the complexity of the
real-world data. In Figure 4 the processing steps are presented for obtaining different
real-world data descriptors that characterize the data from the noise perspective.

If the synthetic dataset is generated from raw and unprocessed data, the missing
values and the proportion of missing values should also be included in the synthetic data.
The importance of this aspect is emphasized in [12,13]. In [14], a missing rate is calculated
for each simulated attribute and the information is included in the synthetic data generation.
The missing rate is computed as the number of entries that do not have a value for a certain

Data 2024, 9, 14 10 of 28

attribute divided by the size of the entire analyzed dataset. The periodicity of the data
transmission model can also be used for detecting missing values, as shown in [37]. Outlier
identification is also an intensively studied topic in the literature [38–41].

Figure 4. Processing steps for a real-world data descriptor which characterize the patterns available
in the real-world data.

All of the above real-world data descriptors, together with other descriptors that
might be needed (depending on the nature of the data that are being simulated), should be
embedded in the last processing phase of the synthetic data generation—the data generator.

4. Instantion of GeMSyD—Event-Based Synthetic Data Generation Framework

This section is focused on exemplifying how the defined general methodology can
be applied in a specific use case: the generation of synthetic household data produced by
the interaction of the user with smart devices. We analyzed real-world data from smart
devices deployed all over the world in real setups and which are used by consumers, and
we used the GeMSyD to produce synthetic data with similar characteristics. The framework
is focused on emulating the interaction of the user with a smart device. This interaction is
emulated by following a category of events existing in the dataset: an event marking the
start of the user–device interaction and an event marking the end of this interaction.

4.1. Algorithms for Generating Real-World Data Descriptors

Several strategies for analyzing the data are used in order to obtain efficient real-world
data descriptors. Given the nature of the simulated data, only the events related to the user
interaction are used.

We applied the methodological approach proposed by GeMSyD for extracting the
real-world data descriptors. Details on how we implemented each processing phase are
given in the following section.

4.1.1. Obtaining the Syntactic Descriptor

Inspection of the real-world data is performed by formalizing a syntactical represen-
tation of the data which is close to the real-world data representation. We formalize the
syntactical form of the data as events of type user–device interaction START and user–device
interaction END, accompanied by the timestamp.

We encode the event of initiating the interaction with 1 and the event of ending the
interaction of the user with the smart appliance with 0.

We define the first real-world data descriptor—a syntactical form of the generated
data. This real-world data descriptor is presented in Table 1.

Data 2024, 9, 14 11 of 28

Table 1. Table representing the syntactic descriptor as part of instantiating the GenSyD methodology.

Feature Feature Type

Timestamp Data time
User–device interaction state Set of values {0, 1}

In Table 2, a series of events that follow the defined real-world data descriptor is
presented. These events do not represent a snapshot of the real-world data (confidentiality
agreements would be broken). They represent a potential scenario of a succession of events
and are presented to offer a clear overview of the data to the reader and to provide a base
for further explanation of the next processing phases applied to the data.

Table 2. Series of user–device interaction events.

Timestamp User–Device Interaction State

2023-01-04 08:04:35 1

2023-01-04 08:05:35 0

2023-01-04 08:15:02 1

2023-01-04 08:15:58 0

2023-01-04 20:11:00 1

2023-01-04 20:11:35 0

4.1.2. PDF Descriptor of the Signal Modeling the User–Device Interaction Duration

One of the features that characterizes the type of data that we want to generate is
the duration of the interaction between the user and the smart device. An analysis of
the real-world dataset is performed in order to extract the real-world data description
corresponding to this dimension of the data. To perform this analysis, the relevant signal
needs to be constructed from the raw data.

Extracting the signal modeling the duration of the user interaction

The first step of this processing phase is the dropping of the duplicates. Two entries
are considered to be duplicates if they have the same values for the timestamp. If two
entries have the same value for the timestamp and different values for the user–device
interaction state, this means that the interaction took less than one second, which is the
current granularity. These types of interactions are analyzed separately from this analysis
because the timestamp is used as an index for the data, so having equal values is an
impediment in using this strategy.

The next step is to find the next event and to record its timestamp. This will construct
data that syntactically look like in Table 3.

In the current analysis, we are only interested in analyzing the duration of one inter-
action of the user with the device. The interaction is delimited by the two events already
presented: the event marking the start of the interaction and the event marking the end of
the interaction. In this context, from the data described in Table 3, we only need to select
the sequences of events going to state 0 from state 1. Once these transitions are selected, we
compute in the column Time in [s] between events the duration of the user–device interaction.
This subset of data is emphasized with the color blue in Table 4.

Data 2024, 9, 14 12 of 28

Table 3. Result of computing the next event and the duration between consecutive events based on
the series of user–device interaction events defined in Table 2.

Timestamp
User–Device Next Event Next Event Time in [s]

Interaction State Timestamp State between Events

2023-01-04 08:04:35 1 2023-01-04 08:05:35 0 60

2023-01-04 08:05:35 0 2023-01-04 08:15:02 1 567

2023-01-04 08:15:02 1 2023-01-04 08:15:58 0 56

2023-01-04 08:15:58 0 2023-01-04 20:11:00 1 42,902

2023-01-04 20:11:00 1 2023-01-04 20:11:35 0 35

2023-01-04 20:11:35 0 - - -

Table 4. Subset of the data presented in Table 3 that is relevant for computing the duration of the
user–device interaction signal.

Timestamp
User–Device Next Event Next Event Time in [s]

Interaction State Timestamp State between Events

2023-01-04 08:04:35 1 2023-01-04 08:05:35 0 60

2023-01-04 08:05:35 0 2023-01-04 08:15:02 1 567

2023-01-04 08:15:02 1 2023-01-04 08:15:58 0 56

2023-01-04 08:15:58 0 2023-01-04 20:11:00 1 42,902

2023-01-04 20:11:00 1 2023-01-04 20:11:35 0 35

2023-01-04 20:11:35 0 - - -

Because we are applying this analysis to real-world data, some outliers might occur.
Outliers represent anomalous observations from the data and, in this case, they can be
generated from the missing signals for ending the user–device interaction, resulting in very
large values for the duration of the interaction. An analysis of the potential outliers was
performed using the boxplot method [42]. The results showed that some outliers existed in
the data. In Figure 5, we can see the result of applying boxplotting on the signal modeling
the user interaction duration for one of the analyzed appliances.

Figure 5. Boxplot for the interaction duration signal for one of the studied appliances.

