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Abstract: Feature selection is a significant issue in the machine learning process. Most datasets
include features that are not needed for the problem being studied. These irrelevant features reduce
both the efficiency and accuracy of the algorithm. It is possible to think about feature selection as
an optimization problem. Swarm intelligence algorithms are promising techniques for solving this
problem. This research paper presents a hybrid approach for tackling the problem of feature selection.
A filter method (chi-square) and two wrapper swarm intelligence algorithms (grey wolf optimization
(GWO) and particle swarm optimization (PSO)) are used in two different techniques to improve
feature selection accuracy and system execution time. The performance of the two phases of the
proposed approach is assessed using two distinct datasets. The results show that PSOGWO yields a
maximum accuracy boost of 95.3%, while chi2-PSOGWO yields a maximum accuracy improvement
of 95.961% for feature selection. The experimental results show that the proposed approach performs
better than the compared approaches.

Keywords: feature selection; artificial intelligence; chi-square; particle swarm optimization; grey wolf
optimization; swarm intelligence

1. Introduction

Feature selection is a process that seeks to discover and remove features from a dataset
that are not relevant or useful. These features are often perceived as unnecessary or
extraneous to the problem being analyzed. Feature selection is used to generate a subset of
attributes to use in constructing models for classification purposes [1]. Feature selection
has been applied in a range of intelligent and expert systems such as intrusion detection [2],
cancer detection [3], sentiment analysis [4], and disease detection and classification [5].

Feature selection methods can be categorized into wrapper-based methods, filter-based
methods, and hybrid-based methods that combine elements from both approaches [6,7].
Filter-based methods (such as information gain [8], chi-square [9], minimum redundancy
maximum relevance (MRMR) [1]) use statistical methods to rank and select the most perti-
nent features. This technique is applied prior to running the machine learning classifier
and does not interact directly with it [10]. Wrapper-based methods utilize an optimization
algorithm in conjunction with the classifier to identify the most suitable features. Wrapper-
based methods are typically employed for feature selection because of their efficiency in
decreasing the amount of features and increasing the classifier’s accuracy, as they have
a direct connection to the classifier being used [10]. Wrapper-based methods are slower
and more computationally expensive than filter-based feature selection techniques. Hybrid
methods combine two distinct methods in order to reap the benefits of both (e.g., ECCSP-
SOA [11], CS-BPSO [12], ISSA [10]).

Metaheuristic algorithms are employed in feature selection techniques to reduce
computational complexity. These algorithms efficiently and accurately optimize feature
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selection problems. Swarm intelligence (SI) and evolutionary algorithms (EA) are the
two primary categories into which these algorithms can be classified.

I. An evolutionary algorithm takes advantage of processes such as reproduction, mu-
tation, recombination, and selection, which are modelled after biological evolution.
The fitness function identifies the quality of candidate solutions to the optimization
problem, which act as members of a population. The original population changes
after several iterations of the evolutionary algorithm, moving towards global opti-
mization [13].

II. Swarm intelligence: The foundation of swarm intelligence is self-organizing group be-
havior, which involves the intelligence that is generated by the collective contributions
of numerous individuals. Since these connections, as seen in nature like in bees or ants,
do not exist naturally in humans, technology uses swarm artificial intelligence (AI) to
provide feedback to human members as demonstrated in [14,15]. Collective behavior
shows that united systems do better than the majority of single individuals. Ad hoc
data and sharing are dynamically generated by the group, and the basis of agreement
is the dissemination of collective wisdom. Briefly stated, swarm intelligence relies
on the “knowledge of the public”, and is desperately needed to address a myriad of
questions [16].

One of the most popular swarm intelligence techniques is the particle swarm intel-
ligence algorithm (PSO). Comparing PSO to other metaheuristic algorithms like GA and
genetic programming (GP), it has been demonstrated that PSO is computationally less
expensive and can converge more quickly. Additionally, PSO tends to be easy to implement.
In terms of speed and memory requirements, it is computationally cheap and has fewer
adjustable parameters [17]. PSO can be customized to perform feature subset selection,
aiming to find the optimal combination of features that should be included in the model.
This process is essential for enhancing model performance by reducing the dimensionality
of the data and eliminating irrelevant or redundant features. Therefore, PSO has been used
as an effective technique in many fields, including feature selection [18]. The grey wolf
optimizer (GWO) is one of the most recent and popular swarm intelligence algorithms.
Compared to other swarm intelligent optimization methods, GWO offers the following ben-
efits: no parameters to change, easy to implement and adapt for optimization challenges,
adaptability, and scalability. GWO has been widely used as a feature selection approach
in several fields during the past few years, including intrusion detection [19], big data
analytics [20], and image classification [21].

