
Citation: Tene, T.; Bonilla García, N.;

Sáez Paguay, M.Á.; Vera, J.; Guevara,

M.; Vacacela Gomez, C.; Bellucci, S.

Dataset for Electronics and

Plasmonics in Graphene, Silicene, and

Germanene Nanostrips. Data 2024, 9,

26. https://doi.org/10.3390/

data9020026

Academic Editor: Vladimir

Sreckovic

Received: 2 January 2024

Revised: 28 January 2024

Accepted: 29 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Data Descriptor

Dataset for Electronics and Plasmonics in Graphene, Silicene,
and Germanene Nanostrips
Talia Tene 1 , Nataly Bonilla García 2, Miguel Ángel Sáez Paguay 2, John Vera 2, Marco Guevara 3 ,
Cristian Vacacela Gomez 3,* and Stefano Bellucci 3,*

1 Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
2 Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
3 INFN-Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
* Correspondence: vacacela@lnf.infn.it (C.V.G.); bellucci@lnf.infn.it (S.B.)

Abstract: The quest for novel materials with extraordinary electronic and plasmonic properties is an
ongoing pursuit in the field of materials science. The dataset provides the results of a computational
study that used ab initio and semi-analytical computations to model freestanding nanosystems. We
delve into the world of ribbon-like materials, specifically graphene nanoribbons, silicene nanoribbons,
and germanene nanoribbons, comparing their electronic and plasmonic characteristics. Our research
reveals a myriad of insights, from the tunability of band structures and the influence of an atomic
number on electronic properties to the adaptability of nanoribbons for optoelectronic applications.
Further, we uncover the promise of these materials for biosensing, demonstrating their plasmon
frequency tunability based on charge density and Fermi velocity modification. Our findings not
only expand the understanding of these quasi-1D materials but also open new avenues for the
development of cutting-edge devices and technologies. This data presentation holds immense
potential for future advancements in electronics, optics, and molecular sensing.

Dataset: https://doi.org/10.17605/OSF.IO/BMUSV

Dataset License: CC-BY-4.0
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1. Introduction

In recent years, extensive research has been dedicated to exploring two-dimensional
(2D) hexagonal materials arranged in a honeycomb-like lattice [1]. While graphene stands
out as the most prominent paradigm of such materials, the inherent incompatibility of
carbon-based materials with predominant silicon-based and germanium-based electronics
renders graphene currently impractical for widespread application [2]. Consequently,
significant research attention has turned towards alternative candidates within the group
IV elements, namely silicene and germanene, which serve as analogs to graphene for silicon
and germanium elements [3].

While carbon (C), silicon (Si), and germanium (Ge) are classified within the same group
IV on the periodic table, their structural characteristics diverge, primarily due to variations
in orbital hybridization patterns [4]. Specifically, the energy required for s and p orbital
hybridization in C significantly exceeds that in Si and Ge. Consequently, C tends to favor
sp2 hybridization [5], leading to a configuration where all C atoms reside within the same
plane. In contrast, silicene and germanene, featuring Si and Ge atoms, respectively, exhibit
a mixed sp2-sp3 hybridization [6]. This leads to the formation of a characteristic buckled
honeycomb lattice structure, wherein silicene and germanene deviate from a coplanar
arrangement [7].
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Additionally, the electronic band structures of these materials reveal linear bands
that give rise to Dirac cones at the K and K′ points within the 2D hexagonal Brillouin
zone (BZ) [8]. While graphene comprises lightweight C atoms, silicene and germanene
comprise heavier Si and Ge atoms. Consequently, the role of the spin–orbit interaction in
their behavior becomes increasingly significant [9], paving the way for remarkable new
physics insights, particularly in the context of topological insulators [10].

In the realm of 2D material-based electronic devices, one of the crucial electronic
parameters influencing their performance is the bandgap [11]. Consequently, the ability to
adjust the bandgap of 2D materials, such as graphene, silicene, and germanene, is a critical
effort for their effective utilization in optoelectronic devices [12]. Notably, graphene, silicene,
and germanene inherently possess zero bandgaps. Nevertheless, they do exhibit a finite
bandgap when transitioning into a nanoribbon configuration [13] (i.e., quasi-1D systems),
namely graphene nanoribbons (GNRs), silicene nanoribbons (SiNRs), and germanene
nanoribbons (GeNRs). Interestingly, the bandgap of these nanoribbons can be readily
adjusted through processes such as hydrogenation or altering the ribbon width [14].