We detect the outliers and the algorithm of mapping the probability distribution
excluding the outliers from analysis for better results. It is important to mention that, in this
case, the outliers negatively influence the efficiency of finding a PDF as close as possible to
reality. The outliers and the other categories of noise represent a valid descriptor for the
real data and they are included as separate descriptors.

To remove the outliers, several alternatives are described in the literature, including
clustering [39,40], use of the interquartile range, [41] or more advanced methods, like t-
SNE ensemble clustering [38]. For this analysis, an approach similar to the interquartile

Data 2024, 9, 14 13 of 28

range is used with the modification that only the upper bound of the value ranges is
eliminated. All records outside of the 0.99 quantile [43] are removed from this analysis. It
is important to mention that outlier removal is performed at this step in order to obtain
the relevant information for the current descriptor. Analysis of the outliers and inclusion
of this information in the synthetic data with the goal of making the data similar to the
real-world data is performed at the noise descriptor level.

After removing the outliers, the same inspection technique using boxplotting is applied
to the data. In Figure 6, the same signal is plotted as in Figure 5, but after the outlier
elimination phase.

Figure 6. Boxplot for the interaction duration signal for one of the studied appliances after outliers
were removed.

Computing the PDF

As emphasized in previous sections, for obtaining synthetic data that are close to
reality, the signals should be generated by following a probability distribution present in
the real-world data. For this analysis, the fitter [28] method is used because of its usability
and the variety of distributions that can be considered.

In Figure 7, we can observe the summary provided by the fitter package that was used
in order to find the distribution probability that best fits the interaction duration signal for
one of the appliances considered for this analysis.

Figure 7. Summary provided by the fitter package for the fitting of the signal modeling the interaction
duration to one of the probability distributions.

After applying this processing step to multiple appliances, the PDF with the largest
number of occurrences is selected as the final PDF.

4.1.3. PDF Descriptor of the Signal Modeling the Duration between Consecutive Interactions

For this specific issue, a pertinent data attribute is the frequency of the user interactions
with the device and the duration between consecutive interactions. This can be obtained by
computing the next interaction based on the events of the type start/end of the user–device

Data 2024, 9, 14 14 of 28

interaction. The intermediary structure defined in Table 3 is used. The next opening is
represented by rows that have a transition from 0 (representing the end of one interaction)
to 1 (representing a new interaction). The selected subset of data is emphasized in Table 5
by the color blue.

Table 5. Subset of the data presented in Table 3 that is relevant for computing the duration between
consecutive interactions of the user with the smart device.

Timestamp Door State
Next Event Next Event Time in [s]
Timestamp Door State between Events

2023-01-04 08:04:35 1 2023-01-04 08:05:35 0 60

2023-01-04 08:05:35 0 2023-01-04 08:15:02 1 567

2023-01-04 08:15:02 1 2023-01-04 08:15:58 0 56

2023-01-04 08:15:58 0 2023-01-04 20:11:00 1 42,902

2023-01-04 20:11:00 1 2023-01-04 20:11:35 0 35

2023-01-04 20:11:35 0 - - -

The analysis in this case is split in two directions. One is focused on modeling the
probability distribution of the signal representing the duration between consecutive inter-
actions during an active usage period (AUP). An AUP is defined as a period in which the
user frequently uses the appliance. The other dimension analyzed is the signal modeling
the duration between consecutive openings that are outside an AUP. The threshold for the
duration that splits two consecutive openings in an AUP, or outside one, is empirically es-
tablished to be 30 min for the analyzed types of devices. In Figure 8, a visual representation
of consecutive openings is given in both the cases inside and outside an AUP.

Figure 8. Visualization of the events representing the interaction of a user with a smart device. The
time is represented on the OX axis and the user–device interaction state is represented on the OY axis.
Two AUPs are presented.

As a result of this step, two real-world data descriptors are generated, corresponding
to the signal that models the duration between consecutive interactions inside an AUP and
the signal representing the duration between consecutive openings outside an AUP.

4.1.4. Usage Patterns Descriptor: Extracting Patterns of Usage

In the current context, relevant patterns present in the data are represented by patterns
of usage of the smart device. Examples of such patterns include users having active periods
during the morning, users having N active periods during a day, and users having no AUP
during the weekend. To extract such behaviors from the data, an entire study is required.
For the data generation, we applied the methodology we proposed in [22]. For each studied
appliance, we performed the following steps:

1. Transformation of the events into time-series representation
2. Application of FFT transform to extract features [25]
3. Clustering using DBScan [44]
4. Selection of the cluster containing the majority of points
5. Inverse FFT applied in order to reconstruct the usage pattern that appears more often

in the data

Data 2024, 9, 14 15 of 28

We extract the patterns of usage from the real-world data and we embed this informa-
tion in the synthetic data generation process.

4.1.5. Noise Descriptors

For an event that is periodically transmitted, the missing values are easy to compute,
as shown in [37], where the transmission patterns are studied. In the case of a signal that has
no periodicity, but is event-based (the events generated as a result of user interaction), the
missing values are quite hard to quantify. The user might not use the appliance for a long
period of time or the transmission system might be broken and no events are transmitted to
the storage systems. Both of these situations have the same effects—no events are registered
for that appliance in the given time frame. As a consequence, a descriptor modeling this
aspect of the data can not be generated for this type of data.

Duplicate entries represent a valid noise descriptor. This is obtained by querying
the real-world dataset and obtaining the percentage of duplicate events. Two events are
considered duplicates if they share the exact same timestamp and the same value for the
interaction state.

The outlier percentage is also a valid noise descriptor and is applied for the following
signal modeling the duration of the user interaction.

4.2. Generated Descriptors: Results and Discussion

The dataset on which the simulated data is based consists of a collection of more
than 12,000 appliances. The raw data are unstructured—all the events generated by the
interaction with the user and all the recordings of the sensor deployed on the appliances
generate new entries in the same storage structure. The appliances recorded user activity for
a period that varied from one day to more than four years. In our analysis, we eliminated
the appliances that had a recording period of less than one month.

From this dataset, we utilized 51 appliances for extracting the real data descriptors
regarding the PDFs. The selection of a limited number of appliances on which to apply the
algorithms for extracting the real-data descriptors is necessary due to limited access to the
real-world data and the fact that extracting the real-data descriptors is time-consuming.