This paper is organized as follows: recent research on feature selection is included
in Section 2. Section 3 presents the complete chi2-PSOGWO feature selection technique,
encompassing all its phases. A background study of the algorithms used is provided in
Section 4. Section 5 presents the experimental results obtained, while a summary of and
observations derived from the experiments are presented in Section 6. Section 7 comprises
the conclusion and outlines future work.

2. Related Works

There are several attempts in the literature to develop swarm intelligence algorithms
to improve the process of feature selection and achieve best practice in machine learning.

Seyyedabbasi, Amir [22] applied a wrapper feature selection algorithm to biological
data. A binary sand cat swarm optimization algorithm was proposed to solve the local
optima problem, which caused more complexity, execution time, and cost. They applied
their experiment on 10 datasets. They achieved an average accuracy of 91.18% over
all datasets.

Zivkovic, Miodrag et al. [23] suggested an improvement to the original SSA algorithm.
They observed that the drawbacks of the original SSA are insufficient exploration, average
exploitation power (conditional drawback), and the intensification–diversification trade-
off. The modification was on the current best solution (F). Two control parameters were
introduced instead of random ones. They combined using the original follower equation of
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SSA with the nominal equation of SCA for followers. Their proposed algorithm inherited all
of the original SSA’s complexity but outperformed it in terms of accuracy for most datasets.

Adamu, Abdullahi [11] proposed an enhanced chaotic crow search and particle swarm
optimization technique (ECCSPSOA) and offered a hybrid binary version to address feature
selection issues. The ECCSPSOA approach merely targeted only a few selected crows with
the best food to improve the performance of the original CSA’s random following of every
crow. Another enhancement was the use of chaotic sequences with a starting value of 0.7 to
replace the random variables in the PSO and CSA. The computational results showed that
their method had an average accuracy of 89.67%.

BinSaeedan and Alramlawi [12] suggested a hybrid feature selection algorithm that
combined binary particle swarm optimization (BPSO) and chi-square BPSO (CS-BPSO) to
increase the efficiency of Arabic email authorship analysis. They considered both dynamic
and static features. The outcomes demonstrated that the CS-BPSO approach used dynamic
features to attain remarkable results. They achieved better results with small datasets, short
texts, and imbalanced datasets. In terms of accuracy, the SVM model performed up to
94.32% for static features and 98.84% for dynamic features, but the KNN model had a better
f1-score in AA with dynamic features, coming in at 0.97.

Zouache and Abdelaziz [24] presented a cooperative swarm intelligence algorithm
based on quantum computation concepts and rough set theory (QCSIA-FS) for feature
selection. Particle swarm optimization (PSO) and a firefly system (FA) were combined in
the algorithm to reduce its complexity and improve classification performance. An average
accuracy of 86.79% for the CART classifier and 86.94 for the KNN classifier were obtained.

Wang, Wu [14] introduced a feature selection strategy based on a modified ant lion
optimizer (MALO) and WSVM to learn the dimensionality of hyperspectral image HSIs.
The classification accuracy for the Botswana and KSC datasets was 93.98% and 93.45%,
respectively, when using the MALO algorithm. The experimental results revealed that
their method achieved a satisfactory classification accuracy by utilizing fewer bands and
exhibiting a reasonable convergence orientation.

Sheykhizadeh and Naseri [25] presented a swarm intelligence metaheuristic invasive
weed optimization. Four separate experimental datasets with NIR and FTIR spectral
information were investigated for this purpose. The outcomes demonstrated that IWO’s
performance was on par with that of PSO, GA, and ACO techniques.

Chen, Zhou [26] developed a spiral-shaped mechanism (HPSO-SSM) to choose the best
features for classification using a wrapper-based technique and a hybrid particle swarm
optimization. They added three improvements to HPSO-SSM. According to the applicable
datasets, the experimental results demonstrated that their algorithm’s average accuracy
was 95.07.

