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Abstract: The state of Victoria, Australia, implemented one of the world’s most prolonged cumulative
lockdowns in 2020 and 2021. Although lockdowns have proven effective in managing COVID-19
worldwide, this approach faced challenges in containing the rising infection in Victoria. This study
evaluates the effects of short-term (less than 60 days) and long-term (more than 60 days) lockdowns
on public mobility and the effectiveness of various social restriction measures within these periods.
The aim is to understand the complexities of pandemic management by examining various measures
over different lockdown durations, thereby contributing to more effective COVID-19 containment
methods. Using restriction policy, community mobility, and COVID-19 data, a machine-learning-
based simulation model was proposed, incorporating analysis of correlation, infection doubling
time, and effective lockdown date. The model result highlights the significant impact of public
event cancellations in preventing COVID-19 infection during short- and long-term lockdowns and
the importance of international travel controls in long-term lockdowns. The effectiveness of social
restriction was found to decrease significantly with the transition from short to long lockdowns,
characterised by increased visits to public places and increased use of public transport, which may be
associated with an increase in the effective reproduction number (Rt) and infected cases.

Keywords: data driven; infection control; epidemiology; healthcare; digital health; social restriction;
machine learning

1. Introduction

The global epidemic caused by severe acute respiratory syndrome 2 (SARS-CoV-2)
has since spread rapidly worldwide. The main mode of transmission of SARS-CoV-2 is
through respiratory droplets that are produced when an infected person talks or coughs
and can be transmitted through the air and inhaled by people nearby [1,2]. The virus can
land on a surface and remain viable for hours to days [3].

In an effort to stem the rise in COVID-19 cases worldwide, many countries have
implemented lockdowns to restrict social gatherings and minimise contact with infected
individuals. China, Sweden, Australia, and South Korea implemented a series of lock-
downs in several cities to delay the time of peak infection, highlighting the effectiveness of
restrictions in mitigating the ongoing transmission of SARS-CoV-2 by exerting a significant
influence on public mobility [4–6]. Researchers have presented the effectiveness of restric-
tions in European countries, showing significant reductions in transmission rates and a
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flattening of the infection curve based on data collected from European countries [7]. A
recent study has shown similar results, finding that restriction policies have significantly
and substantially slowed the growth of COVID-19 infections in China, South Korea, Italy,
Iran, France, and the USA [8]. In addition, a study conducted in England found that people
consistently reported fewer social contacts during the lockdown period, resulting in a
corresponding reduction in COVID-19 infections. However, the magnitude of this effect
was found to depend on the specific type and nature of the restrictions implemented [9]. In
a further case study of the UK and the US, researchers found that multiple interventions of
quarantine had a significant impact on virus transmission [10]. Taken together, these find-
ings highlight the critical role of lockdown in limiting the spread of the virus by restricting
interpersonal interactions and mobility, ultimately contributing to the containment of the
COVID-19 pandemic.

The state of Victoria in Australia gained international attention for setting a record
as the region with the longest cumulative lockdown period in the world [11]. This record
was achieved as Victoria spent a remarkable cumulative total of 302 days under a series
of six lockdowns in 2020 and 2021. These lockdowns showed significant variation in
their duration, ranging from 12 days to 141 days. This extended period of lockdown
began on 19 January 2020, when the state confirmed its first case of COVID-19. However,
despite the frequency of the lockdown policy in Victoria, the state government’s efforts
to slow the spread of SARS-CoV-2 were not always effective. According to the data from
the Victorian Government [12], the region continued to experience significant waves of
COVID-19 infection during the lockdown period.

This situation raises two pertinent questions: (1) How effective are Victoria’s lock-
downs in altering public mobility, given their long duration and frequent implementation?
(2) What is the effectiveness of various social restriction measures, such as face cover
policies, contact tracing and international travel controls, etc., over different durations of
lockdown? This complex dynamic requires a thorough evaluation of the effectiveness of
the various social restriction measures implemented during the Victoria lockdown periods.
It also requires an in-depth analysis of the factors contributing to the trends observed in
COVID-19 cases during these extended lockdowns to ensure a comprehensive understand-
ing of pandemic progression and control measures.