Table 6 contains a summary of the appliance characteristics that are relevant to the
methods and algorithms defined above for extracting the real-world descriptors for gen-
erating the framework capable of producing user–device interaction synthetic data. Each
appliance has an identifier defined in the first column of the table. The second column
shows the total number of days for which the appliance has recordings (the start of the
recording is the deployment of the appliance in the user house). The number of interaction
events for each appliance is shown in the third column to prove the validity of the appliance
(the appliance is in use and relevant data can be extracted by applying statistical analysis).

The percentage of outliers found for the signal modeling the duration of the interaction
is shown in the Outliers % column and the PDF found for each appliance for the signal
modeling the period of user–device interaction is shown in the last column. The distribution
of the values of this last column is visually presented in Figure 9.

Figure 9. Distribution of the PDFs found in the real dataset for the signal modeling the duration of
the user–device interaction.

Data 2024, 9, 14 16 of 28

Table 6. Description of the appliances used in extracting the real-data descriptors for constructing the
real-world data descriptors of the generated synthetic data.

Appliance Nb. Recording Nb. Interaction Outliers % PDF
ID Days Events

Appliance 1 188 3797 0.010 exponnorm
Appliance 2 761 22,825 0.010 exponnorm
Appliance 3 184 59 0.035 exponnorm
Appliance 4 526 36,589 0.009 exponnorm
Appliance 5 404 15,586 0.010 exponweib
Appliance 6 614 22,009 0.009 exponweib
Appliance 7 184 14,388 0.009 exponweib
Appliance 8 289 173 0.011 exponnorm
Appliance 9 117 2135 0.010 exponweib

Appliance 10 164 6192 0.010 exponweib
Appliance 11 175 4853 0.010 exponweib
Appliance 12 1118 13,682 0.010 exponweib
Appliance 13 563 17,296 0.008 exponweib
Appliance 14 1397 3466 0.010 exponweib
Appliance 15 168 5883 0.010 exponnorm
Appliance 16 1397 2785 0.010 exponweib
Appliance 17 234 9842 0.010 exponweib
Appliance 18 1049 10,980 0.010 exponweib
Appliance 19 66 3944 0.010 exponweib
Appliance 20 1396 1014 0.011 exponweib
Appliance 21 482 21,986 0.010 exponweib
Appliance 22 197 7881 0.009 exponweib
Appliance 23 188 3797 0.010 exponnorm
Appliance 24 259 9893 0.010 exponweib
Appliance 25 384 3423 0.010 exponweib
Appliance 26 202 107 0.019 exponweib
Appliance 27 570 18,598 0.009 exponweib
Appliance 28 1134 33,063 0.009 exponweib
Appliance 29 1391 13,957 0.009 exponweib
Appliance 30 396 12,915 0.010 exponnorm
Appliance 31 319 20,229 0.009 exponweib
Appliance 32 560 31,695 0.009 exponweib
Appliance 33 532 2403 0.010 exponweib
Appliance 34 994 1050 0.011 exponweib
Appliance 35 203 11,701 0.010 exponweib
Appliance 36 544 16,963 0.010 exponweib
Appliance 37 226 215 0.009 exponweib
Appliance 38 577 22,747 0.009 exponweib
Appliance 39 274 13,368 0.009 exponweib
Appliance 40 391 6128 0.010 exponweib
Appliance 41 186 359 0.011 exponweib
Appliance 42 394 4314 0.010 exponweib
Appliance 43 639 14,047 0.010 exponweib
Appliance 44 1396 9026 0.010 exponweib
Appliance 45 477 15,814 0.010 exponweib
Appliance 46 81 4844 0.010 exponweib
Appliance 47 81 4844 0.010 exponweib
Appliance 48 81 4844 0.010 exponweib
Appliance 49 536 35,800 0.009 exponweib
Appliance 50 536 35,800 0.009 exponweib
Appliance 51 536 35,800 0.009 exponweib

The result of extracting the duplicates component of the noise descriptor is presented
in Table 7. The table contains only the appliances for which we identified duplicate events.
For the appliances missing from the table, we identified no duplicate events.

Data 2024, 9, 14 17 of 28

Table 7. Noise descriptor: Percentage of duplicate events found in the real data.

Appliance % Duplicate Appliance % Duplicate Appliance % Duplicate
ID Events ID Events ID Events

Appliance 1 0.005267 Appliance 21 0.001865 Appliance 35 0.000171
Appliance 4 0.002296 Appliance 22 0.010912 Appliance 38 0.000396
Appliance 5 0.009881 Appliance 23 0.005267 Appliance 42 0.001854
Appliance 6 0.002772 Appliance 24 0.000606 Appliance 43 0.010892
Appliance 10 0.000807 Appliance 27 0.001452 Appliance 44 0.000886
Appliance 11 0.000206 Appliance 28 0.001875 Appliance 45 0.006387
Appliance 14 0.000577 Appliance 29 0.001146 Appliance 49 0.003045
Appliance 16 0.002513 Appliance 30 0.000852 Appliance 50 0.003045
Appliance 17 0.001626 Appliance 32 0.002051 Appliance 51 0.003045

For extracting the usage patterns, we use a forward-filling method to transform the
event-based data into time series, followed by an aggregation operation, aggregating the
data hourly. We split the data into time-boxed units of data representing the usage of the
device in one day. We apply a fast Fourier transform and we use the first ten coefficients
of the Fourier transform (each coefficient is represented by two parts, the real component
and the imaginary component). This summarizes the daily usage of the device in terms of
20 numbers. For clustering, we use DBScan, configured with the Euclidian distance and an
auto algorithm.

With this setup, we deploy the usage mining script in the above-described data lake.
Similar behaviors of using the smart device mainly in two periods of the day (2-AUP) are
found for 37.5% of the devices. Patterns of using the appliance in mainly three periods of
the day (3-AUP) are found for 18.75%. Using the device in four time intervals (4-AUP) is
found in 12.5% of the analyzed devices. No behavioral pattern could be extracted from
31.25% of the devices. A visual representation of these results is shown in Figure 10.

Figure 10. Distribution of the identified AUP types in the real-world data by applying the algorithm
defined in the usage pattern descriptor section. With blue it is represented the 2 AUP type of usage,
with orange it is represented the 3 AUP type of usage and with green the 4 AUP type of usage. The
red color represents the instances for which we could not identify a usage that maps to the described
AUP usage model.

Data 2024, 9, 14 18 of 28

The presented results of applying the algorithms for the real-data descriptors extraction
are all integrated into the data generation step of the synthetic data generation framework.