Mahapatra, Majhi [1] used a two-stage hybrid model, MRMR-SSA. The first stage
used a filter-based approach to remove unnecessary and unrelated features. The extracted
features were subsequently fed into the wrapper method during the second stage, where
the salp swarm algorithm (SSA) was employed. Their analysis demonstrated that their
method produced improved outcomes, with an accuracy rate ratio of 96.60%.

Tubishat, Idris [10] suggested an enhanced version of the SSA algorithm that ad-
dressed feature selection issues utilizing the OBL technique and the LSA algorithm. The
enhancements, which were integrated into the standard SSA, were utilized to prevent the
SSA from being trapped in local optimum conditions and increase population diversity. To
increase the diversity of the SSA population, the ISSA received the advantage of the OBL
method. Additionally, a new LSA algorithm was incorporated into the ISSA to prevent it
from getting stuck in local optimums. They achieved a maximum accuracy of 99.4%. A
drawback of the ISSA is that it chooses more features than other optimization techniques
across four of the eighteen employed datasets.

Mostafa, R.R., et al. [27] proposed a chameleon swarm algorithm with a consumption
AEO operator as a new iteration of the chameleon swarm algorithm (CSA) for feature
selection. They proposed three modifications to enhance the performance of the original
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CSA, aiming to improve the harmony between exploitation and exploration. First, a nonlin-
ear transfer operator was suggested. Then, to prevent stagnation and early convergence,
they included a randomization Lévy flight control parameter. Thirdly, they improved the
artificial ecosystem-based optimization (AEO) algorithm’s consumption operator, which
strengthens the original CSA’s global search approach. Compared to their rivals, they
increased the speed of convergence towards the best solution for breast cancer detection.
The drawbacks of that algorithm were the large computational time and the large number
of selected features compared with their competitors.

El-Kenawy and Eid [28] introduced a hybrid optimizer optimization procedure that
started with a random sample of individuals. Such individuals had suppressed potential
solutions to the issue at hand. Alpha, beta, and delta represented the first three leaders,
identified after evaluating the fitness function for each individual during each iteration.
After that, the population was evenly divided into two classes, the first of which adhered
to GWO processes and the other to PSO procedures. The PSO and GWO algorithms were
utilized to identify and target potentially significant areas in the search space, resulting in a
comprehensive exploration of these regions.

Alrefai and Ibrahim [29] used microarray datasets as the basis for combining an
ensemble learning method with particle swarm optimization for feature selection and
cancer classification. The preliminary result indicated that the performance results for
colon cancer, breast cancer, leukemia, ovarian cancer, and central nervous system cancer,
respectively, were 92.86%, 86.36%, 100%, 100%, and 85.71% in terms of accuracy.

3. Background
3.1. Overview of PSO

As shown in Algorithm 1, PSO models how knowledge of social behavior grows over
time and how groups communicate when exchanging private knowledge about migratory
patterns, flocking, or hunting. They are known as a swarm and particles, respectively, and
together, they make up a solution. Using its own and its neighbors’ information, a particle
changes its position.

Algorithm 1. PSO pseudo code:

1: initialize population of particles and velocities
2: while t < maximum number of iterations
3: calculate the fitness of all particles
4 updating position and fitness of particles
5: choose the particle of best fitness value and the Gbest of all particles
6: for each particle
7: calculate the velocity of particle by Equation (2)
8: update particle position by Equation (1)
9: end for
10: End while

The swarm starts by producing a collection of random particles, along with their
positions and velocities. Equations (1) and (2) represent the method that is used to update
the particles’ positions:

xij
(t+1) = xij

(t) + vij
(t+1) (1)

vij
(t+1) = wvij

(t) + c1r1(xij
p(t) − xij

(t)) + c2r2(xij
g(t) − xij

t) (2)

where t is the current iteration and w denotes an inertia weight and is used to speed up
population convergence. When xij is the i-th particle location in the j-th dimension, and
vij is the i-th velocity in the j-th dimension. Acceleration coefficients are expressed by the
constants c1 and c2. The terms xij

p(t) and xij
g(t) denote particle i’s best prior position in the

j-th dimension, respectively. r1 and r2 are random parameters between 0 and 1.
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Afterwards, each particle is assessed by PSO’s main loop using a fitness function, and
the results are checked against the local best and global best values [30].