The increasing availability of electronic health data provides a significant opportunity
for the integration of machine learning approaches in health epidemiology [13]. Machine
learning techniques harness the power of training data to construct simulation models,
enabling researchers to conduct efficient and accurate analyses of large datasets. This
approach facilitates the identification of complex patterns and relationships that may prove
to be difficult to identify using traditional data analysis methods [14–16]. In addition, the
flexibility of machine learning extends to its ability to aggregate data from different sources.
This ability allows for a more holistic analysis, enriching health epidemiologists’ under-
standing of the complex interplay between biological and social factors that contribute to
the risk of contracting infectious diseases. It improves the understanding of transmission
pathways and supports the development of robust prevention strategies [13,15]. As such,
machine learning is emerging as a valuable tool for advancing epidemiological research
and public health efforts. Recent research on machine learning applications in the context
of COVID-19 has shown promising progress, with recent studies highlighting the role of
machine learning in supporting diagnosis, drug and vaccine development, and overall
pandemic management [17,18]. In addition, a similar study demonstrates the significant im-
pact of machine learning, such as SVM, on the forecasting and epidemiology of COVID-19,
highlighting its potential to predict disease spread and aid early diagnosis [19]. Taken
together, these studies highlight the growing importance of machine learning techniques in
managing the COVID-19 crisis and their potential to shape future epidemiological research
and public health strategies.

Consequently, this research, using advanced machine learning techniques, aims to
(1) thoroughly investigate the complex interplay between lockdown duration and commu-
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nity mobility, particularly in terms of their influence on containing COVID-19 infection in
Victoria, and (2) explore the multiple dimensions of pandemic management by evaluating
the effectiveness of various social restriction strategies over different lockdown durations.
This methodology is designed to significantly improve our understanding and formulation
of more effective and resilient COVID-19 response strategies. Our research is not limited to
mere observation but delves deeply into the effects of lockdown and provides profound
insights into their effectiveness. By bringing together data from these policies, mobility
patterns, and COVID-19-related information, we unravel the complex dynamics underlying
pandemic control, highlighting the evolving pandemic response situation and the need for
flexible and responsive strategies in our ongoing battles against this challenging public
health adversary.

2. Materials and Methods
2.1. Data Sources

In this comprehensive study, we have used multiple datasets to explore the complex
dynamics of the COVID-19 pandemic in Victoria. The dataset includes crucial information
on Victoria’s COVID-19 cases and vaccination statistics, which have been extracted from
the Johns Hopkins University COVID-19 data repository, covering the period from March
2020 to October 2021 [20]. In addition, the Victoria Mobility Dataset, sourced from Google
Community Mobility, was instrumental in assessing public mobility trends during the
pandemic [21]. A detailed breakdown of this dataset is provided in Table 1.

Table 1. Mobility data during the lockdown period.

Mobility Measure 1 Definition

Retail and recreation visiting Visiting level for restaurants, cafés, shopping centres, museums, etc.
Grocery and pharmacy visiting Visiting level for supermarkets, food warehouses, pharmacies, etc.

Park visiting Visiting level for national parks, beaches, public gardens, etc.
Public transport visiting Usage level for buses, trains, trams, etc.

Workplace visiting Mobility level for places of work
Residential mobility data Mobility level for places of residence

1 Each mobility measure presents the daily changing level of each mobility sector based on the comparison with
the baseline period, which is from 3 January 2020 to 6 February 2020.

To provide a comprehensive view of the pandemic response, we also aggregated
information on the six lockdowns that occurred in Victoria during 2020 and 2021. These
data were sourced from the official Victorian Government website, as shown in Table 2 [22].
To facilitate analysis, we categorised them into two distinct groups based on their duration:
short-term lockdowns (lasting less than 60 days) and long-term lockdowns (lasting more
than 60 days). This categorisation provides valuable insights into the diverse range of
COVID-19 control measures implemented in the region and highlights the varying lengths
of these vital interventions.

In addition, the social restriction policy dataset was obtained from the Oxford COVID-
19 Government response tracker and Victorian Government website to evaluate daily social
restriction levels in Victoria [22,23], as shown in Table 3. This will be used to evaluate the
effectiveness of various social restrictions over different periods of lockdown.

Overall, the social restriction policy data, Google community mobility data, and
lockdown information will be considered as the explanatory variables that are used in the
model, while daily COVID-19 cases will be the dependent variables that we use to simulate
the COVID-19 infection within Victoria.

2.2. Data Analysis

We have developed a machine-learning-based COVID-19 simulation model. Figure 1
illustrates the flowchart of this simulation model.



Data 2024, 9, 3 4 of 19

Table 2. Victorian lockdown information.

Lockdown Period 2 Lockdown Days Lockdown Categories

1st:
30 March 2020–12 May 2020 43 days Short-term lockdown

2nd:
8 June 2020–27 October 2020 141 days Long-term lockdown

3rd:
2 February 2021–17 February 2021 15 days Short-term lockdown

4th:
27 May 2021–10 June 2021 14 days Short-term lockdown

5th:
15 June 2021–27 June 2021 12 days Short-term lockdown

6th:
5 August 2021–17 October 2021 77 days Long-term lockdown

2 Six Lockdowns: during the 2020 and 2021 period, a state of emergency was declared six times by the Victorian
Government to restrict household gatherings, cancel sporting events, and require entire economic sectors to work
from home.

Table 3. Policy indicators.