4.3. Framework Implementation

All the real-world data descriptors detailed in the above section are obtained by
using tools, such as SQL queries on a data lake (available storage for the real-world data),
combined with Python notebooks implemented in DataBricks [45].

For the data generation software, a Java-based tool was developed. The real-world
data descriptors are embedded into the Java code. For the user configuration, a properties
file is read by the framework.

As a result, a file saved into the local device on which the software is running is
generated. For ease of future processing, the output file has a CSV extension.

The entire framework is open source and open for improvements and extension. The
code for the software generating the event-oriented data is accessible at: https://github.
com/tolasramona/fridge-door-event-generation (accessed on 30 November 2023).

5. Application Scenario: Synthetic Data for Forecasting the Usage

The data generated with our synthetic data generator, empowered by the GeMSyD
methodology, open up a world of possibilities for practical applications in the realm of
smart device usage forecasting. In this section, we illustrate the steps involved in building
a processing pipeline to forecast the usage patterns of a smart device using the synthetic
data we have created. This example serves as a compelling showcase of the potential
applications of synthetic data in real-world scenarios. The section is intended to provide a
hands-on guide to the utilization of the created synthetic data, using a more tutorial format.

Using the developed open-source framework, we generated synthetic data for three
devices. We used the behavioral patterns in the interaction of the user with the device. The
usage period, the pattern, and the frequency of the interaction are varied. The behavior
associated with each device and the configured noise level are presented below, where an
identifier is given for each dataset (corresponding to a device) that will be used to reference
the dataset in the rest of the section.

• DS1: This appliance has data recorded from 2021-02-25 until 2023-02-15. The proba-
bility of missing an active period in this case is set to 0.1. This dataset containing the
recording of user interaction for two years contains two equally active periods of two
hours during one day.

• DS2: This appliance has data recorded from 2022-03-02 until 2023-02-25. The first
active period has a duration of one hour and the last active period from the day has a
duration of two hours. The probability of missing an active period in this case is set
to 0.1.

• DS3: This appliance has data recorded from 2022-03-02 until 2023-02-25. The first
active period has a duration of one hour and the last active period has a duration of
30 min. The probability of missing an active period in this case is set to 0.1.

In Figure 11, a snapshot of four days from the generated synthetic data is given. The
snapshot contains the events of the user interaction (consisting of events of type start/end
of the interaction with the smart device) recorded for four days.

The synthetic data are put through a series of transformations in order to prepare them
for a prediction algorithm. These preprocessing operations are:

1. Dropping duplicate events
2. Transformation from events to time series
3. Normalization
4. Applying the sliding window (with 24 h the size of the window) for creating the input

(current window) and the output (next value) for the forecasting process

https://github.com/tolasramona/fridge-door-event-generation
https://github.com/tolasramona/fridge-door-event-generation

Data 2024, 9, 14 19 of 28

Figure 11. Visualization of the events modeling the user–device interaction for four consecutive days
from the DS1 dataset. On the OX axis is represented the time, and on the OY axis, the user–device
interaction state is represented with possible values of 0 and 1.

After this preprocessing phase, the data are split into train and test datasets. We select
the last two days of the functioning period as the test data and we use the rest of the history
of usage as the train data. With this approach, we learn from the history of usage and
we predict the next two days. A model-fitting phase is then applied to the data. For this
phase, LSTM [46] deep neural networks are used. The architecture used for the experiments
performed in this section is described by the code block detailed below:

def create_LSTM_model_1(data_shape):
Model = Sequential()
Model.add(LSTM(units = 60,

return_sequences = True,
input_shape = (shape, 1)))

Model.add(Dropout(0.2))
Model.add(LSTM(units = 60,

return_sequences = True))
Model.add(Dropout(0.2))
Model.add(LSTM(units = 60,

return_sequences = True))
Model.add(Dropout(0.2))
Model.add(LSTM(units = 60))
Model.add(Dropout(0.2))
Model.add(Dense(units = 1))
return Model

The two evaluation metrics described in the Conceptual Foundations Explored in the
Literature section are used to evaluate the results of applying the defined deep learning
architecture to the synthetic data, R2 and RMSE. The results are presented in Table 8
and a graphical representation of forecasting using the LSTM architecture is presented in
Figure 12.

Table 8. Performance evaluation of the architectures using the RMSE and R-squared evaluation metrics.

Dataset RMSE RsquareIdentifier

DS1 27.13 0.30

DS2 12.09 0.10

DS3 6.40 0.21

Data 2024, 9, 14 20 of 28

Figure 12. Results obtained by applying the prediction pipeline: two days of user–device interactions
are predicted using LSTM. The green color is used to represent the real signal; the yellow color is the
predicted signal. On the OX axis is represented the predicted hour (48 values because the predicting
period is for two days) and on the OY axis is represented the predicted value expressing the number
of seconds during the corresponding hour when the user is interacting with the device.

The entire code of visualizing the data, creating the learning model, and evaluating
the results is available in Appendix A. This section serves as an invitation to the research
community to further explore and advance the field by developing models and conducting
benchmark studies using our synthetic data. Cross-validation and variations in the train
and test percentages are candidates for improving the overall results.

6. Conclusions

In this article, we have introduced a groundbreaking approach to synthetic data genera-
tion through the development of a generic methodology—GeMSyD (Generic Methodology
for Synthetic Data Generation). We showcased the versatility and applicability of this
methodology by constructing a practical framework specifically tailored for generating
synthetic data that accurately emulates the event-based data modeling of user interactions
with smart devices.

Our study began with the realization that the need for high-quality synthetic data is
more crucial than ever, particularly in the ever-evolving field of smart devices and user
interaction research. While the importance of real-world data cannot be overstated, the
challenges of access, privacy, and scalability have driven us to explore the potential of
synthetic data. GeMSyD was born from this exploration, offering a robust and adaptable
solution that can be extended to a wide array of domains and research areas. GeMSyD is
the realization of our first proposed objective for this study.

Our second objective was successfully achieved by the instantiation of the GeMSyD
methodology into a framework dedicated to smart device user interaction data genera-
tion. The obtained synthetic data are a testament to the GeMSyD efficacy. By embracing
statistical analysis and machine learning techniques, our framework not only replicates
the complexity of real-world interactions but also provides an invaluable resource for
researchers and developers looking to explore the possibilities of synthetic data.