3.2. Overview of GWO

The leadership organization and hunting tactics of grey wolves are modelled by
the GWO algorithm. Grey wolf packs named alpha, beta, delta, and omega are used to
imitate the leadership structure. The three essential elements of hunting, looking for prey,
surrounding prey, and attacking prey, are also utilized. The pseudocode of GWO algorithm
is presented in Algorithm 2.

Algorithm 2. GWO pseudo code:

1: initialize grey wolf populations
2: initialize a, A and c values
3: calculate the fitness of each search agent
4: xα = The best search agent

xβ = The second best search agent
xδ = The Third best search agent

5: while t < maximum number of iterations
6: for each GWO search agent
7: update the position of current search agent by Equation (5)
8: end for
9: update A, c, w
10: calculate the fitness of all search agents
11: update xα, xβ, xδ

12: End while

The grey wolf hunting technique can be summarized as follows: It is reasonable
to assume that the alpha (the best candidate solution), beta, and delta have the greatest
understanding about prospective prey locations. In order to force the other search agents,
including the omegas, to update their locations in accordance with the positions of the best
search agents, the first three best answers are kept. Grey wolves update their locations
using the following equations [31].

Dα =
→
|c1 · →xα −

→
x|, Dβ = |→c2 ·

→
xβ −

→
x | , Dδ = |→c3 ·

→
xδ −

→
x| (3)

→
x1 =

→
xα −

→
A1 ·

→
Dα ,

→
x2 =

→
xβ −

→
A2 ·

→
Dβ ,

→
x3 =

→
xδ −

→
A3 ·

→
D3 (4)

−−−−−→
x(t + 1) =

→
x1 +

→
x2 +

→
x3

3
(5)

where
→
x1,

→
x2,

→
x3 are the distances between each δ, β, and α and the prey. t indicates the

current iteration and A, C are coefficient vectors given by
→
A =

→
2a ·→r1 −

→
a ,

→
c = 2

→
r2.

3.3. Overview of Chi-Square

The chi-square score of each feature and target is computed for feature selection χ2,
and the top two features are chosen. According to the logic behind the calculation of the
“χ2 score”, if a feature has a low “χ2 score”, it is independent of the target class, which
suggests that it is useless for categorizing data samples.

According to the theory behind chi-square score computation, features with low
chi-square scores are independent of the target class and hence useless for categorizing
data samples [32]. Chi-square feature selection assesses the independence of events for a
collection of data. Using Equation (6), the chi-square feature selection approach assesses
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the independence of two events, the occurrence of a feature, and the occurrence of a class
by comparing their occurrence rates [32]:

x2 =
(Oserved f requency − Expectected Frequency)2

Expected Frequency
(6)

4. Proposed Approach

In this paper, the proposed approach aims to enhance the accuracy of feature selection
using two wrapper methods (PSO and GWO). The popular swarm intelligence algorithm,
PSO, operates concurrently with a promising algorithm, GWO, serving as a wrapper
method. The main architecture of this phase is shown in Figure 1. In phase 2, another
enhancement is added to improve the execution time by implementing a filtering method
(chi-square) before this combination. The chi-square filtering method is integrated into the
process to eliminate the most irrelevant features, aiming to decrease the execution time of
the feature selection process. To ensure the precision of the results, the data were catego-
rized based on three parameters: the dimensions of the features, records, and the number
of class attributes before analyzing the results. The first phase of the proposed approach is
mainly compared to a hybrid approach that combines a salp swarm algorithm (SSA) with
particle swarm optimization (PSO), as well as pure PSO and other pure algorithms such
as salp swarm optimization (SSA), a bat algorithm (BAT), and a genetic algorithm (GA).
This evaluation was conducted using seven distinct datasets. The subsequent phase of
the approach was compared to similar hybrid algorithms that incorporated both filtering
and wrapper methods, such algorithms that combine MRMR with PSO (MRMR-PSO),
MRMR-SSA, MRMR-GA, ant colony optimization (MRMR-ACO), and ant lion optimiza-
tion (MRMR-ALO). This comparison was performed using nine different datasets. Finally,
both phases of the approach (before and after the addition of a chi-square filter) were com-
pared to the primary PSO algorithm, and their respective advantages and disadvantages
were discussed.
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4.1. PSOGWO (Phase 1)