Policy
Indicators Definition

Cancel public events
policy

Mandated levels of requirements for public events during the
COVID-19 pandemic

Restrictions on
gatherings Record limits on the number of people allowed to gather

School closing policy Mandated levels of closure requirements for schools during the
COVID-19 pandemic

Workplace closing
policy

Mandated levels of closure requirements for workplaces during
the COVID-19 pandemic

International travel
controls Record restrictions on international travel for foreign travellers

Stay-at-home requirements Requirements for people to “shelter in place” and remain
confined to their homes, except for essential activities

Close public transport
policy

Mandated levels of closure requirements for public transport
during the COVID-19 pandemic

Restrictions on
internal movement

Measure restricting travel between cities or regions within
Victoria during the COVID-19 pandemic

Contact tracking Record government policy on contact tracing following
positive diagnosis

Testing policy Record government policy on contact tracing after a
positive diagnosis

Facial coverings
policy Record policies on the use of face coverings outside the home

Mandatory
vaccination requirements Mandated levels of vaccination requirements

Vaccination policy Record vaccine delivery strategies for different groups

2.2.1. Data Preprocessing and Exploratory Data Analysis

In Phase 2, the spreadability of COVID-19 infection was assessed employing an
effective reproduction number (Rt) estimated based on daily confirmed cases [24]. Rt
represents the average number of people infected with a disease [6]. An Rt of 1 means,
on average, an infected person will only infect one person. We estimated Rt based on a
7-day rolling average of confirmed cases. The serial interval distribution (µ = 4.3 days) and
reporting delay distribution (µ = 10.3 days) were used in the estimation [7].

Moreover, to ensure comparability, we standardised the 7-day rolling average of
confirmed COVID-19 cases and vaccination numbers using the min–max scaling method.
The resulting standardised values range from 0 to 10, with 10 corresponding to the highest
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number of confirmed cases and vaccination numbers and 0 representing the lowest. The
min–max feature scaling method is defined as

Xnorm =
X − Xmin

Xmax − Xmin
∗ 10

where Xmax and Xmin represent the maximum and minimum daily confirmed cases in the
lockdown period. This standardisation ensures that each variable contributes equally to
our analysis, a crucial step given the large variation in daily COVID-19 case magnitudes.
We chose to scale to a range of 0–10, as opposed to the typical 0–1 range, to allow for a more
nuanced differentiation between values. This approach enhances the interpretability of our
data, which is particularly beneficial when analysing the diverse magnitudes present in
our study.
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Moreover, to identify the effectiveness of the lockdown, the analysis of doubling time
COVID-19 infection was employed in the data preprocessing section. The doubling time at
day i is defined as

day(i) =
ln(2) ∗ ln(Cum_case i−1 )

ln(Cum_case i )

where Cum_case i and Cum_case i−1 represent the cumulative cases on day i and day i − 1,
respectively. Then, the max–min feature scaling method was applied to the double time
day(i) to avoid the effects of differences in the magnitude of the values within the simulation
model. The normalised double time will be incorporated as an additional feature in the
simulation model.

To determine the relationship strength between social restriction policies and mobility
data, we calculated Pearson’s correlation coefficient (r) between social restriction policy
indicators and Victoria’s mobility data.

In addition, the issue of policy time lags becomes critical when analysing the effective-
ness of social restriction policies on mobility data in the Victorian region. Previous research
has shown a strong correlation between mobility and COVID-19 transmission, with a lag
of about 10 days observed in China [25]. Similar patterns have been observed in Spain [26].
Therefore, in this study, we determine the effective lockdown date by monitoring the initial
decline in overall mobility data. This allows us to determine when restrictions begin to
have a significant impact on people’s lives. The analysis of the effective lockdown data is
carried out by assessing the fluctuations in mobility data during the lockdown period. In
order to merge the various mobility data, we assign weights to each mobility data point in
Table 1, which allows us to calculate overall mobility changes, which are defined as

Overall Mobilityday_i = ∑n
j=1 Wmobiliy_j ∗ Mmobility_j

where Wmobiliy_j represents the weight for mobility attributes j in the mobility dataset, and
Mmobility_j is the value for mobility attributes j on day i. In this study, an equal weighting is
assigned to the combined process. Then, an automated change point detection technique
has been programmed to identify the inflection point in the mobility curve that indicates
the effective lockdown date. This inflection point corresponds to the time when the overall
mobility data begin to decrease. The simulation model will integrate multiple datasets
from the effective lockdown date to the end of the lockdown period.

2.2.2. Establishing the Machine Learning Model

In Phase 3, we have adopted a more comprehensive approach to simulating COVID-19
infection during the lockdown period by incorporating multiple machine learning algo-
rithms rather than relying on a single model. This will allow us to select the most appropri-
ate algorithm for the simulation, improving the accuracy and effectiveness of the process.