One of the pivotal contributions we make in this article is our commitment to open-
source principles. We have made the entire framework accessible to the public, allowing for
widespread adoption and collaborative development. This decision aligns with our vision
of democratizing synthetic data generation and fostering an ecosystem where innovation
thrives. We also offer a snapshot of the data generated with our framework, available to
researchers free of charge. This dataset serves as a foundational resource for the devel-
opment, testing, and benchmarking of machine learning models within the domain of
smart devices and user interaction. With a common base for benchmarking, we believe that
we can accelerate progress in this field and foster the development of more effective and
robust models. We understand that having data is one thing, but being able to work with it
effectively is equally important. Thus, we provide the source code for data visualization
and processing, ensuring that researchers can harness the full potential of the data and
tailor it to their specific research needs, achieving our final objective.

GeMSyD is not a static framework; it is a living methodology that is ready for further
exploration and application. In our vision for future work, we plan to extend the GeMSyD
methodology to various other domains and research areas. We aim to extract additional
generic real-world data descriptors that can be utilized to construct synthetic datasets
that mirror the intricacies of different domains, allowing for experimentation, testing, and
research on a broader scale. By applying GeMSyD to diverse fields, we hope to establish

Data 2024, 9, 14 21 of 28

a rich repository of synthetic data that can be shared and collaboratively developed to
advance research across multiple domains. This expansion is not limited to generating
synthetic data; it also encompasses refining and enhancing the GeMSyD methodology to
ensure its adaptability and effectiveness in various contexts.

In closing, GeMSyD represents a pivotal step forward in the field of synthetic data gen-
eration. It offers a powerful, adaptable, and open-source methodology that can empower
researchers, developers, and data scientists to explore new frontiers in their respective
fields. The framework for generating synthetic data in the smart device and user interaction
domain, along with the shared dataset and code, forms the foundation for a brighter future
of collaborative research.

Author Contributions: Conceptualization, R.T.; data curation, R.T. and R.P. (Raluca Portase); formal
analysis, R.T. and R.P. (Raluca Portase); investigation, R.T.; methodology, R.T.; project administration,
R.T., R.P. (Raluca Portase) and R.P. (Rodica Potolea); resources, R.T.; software, R.T.; supervision, R.P.
(Rodica Potolea); validation, R.T., R.P. (Raluca Portase) and R.P. (Rodica Potolea); visualization, R.T.;
writing—original draft, R.T.; writing—review and editing, R.T. and R.P. (Raluca Portase). All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The synthetic data generation framework is open-source and available
at: https://github.com/tolasramona/fridge-door-event-generation (accessed on 30 November 2023).
A dataset already generated using this synthetic data generation framework is available at: Kaggle
Dataset (accessed on 30 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GeMSyD Generic Methodology for Constructing a Synthetic Data Generation Framework
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
PDF Probability Distribution Function
FFT Fast Fourier Transform
DBSCAN Density-based Spatial Clustering

Appendix A

The following Databricks notebook is used for implementing the application scenario
of usage forecasting based on the synthetic data obtained with the instantiation of GeMSyD
and is available at Kaggle Dataset (accessed on 30 November 2023).

https://github.com/tolasramona/fridge-door-event-generation
https://www.kaggle.com/datasets/ramonatolas/synthetic-data-user-interaction-with-smart-device
https://www.kaggle.com/datasets/ramonatolas/synthetic-data-user-interaction-with-smart-device
https://www.kaggle.com/datasets/ramonatolas/synthetic-data-user-interaction-with-smart-device

Data 2024, 9, 14 22 of 28

Databricks notebook source
pip install keras

COMMAND ----------

pip install tensorflow

COMMAND ----------

AGGREGATION = 'H'
ws = 24 ## the window size is 24 hours
number_of_predicted_days = 2
prediction_in_future_time = ws * number_of_predicted_days

COMMAND ----------

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Dropout

def create_RNN_model(shape):
 Model_P = Sequential()
 Model_P.add(LSTM(units = 60, return_sequences = True, input_shape = (shape, 1)))
 Model_P.add(Dropout(0.2))
 Model_P.add(LSTM(units = 60,return_sequences = True))
 Model_P.add(Dropout(0.2))
 Model_P.add(LSTM(units = 60, return_sequences = True))
 Model_P.add(Dropout(0.2))
 Model_P.add(LSTM(units = 60))
 Model_P.add(Dropout(0.2))
 Model_P.add(Dense(units = 1))

 Model_P.compile(optimizer = 'adam', loss = 'mean_squared_error') # mean_squared_error

 return Model_P

COMMAND ----------

File location and type

file_location = "/FileStore/tables/id1_2AP_1year.csv"
file_type = "csv"

CSV options
infer_schema = "true"
first_row_is_header = "true"
delimiter = ","

The applied options are for CSV files. For other file types, these will be ignored.
df = spark.read.format(file_type) \
 .option("inferSchema", infer_schema) \
 .option("header", first_row_is_header) \
 .option("sep", delimiter) \
 .load(file_location)

display(df)

df = df.toPandas()

COMMAND ----------

MAGIC %md
MAGIC ### Droping the duplicates

COMMAND ----------

df.dropna(inplace=True)

Data 2024, 9, 14 23 of 28

print(df.source_ts.size)
print(df.source_ts.unique().size)
print("Size before drop duplicates", df.size)
df.drop_duplicates(subset=['source_ts'], inplace=True)
print("Size after drop duplicates", df.size)
print(df.source_ts.unique().size)
print(df.source_ts.size)

datetime_series = pd.to_datetime(df['source_ts'])
datetime_index = pd.DatetimeIndex(datetime_series.values)
df=df.set_index(datetime_index)
df.drop('source_ts',axis=1,inplace=True)

before_filling_size = df.size
print("size before filling: ", before_filling_size)
df=df.asfreq(freq='S', method='ffill')
after_filling_size = df.size
print("size after filling: ", after_filling_size)

lastDay = df.index[-1].strftime('%Y-%m-%d')
df = df.loc[:lastDay].iloc[:-1 , :]
df