In this section, the structure of PSOGWO is outlined, as shown in Figure 1. PSOGWO
combines two wrapper algorithms called PSO and GWO. The objective of this phase is to
assess the effectiveness of integrating GWO and PSO algorithms that have different search
strategies, as shown in [30,31]. PSO is a widely used feature selection algorithm in the
literature. With this change, the PSO’s update mechanism is integrated into the GWO’s
main structure. The detailed structure of the PSOGWO approach is given in phase 1 of
Figure 2.
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In PSOGWO, the first and second steps are to establish the parameters and create a
population that represents a collection of potential solutions to a given problem (feature
selection). The effectiveness of each solution is then assessed by computing its fitness
function and selecting the best one. The PSOGWO algorithm’s subsequent stage involves
updating the population using the GWO and PSO algorithms, which run simultaneously.
The fitness functions of grey wolves and the global best are then compared, and their values
are updated. The fitness function is computed using Equation (7) [33]:

f itness = weightacc × accuracy(agent) + weight_ f eature × tot_ f eat − sel_ f eat
tot_ f eat

(7)

where tot_ feat is the total number of features contained in the agent sel_ f eat, is the number
of features the agent has chosen, and accuracy(agent ) is the classification accuracy supplied
by the agent.

After that, the grey wolves and the global best change their positions according to
these new values and the parameters are updated based on the new position. This operation
is repeated until the end conditions are met. The result is a vector of ones and zeros that
indicates whether a feature was selected or dropped. Phase 1 of the proposed approach is
shown in #phase 1 of Algorithm 3.
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Algorithm 3. Chi square-PSOGWO pseudocode:

1: Initialization dataset
#Phase 2
2: Rank features using Chi-square filter method
3: indicate the chosen features in the minimized dataset
#Phase 1
4: initialize population of particles and velocities
5: initialize grey wolf populations
6: initialize w, a, A and c values
7: calculate the fitness of each search agent and particle
8: while t < maximum number of iterations
9: for each particle
10: update velocity by Equation (2)

update position of particles by Equation (1)
11: end for
12: for each GWO search agent
13: update the position of current search agent by Equation (5)
14: end for
15: compare fitness of Gbest, Localbest and xα, xβ, xδ and update Gbest, xα, xβ, xδ by the best
values respectively (Gbest, Localbest = xα) > xβ > xδ

16: update A, c, w
17: End while

4.2. Chi-Square PSOGWO (Phase 2)

In this section, the integration of PSOGWO with a chi-square filtering algorithm (phase 2)
is described, as illustrated in Figure 3. This phase is composed of the following stages:
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Figure 3. Architecture of phase 2 (chi-square-PSOGWO).

The chi-square technique is used to filter the dataset and select only the necessary and
relevant features. The chi-square score of each feature is determined.

To enable experts to decide by their own insight which extraneous or additional
information to perform, the proposed approach enables the user to handpick the number
of selected feature subsets.

After the filtered features are provided, the hybrid wrapper phase (PSOGWO) initial-
izes the search space. This part involves deciding whether to include a feature or discard it.
So, the output of this stage will be a string of binary numbers, i.e., one for selected features
or one for non-selected features. Figure 2 explains the flowchart of the chi2-PSOGWO
approach. Algorithm 3 presents the detailed pseudocode of the proposed chi2-PSOGWO
approach. A random forest (RF) classifier was applied to measure the accuracy of the
selected features.
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5. Experiments and Results

In this section, the performances of the suggested phases (PSOGWO and chi2-PSOGWO)
are evaluated by comparing the two phases of the proposed approach to other similar
algorithms tackling feature selection [1,30,34].

5.1. Parameter Settings

Python was used to carry out the proposed hybrid structure’s overall implementation.
A personal computer (PC) driven by an Intel i5 processor under Windows 10 and with 8 GB
RAM was used. Table 1 presents the parameter settings of the proposed approach.

Table 1. Parameter settings of algorithms used.

Parameter settings

Number of search agents 30

Maximum number of iterations 100

Number of runs for a single case 10

weightacc 0.5

GWO
r1, r2 are random vectors in [0, 1]

components of a 2 and linearly decrease to 0
over the course of iterations

PSO

w starts from 1.0 and decreases by iterations of
1.0—(iter_no/max_iter)

r1, r2 are random vectors in [0, 1]
c1, c2 = 1

Chi-square

The standard parameters for original
chi-square algorithm were used

Selection method = numTopFeatures
Top features = Experts’ handpick

5.2. General Data Settings

According to the literature [1], the feature count ranges from 0 to 19 in the lowest
category, from 18 to 46 in the medium category, and 50 and above in the highest category
for every attribute selection issue. The number of records is categorized following the same
idea of feature categorization approach as that shown in Table 2.