In this study, we embark on a thorough exploration of different modelling approaches
to simulate the number of COVID-19 cases in Victoria. We consider various factors, in-
cluding linearity, multilinearity, and the presence of outliers or missing values, to ensure
a well-rounded evaluation of modelling approaches. Recognising the complexity and
multifaceted nature of this task, we explore a range of regression techniques and ma-
chine learning algorithms that have gained prominence in epidemiological research. We
begin our analysis with a linear regression model using independent variables related
to lockdown policies, community mobility, and COVID-19 infection rates. While linear
regression provides a basic understanding, its limitations become apparent, particularly in
the face of multicollinearity [27]. To address these challenges and improve predictive per-
formance, researchers have turned to advanced regression methods such as ridge and lasso
regression [28–30]. These techniques have demonstrated superior accuracy and reliability
compared to traditional linear regression models. In addition, our investigation extends
to Bayesian ridge regression, which proves to be a more robust choice for datasets char-
acterised by collinearity and relatively small sample sizes [31]. Bayesian ridge regression
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excels at dealing with collinearity issues, making it a robust option in situations where data
resources are limited. In addition, elastic net, a linear regression model trained with both L1
and L2 regularization, is effective in variable selection and can deal with multicollinearity,
which is crucial when dealing with the plethora of factors influencing the pandemic.

In recognition of the nonlinear dynamics inherent in COVID-19 time series data, we
look at tree-based algorithms. Models such as random forest and XGBoost regression
have attracted attention for their ability to combat overfitting, excel in the presence of
outliers, and effectively deal with missing data [32–34]. These algorithms provide flexible
solutions for capturing complex relationships within data. Our study also incorporates a
diverse set of machine learning algorithms, including decision trees, kernel ridge regression,
and support vector regression. Kernel ridge regression is effective at capturing nonlinear
relationships by mapping the input data into higher-dimensional spaces, making it adept at
handling the complex and evolving nature of the COVID-19 distribution [35]. This diverse
range of methods allows us to make a comprehensive assessment of their suitability for
modelling the dynamics of COVID-19 cases in Victoria.

The simulation performance of the machine learning models was assessed using the
following metrics: mean squared error (MSE), mean absolute error (MAE), and coefficient
of determination (R2). R2 is widely used to measure the level of fit between the predicted
and observed values of target variables [36,37].

MSE =
∑n

i=1(Yi − Ŷi
)2

n

MAE =
∑n

i=1
∣∣Yi − Ŷi

∣∣
n

R2 = 1 − ∑n
i=1(Yi − Ŷi

)2

∑n
i=1(Yi − Y

)2

where Yi represents the COVID-19 confirmed cases in day i, Y is the average value of
COVID-19 confirmed cases, Ŷi is the predicted number of COVID-19 cases in day i, and n is
the total number of days.

2.2.3. Social Restriction Policy and Mobility Data Effectiveness Analysis

In Phase 4, to assess the effectiveness of policies and their impact on mobility data for
short- and long-term lockdowns, we selected the top five performers based on simulation
metrics. Then, we randomly shuffle attributes in the X dataset to generate new test data
Xnew. The original model error and new estimate error were defined as

Error original= Loss
(

yi, f̂ (x)
)

Error new= Loss
(

yi, f̂ (xnew )
)

where yi is defined as the number of COVID-19 cases in day i, x is the original test data,
while xnew denotes the new test data after random shuffling. f̂ (x) is the predicted number
of COVID-19 cases based on the original test data, and f̂ (xnew) is the predicted number of
COVID-19 cases based on the shuffled test data. To evaluate the effectiveness of our model,
we utilise the MSE as our loss function. The policy effectiveness score of the attribute j is
defined as

E_Scorej = Error new − Error original

Subsequently, the E_Scorej of each machine learning model is calculated. Finally, the
average E_Scorej from all models is utilised to compute the normalised feature score. This
standardisation allows a more direct comparison between variables that originally had
different scales and distributions.
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3. Results
3.1. Exploratory Data Analysis

During the short-term lockdown periods (Lockdowns 1, 3, 4, and 5, Figure 2a,c,d,e), the
tightened restriction policy led to a significant decrease in retail and leisure visits (−37.8%
on average) and public transport use (−72.85% on average), which is accompanied by a
decrease in Rt below 1. Conversely, there was a noticeable increase in residential mobility
(+18% on average). However, the reduction in COVID-19 infection was short-lived. In the
long-term, the Rt started to gradually increase after the lowest point (0.41). This trend was
observed alongside an increase in retail and recreation visits, park visits, workplace visits,
grocery and pharmacy visits, and public transport visits. Furthermore, there was a decrease
in residential mobility data, all of which were recorded during the second lockdown period
(Figure 2b). A similar increasing mobility tendency was also found in the sixth lockdown
(Figure 2f), in which the increasing mobility data may be associated with a significant
increase in daily cases.