COMMAND ----------

MAGIC %md
MAGIC ## Data visualisation

COMMAND ----------

def df_one_day(pandas_df_to_plot,year_to_plot,month_to_plot, day_to_plot):
 p_one_day = pandas_df_to_plot[(pandas_df_to_plot.index.day == day_to_plot)
 & (pandas_df_to_plot.index.year == year_to_plot)
 & (pandas_df_to_plot.index.month == month_to_plot)]
 return p_one_day

def df_one_month(pandas_df_to_plot,year_to_plot,month_to_plot, day_to_plot):
 p_one_day = pandas_df_to_plot[(pandas_df_to_plot.index.day == day_to_plot)
 & (pandas_df_to_plot.index.year == year_to_plot)
 & (pandas_df_to_plot.index.month == month_to_plot)]
 return p_one_day

def plot_one_day(pandas_df_to_plot,year_to_plot,month_to_plot, day_to_plot):
 p_to_plot = df_one_day(pandas_df_to_plot,year_to_plot,month_to_plot, day_to_plot)
 plt.rcParams["figure.figsize"] = (40,3)
 plt.plot(p_to_plot)
 plt.xlabel('Time')
 plt.ylabel('Door State')
 plt.show()
 print("Plotting: year = ", year_to_plot, " month = ", month_to_plot, " day = ", day_to_plot)

def plot_one_moth(pandas_df_to_plot,year_to_plot,month_to_plot):
 days_from_month = pandas_df_to_plot[(pandas_df_to_plot.index.year == year_to_plot)
 & (pandas_df_to_plot.index.month == month_to_plot)].index.day.unique().values
 for day in days_from_month:
 plot_one_day(pandas_df_to_plot, year_to_plot,month_to_plot, day)

def print_max_freq_month(df):
 door_open_monthly = df.resample('M').sum()
 max_month_year = door_open_monthly[door_open_monthly.value == door_open_monthly.value.max()].index.year[0]
 max_month_month = door_open_monthly[door_open_monthly.value == door_open_monthly.value.max()].index.month[0]
 print('Year with max door opening:', max_month_year)
 print('Month with max door opening:', max_month_month)
 plot_one_moth(df,max_month_year,max_month_month)

def get_all_months(df, year):
 return df[(df.index.year == year)].index.month.unique().values

def get_all_years(df):
 return df.index.year.unique().values

def plot_one_year(df, year):
 all_months = get_all_months(df, year)
 for month in all_months:
 plot_one_moth(df, year, month)

Data 2024, 9, 14 24 of 28

def show_all_years(df):
 #al_years = get_all_years(df)
 all_years = [2021]
 for year in all_years:
 plot_one_year(df, year)

COMMAND ----------

MAGIC %md
MAGIC ## Resampling to the defined granularity

COMMAND ----------

df_resampled = df.resample(AGGREGATION).sum()
df_resampled

COMMAND ----------

year_to_plot = df.index[-1].year
month_to_plot = df.index[-1].month
day_to_plot = df.index[-1].day

COMMAND ----------

plot_one_day(df, year_to_plot, month_to_plot, day_to_plot)

COMMAND ----------

plot_one_day(df_resampled, year_to_plot, month_to_plot, day_to_plot)

COMMAND ----------

MAGIC %md
MAGIC ## Split in test and train sets

COMMAND ----------

df = df_resampled

index_of_start_prediction = 0 - prediction_in_future_time
day_of_start_prediction = df.index[index_of_start_prediction].strftime('%Y-%m-%d')
index_of_end_train = index_of_start_prediction - ws
day_of_end_train = df.index[index_of_end_train].strftime('%Y-%m-%d')

TRAIN_END = day_of_end_train
TEST_START = day_of_start_prediction

training_set_df = df.loc[:TRAIN_END]
training_set = training_set_df.values

test_set_df = df.loc[TEST_START:]
test_set = test_set_df.values

total_len = len(df)
train_len = len(training_set_df)
test_len = len(test_set_df)
total_sum = train_len + test_len

COMMAND ----------

MAGIC %md
MAGIC ## Description of the resampled data

COMMAND ----------

df_resampled['value'].plot.hist(bins=10)

COMMAND ----------

df_resampled['value'].plot(kind='density')

Data 2024, 9, 14 25 of 28

COMMAND ----------

MAGIC %md
MAGIC ## Normalizing

COMMAND ----------

from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler(feature_range = (0,1))

training_set_scaled = sc.fit_transform(training_set)
test_set_scaled = sc.fit_transform(test_set)

COMMAND ----------

MAGIC %md
MAGIC ## Construct with window size the input for the learning algorithm

COMMAND ----------

x_train = []
y_train = []

for i in range(ws, len(training_set_scaled)): ##
 x_train.append(training_set_scaled[i-ws:i, 0:1])
 y_train.append(training_set_scaled[i, 0])

x_train, y_train = np.array(x_train), np.array(y_train)
x_train

COMMAND ----------

MAGIC %md
MAGIC ## Developing LSTM model

COMMAND ----------

Model_P = create_RNN_model(x_train.shape[1])
Model_P.fit(x_train, y_train, epochs = 15, batch_size = 32)

COMMAND ----------

import matplotlib.pyplot as plt
plt.plot(range(len(Model_P.history.history['loss'])), Model_P.history.history['loss'])
plt.xlabel('Epoch Number')
plt.ylabel('loss')
plt.show()

COMMAND ----------

prediction_test = []

extract last 24 hours from the training set. it will be the first batch for which we will apply the prediciton
batch_one = training_set_scaled[-ws:]
batch_new = batch_one.reshape((1, ws,1)) ## shape it to look like x train

we want to predict in the future : prediction_in_future_time (deffined upper)

for i in range(prediction_in_future_time):
 first_pred = Model_P.predict(batch_new)[0]
 print(batch_new)
 print("Predicted", first_pred)
 prediction_test.append(first_pred)
 batch_new = np.append(batch_new[:,1:,:], [[first_pred]], axis = 1)

prediction_test

COMMAND ----------

prediction_test = np.array(prediction_test)
predictions = sc.inverse_transform(prediction_test)

COMMAND ----------

Data 2024, 9, 14 26 of 28

predictions

COMMAND ----------

plt.plot(test_set, color = 'green', label = 'Actual value')
plt.plot(predictions, color = 'orange', label = 'Predicted value')
plt.title('LSTM door open forecast by minute')
plt.legend()
plt.show()

COMMAND ----------

MAGIC %md
MAGIC ## Evaluation

COMMAND ----------

import math
from sklearn.metrics import mean_squared_error

RMSE = math.sqrt(mean_squared_error(test_set, predictions))

from sklearn.metrics import r2_score

Rsquare = r2_score(test_set, predictions)

print(RMSE)
print(Rsquare)

COMMAND ----------

df_resampled['hour'] = df_resampled['value'].index.hour
df_mean = df_resampled.groupby('hour').mean()
mean = df_mean['value']
m_mean = []
m_mean.extend(mean.values)
m_mean.extend(mean.values)
m_mean

COMMAND ----------

plt.plot(test_set, color = 'green', label = 'Actual value')
plt.plot(predictions, color = 'orange', label = 'Predicted value')
plt.plot(m_mean, color = 'blue', label = 'Mean')
plt.title('LSTM door open forecast by minute')
plt.legend()
plt.show()

References
1. Chen, Y.; Rao, M.; Feng, K.; Zuo, M.J. Physics-Informed LSTM hyperparameters selection for gearbox fault detection. Mech. Syst.