Table 2. Summary of categories of used datasets.

No. of
Features Category No. of Records Category

[0, 18] Lower (L) [0, 300] Lower (L)
[19, 46] Medium (M) [301, 500] Medium (M)
[50, ∞] Higher (H) [501, ∞] Higher (H)

To prepare the datasets for the task, both real and categorical values are transformed
into numeric data. The data are unstructured and have a wide range of values. This varia-
tion creates problems in training a model. So, a minimal maximum scaling strategy is then
used. A MinMaxScaler normalization technique is used to ensure that the scales of all the
data in the database are similar by bringing them all to a common range. All data values can
be scaled to have values between 0 and 1 using the MinMaxScaler normalization technique.
The normalization technique used by MinMaxScaler is indicated by Equations (8) and (9).

Xstd = (X − X.min) (X.max − X.min) (8)

Xscaled = Xstd ∗ (X.max − X. min) + X. min (9)
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The minimum and maximum values for the feature X under consideration are denoted
by the terms min and max in Equations (8) and (9). For a specific feature, the normalized
values are provided by Equations (8) and (9). All of the values in the datasets are fitted and
transformed before being utilized for training and testing [35].

Each dataset is split into test and training instances using the 70–30 rule (70% of
training instances, 30% of testing instances).

5.3. Experiment 1

The proposed PSOGWO approach is compared to another hybrid algorithm called
the SSAPSO algorithm. SSAPSO is an integration of particle swarm intelligence (PSO) and
salp swarm intelligence algorithm (SSA). It is also compared to the pure PSO algorithm
and other pure algorithms like the BAT and GA algorithms [30,34].

5.3.1. Dataset Settings

A set of UCI datasets is utilized to test the first phase [36]. Table 3 shows the seven
datasets used in this experiment.

Table 3. PSOGWO dataset discerption.

NO. Dataset Features Records Class Variables

1. Ionosphere 34 351 2
2. Hepatitis 19 155 2
3. Heart 13 270 2
4. Breast cancer 9 683 2
5. Sonar 60 208 2
6. Lymphography 19 148 4
7. Waveform 21 5000 3

5.3.2. Results and Discussion

The performance of PSOGWO is assessed by passing the selected features to the classi-
fier to determine the accuracy of feature selection. To achieve a more accurate comparison
with competing algorithms, identical datasets and classifiers (KNN) of the competitors’
algorithms were used.

As demonstrated in Figure 4, the highest accuracy measure was achieved by PSOGWO
in the ionosphere, hepatitis, and heart datasets, which are in the medium (M) and low
(L) categories in terms of their number of features and records, respectively. However, its
accuracy decreases in the breast cancer dataset, which has a higher number of records,
and the sonar dataset, which has a higher number of features. Table 4 explains why the
PSOGWO phase appears in the first stage in three datasets and in the second stage in one of
the seven datasets that were utilized. It performs better with a medium number of records,
lower features, and lower target (no. of classes). Throughout this experiment, it can also be
observed that phase 1 performs better in a lower number of classes.

Table 4. The results of the accuracy (%) evaluation of feature selection in all datasets.

No. Dataset SSA SSAPSO GA BAT PSO PSOGWO
Notes

Feature Records Classes

1. Ionosphere 93.9 95.1 91.6 90.4 94.9 95.3 M M 2

2. Hepatitis 71.7 74.8 64.3 62.9 72.1 85.3 M L 2

3. Waveform 78.49 79.13 78.38 79.29 79.47 87.3 M H 3

4. Heart 82.3 84.7 79.0 76.1 83.1 83.3 L L 2

5. Breast cancer 96.3 97.8 97.5 97.2 97.6 74.3 L H 2

6. Sonar 94.43 96.20 96.70 95.27 96.94 87.4 H L 2

7. Lymphography 94.43 90.20 96.70 95.27 97.6 88.2 M L 4
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5.4. Experiment 2

This experiment compares the results of the chi2-PSOGWO approach against MRMR-
PSO, MRMR-SSA, MRMR-GA, MRMR-ALO, and MRMR-ACO algorithms explained in [1].
In the initial stage of the proposed configured model, the chi-squared algorithm is param-
eterized in terms of counts of features to identify the most important features from the
various features in the datasets. Consequently, the obtained features of the first stage are
evaluated by the second stage (PSOGWO) in order to reach the final subset of features.