From the plasmonics viewpoint, the concept of plasmon-enhanced infrared optical
absorption, leveraging graphene, holds significant promise as a spectroscopic method for
investigating the vibrational modes within intricate biopolymers (such as proteins, nucleic
acids, and synthetic polymers) [15]. In pursuit of enhancing the 2D plasmon excitation
of graphene, GNRs have been arranged into 2D periodic arrays [16–18]. This technique
has demonstrated its efficacy in discerning the vibrational modes of gas molecules [19].
Particularly, GNRs exhibit two distinct plasmon modes [20]: a 2D plasmon and an edge
plasmon. The first mode, the 2D plasmon, is noteworthy due to its high tunability and
versatile applications in the infrared and terahertz domains. Conversely, the second mode
(observed at the eV scale) is solely modifiable by adjusting the ribbon width and is linked
to quantum charge confinement.

While extensive research, both experimental and theoretical, has been conducted
on the electronic and plasmonic characteristics of graphene and GNRs, there is a grow-
ing interest in exploring these properties within the realm of SiNRs and GeNRs. This
heightened focus is driven by their potential versatility within current semiconductor
technology. From a theoretical perspective, the prevalent approaches for probing the elec-
tronic and plasmonic properties of such systems encompass the density functional theory
(DFT) [21], time-dependent density functional theory (TDDFT) [22,23], and Green’s func-
tion method [24]. Nonetheless, these ab initio methods face challenges when addressing
more intricate systems, such as experimentally realized GNRs spanning from 100 to 500 nm,
involving a substantial number of atoms [20]. This limitation can be overcome by adopting
semi-analytical models [25], which have demonstrated favorable agreement with prior
experimental findings and theoretical predictions.

The data presented and discussed in this study offer a comparative analysis of the
electronic and plasmonic characteristics of GNRs, SiNRs, and GeNRs, all with a consistent
ribbon width of 155 nm. Our modeling approach enables the estimation of essential pa-
rameters such as effective mass, bandgap, density of states (DOS), and plasmon frequency
tunability. We explore ground state properties within a few meV and demonstrate plasmon
tunability at the terahertz (THz) scale, a crucial domain for prominent 2D materials-based
plasmonic effects. The key input parameter in our semi-analytical model is the Fermi veloc-
ity of graphene, silicene, and germanene in their freestanding configurations, which we
determined through DFT calculations and refined using the GW approximation. To emulate
the effect of nanoribbon systems deposited on various substrates, we increased the Fermi
velocity by up to 75%, aligning with prior observations in the case of graphene on h-BN
substrates [26]. Our findings underscore the potential effectiveness of this combined density
functional computations and straightforward semi-analytical model by setting experimental
parameters or supplementing data from more sophisticated theoretical frameworks.
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2. Theoretical Framework

Before delving into the theoretical framework, it is worth noting that we initially
employed a comparable approach using conventional DFT computations based on local
density approximation (LDA) to calculate the Fermi velocity [27]. However, in this ap-
proach, the calculated Fermi velocity (0.86 × 106 m/s) fell below the experimental value
for graphene (1.1 × 106 m/s) [28]. Despite this, we proceeded to explore the potential
applications of wide GNRs in biosensing using this approach [29,30]. Recently, we have
enhanced our calculations by employing the GW approximation method to investigate
silicene and germanene strips [31,32]. Therefore, in this current study, our aim is not to
reiterate the previously stated findings but rather to present a comparative analysis of
the electronic properties and plasmon characteristics of GNRs, SiNRs, and GeNRs, all
possessing a ribbon width of 155 nm.

We chose a ribbon width of 155 nm because of two important points from the experi-
mental perspective:

• GNRs of the same width order have been synthesized in [20] using high-quality
chemical vapor deposited (CVD) graphene on Al2O3 substrates;

• Minimize the effects of quantum confinement. For instance, it has been reported by
Yang et al. [33] that GNRs with widths less than 57 nm exhibit pronounced sensitivity
to quantum confinement. In our present study, our systems are nearly four times
larger than the threshold where such effects become prominent, ensuring that the
semi-analytical model can be applied without constraints.