Signal Process. 2022, 171, 108907. [CrossRef]
2. Han, T.; Xie, W.; Pei, Z. Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind

turbine. Inf. Sci. 2023, 648, 119496. [CrossRef]
3. Rahim, M.S.; Nguyen, K.A.; Stewart, R.A.; Giurco, D.; Blumenstein, M. Advanced household profiling using digital water meters.

J. Environ. Manag. 2021, 288, 112377. [CrossRef] [PubMed]
4. McKenna, S.; Fusco, F.; Eck, B. Water Demand Pattern Classification from Smart Meter Data. Procedia Eng. 2014, 70, 1121–1130.

[CrossRef]
5. Artificial Intelligence in Health Care: Benefits and Challenges of Machine Learning in Drug Development; (STAA)-Policy Briefs &

Reports-EPTA; U.S. Government Accountability Office: Washington, DC, USA, 2020 .
6. Olariu, E.M.; Tolas, R.; Portase, R.; Dinsoreanu, M.; Potolea, R. Modern approaches to preprocessing industrial data. In

Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2020; pp. 221–226. [CrossRef]

7. El Emam, K.; Mosquera, L.; Hoptroff, R. Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data;
O’Reilly Media: Newton, MA, USA, 2020.

8. Berg, A.M.; Mol, S.T.; Kismihók, G.; Sclater, N. The Role of a Reference Synthetic Data Generator within the Field of Learning
Analytics. J. Learn. Anal. 2016, 3, 107–128. [CrossRef]

http://doi.org/10.1016/j.ymssp.2022.108907
http://dx.doi.org/10.1016/j.ins.2023.119496
http://dx.doi.org/10.1016/j.jenvman.2021.112377
http://www.ncbi.nlm.nih.gov/pubmed/33780820
http://dx.doi.org/10.1016/j.proeng.2014.02.124
http://dx.doi.org/10.1109/ICCP51029.2020.9266215
http://dx.doi.org/10.18608/jla.2016.31.7

Data 2024, 9, 14 27 of 28

9. Dahmen, J.; Cook, D. SynSys: A synthetic data generation system for healthcare applications. Sensors 2019, 19, 1181. [CrossRef]
10. Nabati, M.; Navidan, H.; Shahbazian, R.; Ghorashi, S.A.; Windridge, D. Using synthetic data to enhance the accuracy of

fingerprint-based localization: A deep learning approach. IEEE Sens. Lett. 2020, 4, 1–4. [CrossRef]
11. Minhas, S.; Khanam, Z.; Ehsan, S.; McDonald-Maier, K.; Hernández-Sabaté, A. Weather classification by utilizing synthetic data.

Sensors 2022, 22, 3193. [CrossRef]
12. Dankar, F.K.; Ibrahim, M. Fake It Till You Make It: Guidelines for Effective Synthetic Data Generation. Appl. Sci. 2021, 11, 2158.

[CrossRef]
13. Patki, N.; Wedge, R.; Veeramachaneni, K. The Synthetic Data Vault. In Proceedings of the 2016 IEEE International Conference on

Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 399–410. [CrossRef]
14. Ping, H.; Stoyanovich, J.; Howe, B. DataSynthesizer: Privacy-Preserving Synthetic Datasets. In Proceedings of the 29th

International Conference on Scientific and Statistical Database Management, New York, NY, USA, 27–29 June 2017; SSDBM ’17.
[CrossRef]

15. Figueira, A.; Vaz, B. Survey on synthetic data generation, evaluation methods and GANs. Mathematics 2022, 10, 2733. [CrossRef]
16. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative ad-

versarial nets. In Proceedings of the NIPS’14: 27th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; Volume 27.

17. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

18. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings
of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–6 June 2008; pp. 1322–1328.

19. Chen, Y.; Rao, M.; Feng, K.; Niu, G. Modified Varying Index Coefficient Autoregression Model for Representation of the
Nonstationary Vibration From a Planetary Gearbox. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [CrossRef]

20. Anderson, J.; Kennedy, K.; Ngo, L.; Luckow, A.; Apon, A. Synthetic data generation for the internet of things. In Proceedings of
the 2014 IEEE International Conference on Big Data, IEEE Big Data 2014, Washington, DC, USA, 27–30 October 2015; pp. 171–176.
[CrossRef]

21. Guo, Z.; Wang, Z.J.; Kashani, A. Home appliance load modeling from aggregated smart meter data. IEEE Trans. Power Syst. 2014,
30, 254–262. [CrossRef]

22. Tolas, R.; Portase, R.; Dinsoreanu, M.; Potolea, R. Mining User Behavior: Inference of Time-boxed Usage Patterns from Household
Generated Data. In Proceedings of the eKNOW 2023, The Fifteenth International Conference on Information, Process, and
Knowledge Management, Venice, Italy, 24–28 April 2023.

23. Tolas, R.; Portase, R.; Lemnaru, C.; Dinsoreanu, M.; Potolea, R. Unsupervised Clustering and Explainable AI for Unveiling
Behavioral Variations Across Time in Home-Appliance Generated Data. In Proceedings of the International Conference
on Information Integration and Web Intelligence, Bali, Indonesia, 4–6 December 2023; Springer: Cham, Switzerland, 2023;
pp. 147–161.