5.4.1. Dataset Settings

The suggested chi2-PSOGWO hybrid approach is evaluated through a number of
trials using different Kaggle datasets [37]. Table 5 gives an overview of the datasets that
were used. The name of the dataset, the number of features or attributes, the record number
in each dataset, and the class variables to which each dataset belongs are the four different
types of descriptions that are included in the table.

Table 5. Chi2-PSOGWO dataset discerption.

NO. Dataset Records Features Class Variables Filter Selection

1. Abalone 4177 8 3 6
2. Breast cancer 569 30 2 15
3. Banknote authentication 1372 5 2 4
4. Car evaluation 1727 6 4 5
5. Heart disease 303 13 2 9
6. Habitats 142 19 2 10
7. Iris 150 4 3 3
8. Lymphography 148 18 4 10
9. Wine 178 13 3 10
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5.4.2. Result and Discussion

This section examines the outcomes of the hybrid chi2-PSOGWO approach in com-
parison with other hybrid filter–wrapper approaches, such as MRMR-SSA, MRMR-PSO,
MRMR-GA, MRMR-ACO, and MRMR-ALO [1]. The evaluation is based on their accuracy
(in %) assessed by the RF classifier and uses the dataset group of the competitor algorithms.
as depicted in Table 5.

An analysis presented in Table 6 shows that chi2-PSOGWO is the most successful
in the breast cancer, heart disease, habitats, and wine datasets. Additionally, it showed
better performance when the number of features and records was medium (M) or low
(L). However, when the number of records increased (e.g., in the banknote authentication
dataset), accuracy diminished, even when the number of records was high. Also, it operates
more effectively with lower class attributes. As demonstrated in Figure 5, the suggested
approach performs better with a medium dimension of features. It also performs better
with a lower number of records.

Table 6. Comparing accuracy using RF classifier (%).

NO. Dataset MRMR-
SSA

MRMR-
GA

MRMR-
ALO

MRMR-
ACO

MRMR-
PSO

Chi2-
PSOGWO

Notes

Features Records Class
Attributes

1 Abalone 78.87 77.73 54.33 76.57 56.38 53.54 L H 3

2. Breast cancer 93.69 89.08 92.72 93.89 91.83 97.24 M H 2

3. Banknote
authentication 95.63 88.17 94.42 96.12 94.42 87.10 L H 2

4. Car evaluation 73.87 73.33 70.22 74.82 70.71 61.01 L H 4

5. Heart disease 82.98 80.67 84.44 82.98 81.02 95.961 L M 2

6. Habitats 88.53 80.09 84.68 89.71 88.98 92.5 M L 2

7. Iris 94.42 94.42 96.84 87.73 96.60 95 L L 3

8. Lymphography 86.89 83.33 80.00 82.22 84.95 81.33 M L 4

9. Wine 95.63 95.72 86.89 92.72 92.72 99.44 L L 3
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5.5. Experiment 3

In this section, the two phases of the approach proposed in this paper, chi2-PSOGWO
and PSOGWO, are compared to the main PSO algorithm in terms of accuracy. The goal is
to evaluate the improvement achieved by combining the main particle swarm intelligence
algorithms with other wrapper-based methods (GWO) and filter-based methods (chi-
square). Execution time is used to determine if incorporating the filter-based algorithm
(chi-square) affects the performance of the PSOGWO combination.

5.5.1. Dataset Settings

The same dataset group (Table 2) as in experiment 1 is used to compare the two phases
of the proposed approach.

5.5.2. Results and Discussion

The effectiveness of the PSO and GWO combination can be showcased through exper-
iments carried out on datasets of diverse dimensions, record sizes, and class attributes. The
experiments, as depicted in Figure 6, reveal a noticeable enhancement in the accuracy of
PSO when integrated with GWO in datasets such as ionosphere, hepatitis, heart, waveform,
and lymphography. Furthermore, in the case of the breast cancer, hepatitis, and wave-
form datasets, chi2-PSOGWO is involved in the second stage. As shown in Table 7, the
two phases of the proposed approach show an improved performance in categories with a
medium number of features, with no noticeable impact on the number of records or class
attributes. Table 8 demonstrates the execution time of both PSOGWO and chi2-PSOGWO
across all the datasets. Figure 7 presents a comparison of the execution time in the two
phases of the proposed approach. The chi2-PSOGWO approach exhibits a reduced execu-
tion time compared to the PSOGWO method in the majority of datasets. This is attributed to
the filtering performed by the chi-square algorithm, which effectively reduces the number
of features entering the subsequent stage and thereby minimizes computational time.
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Table 7. Comparing accuracy of PSO, PSOGWO, and chi2-PSOGWO.