2.1. Semi-Analytical Framework

To begin, we use the approach introduced by Popov et al. [25] (see Refs. inside). The
underlying principle of the semi-analytical model is rooted in the linear dispersion of
charge carriers in 2D Dirac-like materials (such as graphene, silicene, and germanene),
particularly in the vicinity of the Fermi level and around the K points in the first BZ. The
dispersion relation for charge carriers (e.g., electrons or holes) in this approximation is
given using [6,25]:

E(k) = ±ℏvF|k| (1)

• E(k) is the energy of the charge carrier as a function of the wave vector k;
• ℏ is the reduced Planck constant;
• vF is the Fermi velocity of electrons/holes;
• |k| is the magnitude of the wave vector k, representing the momentum of the

charge carrier.

By calculating the first derivative of E(k) with respect to k in Equation (1), one can
determine the Fermi velocity using the following expression [6,27]:

vF =
1
ℏ

∂E
∂k

(2)

Applying the concept of Equation (2), the Fermi velocity can be extracted through
a linear fit conducted on the band structure data obtained using the DFT-GW method
(see next subsection). This analysis involves calculating the slope of the linear fit and
subsequently multiplying it by 1/ℏ.

On the other hand, the effective mass (m∗) in 2D Dirac-like materials as [25,27]:

m∗ = ℏ kF

vF
(3)

By extracting kF from Equation (1), Equation (3) can be expressed as:

m∗ =
EF

vF
2 (4)
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where EF is the Fermi energy. In the context of nanoribbons, the effective mass is often
calculated using the bandgap value (∆) instead of the Fermi energy because nanoribbons
typically have a finite (direct) bandgap, resulting in the following expression [25,27]:

m∗ =
∆

vF
2 (5)

where the bandgap is calculated using Equations (3) and (5), and taking for simplicity
k = 2 π/λ = 2 π/w, as follows [25]:

∆ =
2 π vF ℏ

w
(6)

Here, w is the ribbon width. After determining the bandgap and effective mass as
functions of the ribbon width and the Fermi velocity, we can estimate the energy band
structure of GNRs, SiNRs, and GeNRs using the following expression [25,28]:

En = ±∆
2

√
n2 +

2 ℏ2 k2

m∗ ∆
(7)

where n is the 1D integer band index number. It is worth emphasizing that in Equation (6),
as the ribbon width increases (w → ∞ ), both the bandgap and Equation (7) approach
zero ( ∆ → 0 and En → 0 , respectively, as the case of ideal 2D Dirac-like materials). This
observation indicates that quantum confinement becomes progressively less significant.
Now, we can analyze the DOS spectrum by analyzing the band structure data through a
conventional histogram with evenly sized bins.

In the previous Equations (3)–(7), the electronic properties are calculated for an isolated
nanoribbon. Plasmonic properties, on the other hand, can be investigated for both isolated
systems and periodic arrangements, with the latter taking the form of 2D arrays. To achieve
this, we can employ the following expression [25]:

ω = Re

[√
2 π e2 N2D

ε m∗ q cos2 θ

]
(8)

Compared to our previous works, Equation (8) considers an electron relaxation rate of
v = 0 in this study, indicating the absence of electron scattering or relaxation within the
material. However, it is worth noting that a comprehensive analysis of these parameters
can be found in Refs. [31,32].