To determine the effectiveness of the social restriction policies on limiting public mo-
bility, we conducted a correlation analysis. Overall, stay-at-home orders (r = 0.84, p < 0.001),
workplace closures (r = 0.83, p < 0.001), school closures (r = 0.81, p < 0.001), and public
event cancellations (r = 0.73, p < 0.001) show a robust positive correlation with increases in
the residential mobility data, as shown in Figure 3 and Appendix A. This positive relation-
ship suggests that individuals spent more time in their residences when these restrictive
measures were implemented, reflecting compliance with the lockdown policy and a reduc-
tion in movement within communities. Conversely, these policy indicators are negatively
associated with reduced retail and leisure activities and the reduced use of public transport.
This negative association highlights the alignment of these policies with reduced consumer
activity and reduced reliance on public transport. This observation highlights the impact of
public health policies on the economic and mobility dynamics of the Victoria region.

Furthermore, our analysis reveals a clear negative association between the incidence of
COVID-19 cases (r = −0.71, p < 0.001) and restrictions on gathering. This finding suggests
that the number of COVID-19 cases decreased as restrictions on gatherings increased.
It underscores the effectiveness of such restrictions in reducing the spread of the virus
and highlights the importance of public health interventions in containing the pandemic.
These correlations provide valuable insights into the complex dynamics between policy
interventions, mobility patterns, and COVID-19 outcomes, offering a nuanced perspective
on the multifaceted challenges faced during the pandemic.

To improve the simulation capabilities of the model, we also included doubling time
as an additional attribute during the data preprocessing phase. In the analysis of the
doubling time of COVID-19 infection cases, a red doubling time (see Figure 4) close to
the shortest normalised doubling time of 0 indicates that the daily COVID-19 case takes
a shorter time to double in the infection case, while a longer doubling time close to 1,
shown in green in Figure 4, indicates a longer time to double in the infection case. Overall,
the study observed notable variations in the effectiveness of lockdowns in curbing the
rise of COVID-19 infections, attributable to differences in their durations. In particular,
there was considerable variation in doubling time during the long lockdown period (see
Figure 4b,f). This may be associated with increased visits to retail and recreational areas,
parks, workplaces, food and pharmacy stores, and public transportation. In contrast,
fluctuations in doubling time were generally more stable during the short-term lockdown
period (see Figure 4a,c,d,e) than during the long-term period.

Lastly, the overall mobility data show a significant decrease at the beginning of the 1st,
4th, and 6th lockdowns, followed by a gradual increase (refer to Figure 5). In contrast, the
2nd, 3rd, and 5th lockdowns show fluctuations, first mildly increasing and then decreasing.
By adjusting the efficient lockdown dates to coincide with the first day of mobility decline,
we refined them for use in the machine-learning-based simulation model and determined
the training and test data periods.
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3.2. Model Evaluation

Eleven machine learning algorithms were implemented in this study. Overall, based on
the highest R2 and lowest MSE and MAE, we found gradient boosting regressor, XG boost
regressor, random forest, decision tree, and support vector regression to have achieved the
best performance (Table 4). Thus, they were selected to simulate both short- and long-term
lockdown scenarios.

Table 4. Simulation accuracy test.

Algorithm R2 MSE MAE

Gradient boosting regressor 0.956 0.069 0.051
Random forest 0.947 0.076 0.056

XG boost
Regression 0.941 0.080 0.059

Decision tree 0.893 0.108 0.072
Support vector

Regression 0.821 0.140 0.127

Kernel ridge 0.807 0.145 0.129
Elastic net 0.786 0.153 0.140

Lasso regression 0.769 0.159 0.145
Ridge regression 0.643 0.197 0.179
Bayesian ridge 0.620 0.203 0.184

Linear regression 0.548 0.222 0.200
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Figure 4. Analysis of the normalised doubling time of COVID-19 infection cases. Values that
were normalised to be closer to 1 are shown in green, indicating a longer doubling time. This
indicates that the COVID-19 infection rate among people in Victoria has been effectively controlled.
Conversely, values normalised to be closer to 0 were displayed in red, indicating a shorter doubling
time, indicating that COVID-19 infection cases were increasing rapidly in the Victorian area.
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Figure 5. Effective lockdown date analysis for the lockdown period. The effective lockdown date is
determined by observing a decline in overall mobility data, which typically corresponds to the time
when the lockdown policy comes into effect, allowing us to identify the point at which the restrictions
begin to have a tangible impact on people’s lives. Note that the effective lockdown dates (orange
vertical line) for the 1st, 4th, and 6th closures are marked from the first closure date, as a significant
drop in the combined mobility curve was found.