24. Scikit-Learn DBSCAN. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
(accessed on 19 July 2022).

25. Brigham, E.O.; Morrow, R.E. The fast Fourier transform. IEEE Spectr. 1967, 4, 63–70. [CrossRef]
26. Ramberg, J.S.; Dudewicz, E.J.; Tadikamalla, P.R.; Mykytka, E.F. A Probability Distribution and its Uses in Fitting Data. Technometrics

1979, 21, 201–214. [CrossRef]
27. Kuzmin, V.; Zaliskyi, M.; Odarchenko, R.; Polishchuk, O.; Ivanets, O.; Shcherbyna, O. Method of Probability Distribution Fitting

for Statistical Data with Small Sample Size. In Proceedings of the 2020 10th International Conference on Advanced Computer
Information Technologies (ACIT), Deggendorf, Germany, 16–18 September 2020; pp. 221–224. [CrossRef]

28. Fitter Python Package Documentation. Available online: https://pypi.org/project/fitter/0.2.0/ (accessed on 19 January 2023).
29. Scipy Documentation. Available online: https://scipy.github.io/devdocs/reference/generated/scipy.stats.fit.html (accessed on

19 January 2023).
30. Normal Distribution. Available online: https://en.wikipedia.org/wiki/Normal_distribution (accessed on 19 January 2023).
31. Exponential Distribution. Available online: https://en.wikipedia.org/wiki/Exponential_distribution (accessed on 19 January

2023).
32. Exponentiated Weibull Distribution. Available online: https://en.wikipedia.org/wiki/Exponentiated_Weibull_distribution

(accessed on 19 January 2023).
33. Gamma Distribution. Available online: https://en.wikipedia.org/wiki/Gamma_distribution (accessed on 19 January 2023).
34. Yao, J.; Han, T. Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of

charging/discharging data. Energy 2023, 271, 127033. [CrossRef]
35. Gonzalez-Vidal, A.; Jimenez, F.; Gomez-Skarmeta, A.F. A methodology for energy multivariate time series forecasting in smart

buildings based on feature selection. Energy Build. 2019, 196, 71–82. [CrossRef]
36. Kim, S.; Alizamir, M.; Kim, N.W.; Kisi, O. Bayesian model averaging: A unique model enhancing forecasting accuracy for daily

streamflow based on different antecedent time series. Sustainability 2020, 12, 9720. [CrossRef]

http://dx.doi.org/10.3390/s19051181
http://dx.doi.org/10.1109/LSENS.2020.2971555
http://dx.doi.org/10.3390/s22093193
http://dx.doi.org/10.3390/app11052158
http://dx.doi.org/10.1109/DSAA.2016.49
http://dx.doi.org/10.1145/3085504.3091117
http://dx.doi.org/10.3390/math10152733
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/TIM.2023.3259048
http://dx.doi.org/10.1109/BigData.2014.7004228
http://dx.doi.org/10.1109/TPWRS.2014.2327041
https://scikit-learn.org/stable/modules/generated/ sklearn.cluster.DBSCAN.html
http://dx.doi.org/10.1109/MSPEC.1967.5217220
http://dx.doi.org/10.1080/00401706.1979.10489750
http://dx.doi.org/10.1109/ACIT49673.2020.9208842
https://pypi.org/project/fitter/0.2.0/
https://scipy.github.io/devdocs/reference/generated/scipy.stats.fit.html
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Exponentiated_Weibull_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
http://dx.doi.org/10.1016/j.energy.2023.127033
http://dx.doi.org/10.1016/j.enbuild.2019.05.021
http://dx.doi.org/10.3390/su12229720

Data 2024, 9, 14 28 of 28

37. Tolas, R.; Portase, R.; Iosif, A.; Potolea, R. Periodicity detection algorithm and applications on IoT data. In Proceedings of the
2021 20th International Symposium on Parallel and Distributed Computing (ISPDC), Cluj-Napoca, Romania, 28–30 July 2021;
pp. 81–88. [CrossRef]

38. Raymond, L.; Mehala, B.; Arman, M. Sample Truncation Strategies for Outlier Removal in Geochemical Data: The MCD Robust
Distance Approach Versus t-SNE Ensemble Clustering. Math. Geosci. 2021, 53 , 105–130. [CrossRef]

39. Jiang, M.; Tseng, S.; Su, C. Two-phase clustering process for outliers detection. Pattern Recognit. Lett. 2001, 22, 691–700. [CrossRef]
40. Fawzy, A.; Mokhtar, H.M.; Hegazy, O. Outliers detection and classification in wireless sensor networks. Egypt. Inform. J. 2013,

14, 157–164. [CrossRef]
41. Vinutha, H.P.; Poornima, B.; Sagar, B.M. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset.

In Proceedings of the Information and Decision Sciences; Satapathy, S.C., Tavares, J.M.R., Bhateja, V., Mohanty, J.R., Eds.; Springer:
Singapore, 2018; pp. 511–518.

42. Plotly. Box Plots in Python. Available online: https://plotly.com/python/box-plots/ (accessed on 19 January 2023).
43. Pandas Documentation—Quantile. Available online: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.

quantile.html (accessed on 19 January 2023).
44. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; KDD’96; AAAI Press: Washington, DC, USA, 1996; pp. 226–231.

45. Spark. DataBricks. 2023. Available online: https://www.databricks.com/ (accessed on 2 December 2023).
46. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISPDC52870.2021.9521605
http://dx.doi.org/10.1007/s11004-019-09839-z
http://dx.doi.org/10.1016/S0167-8655(00)00131-8
http://dx.doi.org/10.1016/j.eij.2013.06.001
https://plotly.com/python/box-plots/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.quantile.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.quantile.html
https://www.databricks.com/
http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042

	Introduction
	Literature Review
	Unraveling the Concept of Synthetic Data
	Multidisciplinary Research Based on Synthetic Data
	Generating Synthetic Data: Methodological Approaches
	Synthetic Data in Household Data Processing
	Conceptual Foundations Explored in the Literature
	Finding the Probability Distribution for a Signal
	Evaluating Time-Series Forecasting

	GeMSyD: Generic Methodology for Constructing a Synthetic Data Generation Framework
	Syntactical Form Descriptor: Establishing a Syntactical Representation of the Data
	PDF Real-World Data Descriptor: Fitting a Signal to a Probability Density Function
	High-Level Patterns Descriptor: Extracting Relevant Patterns
	Noise Descriptors

	Instantion of GeMSyD—Event-Based Synthetic Data Generation Framework
	Algorithms for Generating Real-World Data Descriptors
	Obtaining the Syntactic Descriptor
	PDF Descriptor of the Signal Modeling the User–Device Interaction Duration
	PDF Descriptor of the Signal Modeling the Duration between Consecutive Interactions
	Usage Patterns Descriptor: Extracting Patterns of Usage
	Noise Descriptors

	Generated Descriptors: Results and Discussion
	Framework Implementation

	Application Scenario: Synthetic Data for Forecasting the Usage
	Conclusions
	Appendix A
	References