In Equation (8), e, ε, q, θ, and N2D represent the electron charge, dielectric constant,
wave vector, excitation angle, and 2D charge density, respectively. Specifically, the 2D
charge density can be employed to customize Equation (8) and analyze the ribbons as either
isolated systems or periodic arrays using the following expression [13,25,31,32]:

N2D =
N1D

d
(9)

Here, N1D is the one-dimensional (1D) charge density, and d is the vacuum distance
between attached ribbons. Subsequently, Equation (8) can be formulated as follows [32]:

ω = Re

[√
2 π e2 N1D

ε m∗ d
q cos2 θ

]
(10)

However, as mentioned above, when the nanoribbons are organized as 2D periodic
arrays, the response of the 2D plasmon mode is notably improved, and this is the main
motivation for using Equation (8) as written.
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In this context, the 2D charge density can be calculated from the Fermi level approach,
as follows [29,30]:

EF = ℏ vF
√

2 π N2D (11)

Reorganizing Equation (11), the 2D charge density can be expressed as [29,30]:

N2D =
1

2 π

(
EF

ℏ vF

)2
=

1
2 π

(
∆

ℏ vF

)2
(12)

As noted, the Fermi velocity of 2D Dirac-like materials plays a crucial role in
Equations (1)–(12) and, more broadly, in the entire semi-analytical modeling approach.

2.2. DFT-GW Approach

For further details, see Refs. [31,32]. The ground-state properties of 2D Dirac-like
materials (i.e., graphene, silicene, and germanene) were determined through DFT using
the Abinit software (Version 6.3) [34], with a specific focus on the LDA [35]. The number
of plane waves (PWs) is limited by the energy cut-off of ~680 eV. To cancel the effect
of core electrons, norm-conserving pseudopotentials of the Troullier–Martins type were
utilized [36]. To satisfy the 3D periodicity necessary for PW-DFT calculations, we set a
vacuum separation of 20 Å along the z-axis. This study focuses on freestanding systems,
and the need for geometric optimization was deemed unnecessary, as its influence on the
determination of charge carrier velocity was found to be negligible, extending to no more
than the third significant digit. The structural parameters (lattice constant and buckling)
are reported in Table 1. To compute the band structure of all systems, we prepared a high-
resolution Monkhorst–Pack grid [37] of 540 × 540 × 1, enabling the calculation of the linear
band structure of graphene, silicene, and germanene near the K point and incorporating
up to eight bands. The Kohn–Sham electronic structure, encompassing the ground-state
energy and electronic density, serves as the initial input for the subsequent GW calculation.

Table 1. Summary of structural parameters of freestanding systems under study.

Material Lattice Constant (Å) Buckling (Å)

Graphene 2.46 0.00
Silicene 3.82 0.45

Germanene 4.01 0.64

To enhance the precision of DFT calculations, it becomes crucial to account for many-
body effects, and one effective method to achieve this is by employing the many-body GW
self-energy approach [38]. The GW method is a well-established technique for enhancing
the accuracy of DFT calculations, and this improvement is achieved by incorporating the
many-body GW self-energy formulation. In our computations, we simplify the approach
by omitting vertex corrections in both polarizability and self-energy calculations. As
mentioned earlier, we build upon the Kohn–Sham (KS) electronic structure to construct the
G and W components as part of the GW procedure. Finally, to facilitate efficient integration
across frequencies, we adopt the contour deformation (CD) scheme [39].

To emphasize, we solely implemented the one-shot G0W0 approach, a non-self-
consistent method. This technique involves computing the Green’s function (G0) and
the screened Coulomb interaction (W0) directly from the initial density functional theory
(DFT) outcomes without engaging in any subsequent iterative refinement. Additionally, our
calculations did not incorporate any form of (partial) self-consistent GW methodologies.

We point out this in our GW calculations for graphene. We chose LDA for its compu-
tational efficiency and proven accuracy in this specific context [13,32]. While generalized
gradient approximation (GGA) or hybrid functionals might offer certain advantages in
modeling complex exchange-correlation effects, the LDA-GW approach is less computa-
tionally demanding, allowing for more extensive sampling or larger systems within the
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same computational budget. Notably, in our study, LDA-GW achieved a Fermi velocity
within 1.6% of the experimental value for graphene, underscoring its effectiveness. This
precision, combined with computational simplicity, makes LDA-GW particularly suitable
for materials like graphene, where key electronic properties are captured accurately without
the need for more complex functionals.

Furthermore, all refined DFT-GW computations were carried out on the tier-0 high-
performance computing (HPC) facility known as Marconi, which is operated by the
CINECA Consortium in Italy. Given the advanced capabilities of this facility, each calcula-
tion was completed in less than 0.5 real hours (non-computational hours), though this was
preceded using several preparatory tests.