Data 2024, 9, 3 13 of 19

3.3. Analyzing the Impact of Mobility Data during Short- and Long-Term Lockdowns

Analysis of mobility during the short- and long-term lockdowns showed that retail
and recreation visiting and public transport visiting were the main contributors to reducing
the increase in COVID-19 infection in Vicotria (refer to Table 5). They accounted for more
than 30% of mobility in short-term lockdowns, while public transport alone accounted for
more than 50% in long-term lockdowns, with the remaining measures accounting for less
than 15%. It is also worth noting that both retail and recreation visiting and workplace
visiting showed a significant drop in their effectiveness in curbing COVID-19 cases when
moving from short-term to long-term lockdowns. The remaining mobility measures did
not exhibit significant changes when the duration of the lockdown period changed.

Table 5. Normalised mobility effectiveness score.

Mobility
Measurements

Short-Term Lockdowns Long-Term Lockdowns Sum

Effectiveness
Score

Normalised
Score

Effectiveness
Score

Normalised
Score

Sum Effectiveness
Score

Normalised
Score 1

Public
transport visiting 8.517 32.74% 12.750 54.75% 21.267 43.13%

Retail and
recreation visiting 9.602 36.90% 2.462 10.57% 12.064 24.47%

Workplace
visiting 4.628 17.79% 2.101 9.02% 6.729 13.65%

Grocery and
pharmacy visiting 1.647 6.33% 2.035 8.74% 3.682 7.47%

Residential
mobility data 1.391 5.35% 1.920 8.25% 3.312 6.72%

Park visiting 0.234 0.90% 2.018 8.67% 2.252 4.57%

Total 26.019 100.00% 23.286 100.00% 49.305 100.00%

1 The mobility measurements have been ordered in a descending fashion based on the normalised score.

3.4. Social Restriction Effectiveness Analysis

In terms of policy perspectives (refer to Table 6), the top three policies in terms of
effectiveness scores were the cancelled public events, restrictions on gathering, and school
closing policy, which each accounted for more than 20% of the total policies. Notably, the
effectiveness of restrictions on gatherings decreased significantly as the duration of lock-
downs increased, which may indicate that the public’s compliance with these restrictions
decreased during longer lockdowns. In contrast, only the cancellation of public events
policy and international travel controls were found to be more effective than other policies
in the long-term lockdown.

Table 6. Normalised policy effectiveness score.

Policy
Indicators

Short-Term Lockdowns Long-Term Lockdowns Sum

Effectiveness
Score Normalised Score Effectiveness

Score Normalised Score Sum Effectiveness
Score Normalised Score 1

Cancel public events
policy 10.530 30.14% 14.027 31.85% 24.556 31.00%

Restrictions on
gatherings 8.228 23.55% 3.755 8.53% 11.982 16.04%

School closing policy 9.777 27.99% 0.129 0.29% 9.906 14.14%
Workplace closing

policy 2.192 6.28% 4.295 9.75% 6.487 8.01%

International travel
controls 0.292 0.84% 4.711 10.70% 5.003 5.77%

Stay-at-home
requirements 2.135 6.11% 2.016 4.58% 4.151 5.34%

Close public transport
policy 0.292 0.84% 3.382 7.68% 3.674 4.26%

Restrictions on
internal movement 0.292 0.84% 2.026 4.60% 2.318 2.72%

Contact tracking 0.292 0.84% 2.026 4.60% 2.318 2.72%
testing policy 0.292 0.84% 2.026 4.60% 2.318 2.72%

Facial coverings
policy 0.321 0.92% 2.026 4.60% 2.347 2.76%
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Table 6. Cont.

Policy
Indicators

Short-Term Lockdowns Long-Term Lockdowns Sum

Effectiveness
Score Normalised Score Effectiveness

Score Normalised Score Sum Effectiveness
Score Normalised Score 1

Mandatory
vaccination requirements 0.292 0.84% 2.026 4.60% 2.318 2.72%

Vaccination policy 0.002 0.00% 1.594 3.62% 1.595 1.81%

Total 34.9356 100% 44.0377 100% 78.973 100%

1 The policy indicators have been ordered in a descending fashion based on the normalised score.

4. Discussion

Using machine-learning-based COVID-19 simulation models has provided interesting
insights into the evolving effectiveness of social restriction policies during both short-term
and long-term lockdown scenarios. Of particular interest is the significant decline in the
contribution of the school closure policy, which reaches its lowest level during the transition
from short-term to long-term lockdowns. This observation challenges the conventional
assumption about the effectiveness of school closures as a preventive measure against
increasing COVID-19 infection cases. In contrast to other social restrictions, such as stay-at-
home orders and the cancellation of public events, some recent studies suggest that school
closures may have a limited impact on reducing the spread of the virus [38,39]. Furthermore,
it is important to recognise that school closures have potentially negative consequences
for students’ physical health and general well-being. Research has shown that prolonged
closures are associated with an increased risk of obesity and screen addiction among
students [40]. There has been a significant decline in physical activity among children
and adolescents worldwide, accompanied by an increase in sedentary behaviour [41]. For
instance, a study from Spain revealed a 52% decline in weekly physical activity [42]. At the
same time, a US microsimulation study projected an 11.1% increase in childhood obesity
after two months of school closures, underscoring the significant impact of these closures
on children’s health and well-being [43]. These findings highlight the need for a balanced
approach to the implementation of school closure policies, taking into account both their
limited effectiveness in reducing COVID-19 transmission and their potential adverse effects
on students’ health and development.