Datasets PSO PSOGWO Chi2-
PSOGWO Features Records Classes

Breast cancer 97.6 74.3 75.3 L L 2

Sonar 96.94 87.4 67.7 L H 2

Ionosphere 94.9 95.3 94.7 M M 2

Hepatitis 72.1 85.3 81.3 M M 2

Heart 83.1 83.3 82 M L 2

Waveform 79.47 87.3 81.72 M H 3

Lymphography 87.425 88.2 84 M L 4
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Table 8. Comparing execution time of PSOGWO and chi2-PSOGWO.

Datasets PSOGWO Chi2-
PSOGWO Features Records Classes

Ionosphere 649.55 412.97 M M 2

Hepatitis 65.5 20.8 M M 2

Heart 12.77 9.2 M L 2

Breast cancer 16.9 19.7 L L 2

Sonar 17.11 16.7 L H 2

Lymphography 55.946 14.49 M L 4

Waveform 649.55 412.965 M H 3
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6. Summary and Observations

The proposed approach entails assessing the accuracy and execution time of the PSO
algorithm subsequent to its hybridization with both a wrapper method (GWO) and a
filter method (chi-square). The performance of this hybrid approach was then compared
with other pure and hybrid algorithms to determine its effectiveness. The datasets were
categorized based on their parameters, such as the number of features, records, and class
attributes (Tables 3 and 5). The dataset was preprocessed by converting the non-numeric
data into numeric data; any null values were removed to ensure accurate performance and
the Minimum–Maximum Scaler was applied to scale the records to a common range. To
ensure a precise comparison, the same classifiers (RF, KNN) were employed across the
compared algorithms. The proposed approach excels in two phases: surpassing the pure
PSO algorithm (Figure 6, Table 7) and outperforming other significant pure and hybrid
algorithms in terms of accuracy (Tables 4 and 6, Figures 4 and 5). It can be observed
that a learning algorithm’s running time may be significantly decreased by considerably
reducing the number of redundant features, which aids in understanding the fundamental
complexities of a practical classification problem (Figure 8). Therefore, the reason that the
chi2-PSOGWO approach has lower accuracy than PSOGWO could be attributed to the
fact that it may overlook some important features. Another possible explanation is that
the fitness function uses the ratio between the difference between the selected features
and the original features to the original feature set. When a smaller (filtered) dataset is
used, it is possible for this ratio to decrease. This decrease in ratio could result in a lower
theoretical accuracy compared to the situation where no filters are applied, as demonstrated
in Equation (7).

However, the accuracy measured by chi2-PSOGWO was acceptable for effectively
reducing running time and maintaining a high prediction accuracy, as shown in Figure 7.
As a conclusion, the results were very encouraging in terms of achieving superior per-
formance and outperforming benchmark algorithms in many cases compared to other
similar approaches.
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7. Conclusions and Future Work

This paper has the purpose of effectively tackling the challenges associated with
feature selection and presents an approach that effectively resolves these issues. Various
difficulties related to feature selection, such as classification accuracy and execution time,
have been thoroughly evaluated. The proposed approach was implemented in two distinct
phases, with each phase utilizing a unique dataset to achieve the best practice. Based on
the experimental data, the proposed approach demonstrated its superiority over existing
feature selection techniques. A comparative analysis was conducted between the two
phases of the proposed approach and several established methods. The experimental results
further confirmed that both the chi2-PSOGWO and PSOGWO algorithms demonstrated a
noticeable enhancement in accuracy compared to other hybrid techniques. However, the
chi2-PSOGWO algorithm exhibited a superior improvement in both accuracy and execution
time. This research holds the potential for further improvement and application in various
domains, including multi-objective problems, engineering design, parameter estimation,
text clustering, text summarization, text categorization, image segmentation, mathematical
benchmark functions, and other feature selection applications.
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