Conversely, the international travel control policy showed a striking shift, jumping
to the second-highest effectiveness score in the long-term lockdown analysis. This shift is
particularly noteworthy given its implications for border control measures in the context
of COVID-19 prevention and transmission containment. Recent research has highlighted
the critical role of border control measures in preventing the direct entry of COVID-19
cases and containing the widespread transmission of SARS-CoV-2 [44]. This underscores
the importance of robust international travel control measures, particularly in extended
lockdown scenarios where preventing the introduction of new cases becomes increasingly
important. The remarkable increase in the effectiveness of international travel control
policies during prolonged lockdowns underscores their central role in mitigating the global
impact of the pandemic and serves as a testament to the effectiveness of strategic border
control measures in these challenging circumstances.

With regard to the data on mobility, an interesting pattern was observed when looking
at the measures of mobility during both the short and the long periods of lockdown. In
particular, the mobility curve during the longer lockdowns exhibited a distinct anti-bell
shape. Initially, there was a significant decrease in mobility measures at the beginning of
the long-term lockdown, which was in line with expectations. However, what distinguishes
this observation is the subsequent rebound in mobility that began around the middle
of the lockdown and continued until its end. This phenomenon is consistent with the
findings of a previous European study, which also found a notable decrease in compliance
with restrictions during the middle and late phases of the lockdown [45]. This suggests
a possible relaxation of public compliance with social restrictions as the duration of the
lockdown increased. Consequently, this fluctuation in mobility measures over the course
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of the lockdown had a noticeable impact on the effectiveness of these measures within the
COVID-19 infection simulation model. This underscores the need to consider the dynamic
evolution of public behaviour and compliance with restrictions as a key factor in mitigating
the escalating number of COVID-19 cases in the Victorian region. This is particularly true in
the context of lockdown duration, where a nuanced understanding of evolving compliance
patterns is critical.

Overall, the results of our simulation model have important implications for policy
and practice in pandemic management. The analysis shows that policies such as the cancel-
lation of public events and restrictions on gatherings are highly effective in containing the
spread of SARS-CoV-2, whether the lockdown is short-term or long-term. These findings
are consistent with a Japanese study, which indicated that voluntary event cancellations
could be an effective strategy for reducing COVID-19 infectiousness [46]. The study re-
vealed a decrease in Rt from 2.534 to 1.077 during the restriction period. The cancellation
of mass gatherings was identified in the previous study as another critical factor in pan-
demic prevention [47]. This effectiveness is further underscored by the observed negative
correlation between these measures and various aspects of public mobility, such as visits to
retail and leisure outlets and the use of public transport. Such measures have the potential
to significantly reduce the number of COVID-19 cases by reducing mobility and limiting
opportunities for the virus to spread.

Furthermore, our research provides critical insights for policymakers and public
health officials, particularly regarding the diminishing effectiveness of lockdowns over
longer periods of time. We observed that as the duration of lockdowns increased, their
effectiveness in controlling the spread of COVID-19 decreased. This trend highlights the
importance of understanding the dynamic nature of public behaviour and compliance with
restrictions. It is a key factor that significantly influences the success of these measures
in mitigating the escalation of the pandemic. Recognising this pattern is essential for
formulating effective and sustainable public health strategies. In response to these findings,
we recommend a more adaptive and responsive approach to pandemic management.
Prolonged lockdowns, while initially effective, can lead to “lockdown fatigue”, reducing
public compliance over time. It is therefore essential to complement lockdowns with
other strategies, including effective communication, community engagement, and robust
testing and traceability systems. The continuous monitoring and evaluation of the public’s
response to these measures is essential. By adapting strategies to changing public behaviour,
health authorities can maintain high levels of compliance and effectiveness, striking a
balance between controlling the spread of the virus and minimising the socioeconomic
impact of prolonged lockdowns. This approach not only improves the immediate response
to the pandemic but also contributes to the development of more resilient public health
systems for future challenges.

Lastly, our study’s application of machine learning techniques to analyse the interplay
between social restriction policies, community mobility, and COVID-19 infection under
different lockdown duration scenarios provides a methodological blueprint for future epi-
demiological research, particularly in adapting these methods to other infectious diseases.
The findings are critical for data-driven public health policy, helping policymakers make
informed decisions during health emergencies and tailor interventions to specific scenar-
ios. In addition, our findings are helping to improve predictive models in epidemiology,
integrating variables such as mobility data and social restriction policies to improve the
accuracy of predicting disease spread. This interdisciplinary approach, combining epi-
demiology with data science and public policy, provides new insights for comprehensive
research on disease dynamics and control. Our research not only provides a detailed analy-
sis of pandemic management strategies but also lays the groundwork for future research in
this area to improve public health responses to global health challenges.

A limitation of this study is that the community mobility dataset may not fully capture
all mobility changes in Victoria during the period of social restrictions. The dataset relies
primarily on specific mapping applications and there may be other sources of mobility
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data, such as other transport apps, which are not accounted for in this analysis. These
unaccounted sources could introduce potential biases and gaps in our understanding of
mobility patterns during lockdowns. It is also important to note that the effectiveness of
policies and their impact on mobility may vary depending on cultural, economic, and social
factors. This study focuses on Victoria and the findings may not be directly generalisable to
other regions with different demographics and policy implementation strategies.

5. Conclusions

In summary, this study highlights a significant reduction in compliance with social
restrictions during the middle and final stages of long-term lockdown. This trend is
evidenced by a marked increase in visits to retail and leisure centres, parks, workplaces,
grocery stores, and pharmacies, as well as increased use of public transport. Furthermore,
the proposed machine-learning-based model of COVID-19 stimulation revealed that this
fluctuation in mobility measures over the course of the lockdown had a noticeable impact
on the effectiveness of controlling COVID-19 infection. This underscores the importance of
maintaining ongoing efforts to contain the spread of the virus. Meanwhile, a strong negative
correlation was also observed between social restriction policies, retail and recreation
visiting, and public transport visiting mobility.

In terms of social restriction policies, the proposed model suggests that the cancellation
of public events and restrictions on gatherings are the most effective restriction policies
to prevent the increase of COVID-19 infection in the Victorian region in terms of short-
term and long-term lockdowns. The study provides valuable insights for policymakers in
designing effective lockdown policies that can slow the spread of the virus.

In conclusion, the application of machine learning techniques in our study to analyse
the relationship between social restriction policies, community mobility, and COVID-19
infection across varying lockdown durations provides a valuable framework for future
epidemiological studies. This approach may be particularly useful for adaptation to other
infectious diseases. The knowledge gained is crucial for the design of data-driven public
health policies, enabling policymakers to make informed decisions during health crises
and tailor interventions to different situations.
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Appendix A

Table A1. p values for the correlation analysis.

p-value cases
Retail and
recreation

visiting

Grocery
and

pharmacy
visiting

Park
visiting

Public
transport
visiting

Workplace
visiting

Residential
mobility

data

School
closing
policy

Workplace
closing
policy

Cancel
public
events
policy

Restrictions
on

gatherings

Close
public

transport
policy

Stay-at-
home

require-
ments

Restrictions
on

internal
movement

International
travel

controls

cases <0.001 0.001 0.001 0.266 0.001 0.005 0.002 0.002 0.001 <0.001 <0.001 0.001 0.001 <0.001 <0.001
Retail and
recreation

visiting
0.001 <0.001 <0.001 0.016 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.014 <0.001 <0.001 <0.001

Grocery and
pharmacy
visiting

0.001 <0.001 <0.001 0.024 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001

Park visiting 0.266 0.016 0.024 <0.001 0.038 0.109 0.024 0.018 0.021 0.057 0.091 0.478 0.019 0.086 0.131
Public

transport
visiting

0.001 <0.001 <0.001 0.038 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.011 <0.001 <0.001 <0.001

Workplace
visiting 0.005 <0.001 <0.001 0.109 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.014 <0.001 <0.001 <0.001

Residential
mobility

data
0.002 <0.001 <0.001 0.024 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.018 <0.001 <0.001 <0.001

School
closing
policy

0.002 <0.001 <0.001 0.018 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.023 <0.001 <0.001 <0.001

Workplace
closing
policy

0.001 <0.001 <0.001 0.021 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.018 <0.001 <0.001 <0.001

Cancel
public
events
policy

<0.001 <0.001 <0.001 0.057 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001

Restrictions
on

gatherings
<0.001 <0.001 <0.001 0.091 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 <0.001 <0.001

Close public
transport

policy
0.001 0.014 0.005 0.478 0.011 0.014 0.018 0.023 0.018 0.005 0.003 <0.001 0.019 0.002 0.002

Stay-at-
home

require-
ments

0.001 <0.001 <0.001 0.019 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.019 <0.001 <0.001 <0.001

Restrictions
on internal
movement

<0.001 <0.001 <0.001 0.086 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001

International
travel

controls
<0.001 <0.001 <0.001 0.131 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001
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