3. Data Description
3.1. Data Generation

The datasets accompanying this study as supplementary files provide the data com-
piled during the computational studies in [13,27,31,32]. The primary file is separated into
subfolders that are denoted in Scheme 1. A root directory has been established, comprising
three distinct subdirectories. The first, titled ‘Ab initio calculations’, contains both the input
and output files pertinent to density functional theory calculations. The second subdirec-
tory, named the ‘Semi-analytical model’, houses files associated with the semi-analytical
model employed to analyze electronic and plasmonic properties. Lastly, the third folder,
labeled ‘Abinit Version Used’, contains the specific version of the Abinit software that
was utilized.
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Within the ‘Input files’ subfolder, as an example for silicene, there are five key files.
The first is a pseudopotential file for silicon of the Troullier–Martins type. The second,
‘silicene.files’, interfaces with the Abinit software to set up calculations. The third file, ‘sil-
icene_den.in’, is dedicated to computing electron density. The fourth file, ‘silicene_bnd.in’,
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calculates the band structure. Lastly, the ‘KSS.in’ file is responsible for determining the
refined Kohn–Sham electron structure. The results of all these calculations are in the
respective output folder.

After completing the ab initio calculations for the various systems under investigation,
we extract the primary parameter of the semi-analytical model: the Fermi velocity. For
ease of calculation and result visualization, this model is implemented in a Mathematica
worksheet. However, the simplicity of the model’s underlying equations allows for the use
of alternative software for analysis and data plotting. With this in mind, two folders have
been created, each containing specific files for analyzing electronic and plasmonic properties.
These are named ‘All systems electronics.nb’ and ‘All systems plasmonics.nb’, respectively.

Note that all numerical data and figures in this study were generated conventionally
using Mathematica software. Specifically, all fittings and computations were performed
using Mathematica 12, licensed in 2019 through CEDIA: https://www.cedia.edu.ec/es/
licencias-wolfram.

3.2. Electronics Properties: Freestanding Systems

We point out that while the semi-analytical model effectively derives the properties of
nanostrips, our focus on GW calculations is driven by the need for accurate Fermi velocity
estimation. As an example, for graphene [13], the conventionally used Fermi velocity
(1.1 × 106 m/s [28]) notably varies from experimental and GW-calculated values. These
variations are crucial at the THz scale (≤0.1 eV), where our research is focused, as they can
significantly impact the predicted electronics and plasmonics. Therefore, GW calculations
are essential for the accuracy and predictive validity of our results at this scale, aligning
with future experimental verifications and applications.

Figure 1 presents a comparative analysis of the band structures of freestanding
graphene (Figure 1A), silicene (Figure 1B), and germanene (Figure 1C) along the ΓM
path at the Fermi level and in the vicinity of the K point, obtained using both the LDA
(black points) and GW (red points) approaches. While all these systems exhibit linear band
dispersion, it is noteworthy that the slopes derived from GW calculations are consistently
vertical than those obtained from LDA computations. This outcome suggests a higher
Fermi velocity in all cases (see Table 2).

Table 2. Summary of estimated parameters of freestanding 2D systems under study. The effective
mass and bandgap values were calculated using Equations (5) and (6), respectively, for a ribbon
width of 155 nm.

Material vF (m/s) (106) m*×m0 (10−3) ∆ (meV)

GrapheneGW 1.118 1.627 23.118
SiliceneGW 0.742 2.451 15.343

GermaneneGW 0.702 2.590 14.516

Through DFT data fitting using Equation (2), we determined the Fermi velocity
of graphene to be 1.118 × 106 m/s, aligning closely with the experimental value of
1.1 × 106 m/s [28]. In the case of silicene and germanene, Fermi velocities were determined
to be 0.742× 106 m/s and 0.702× 106 m/s, respectively (see Table 2). As depicted in Figure 1,
the slopes of the band structures for silicene and germanene, in comparison to graphene,
are less pronounced, indicating a reduction in Fermi velocities by approximately 33.4% and
37.2%, respectively.

https://www.cedia.edu.ec/es/licencias-wolfram
https://www.cedia.edu.ec/es/licencias-wolfram
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Figure 1. Electronic band structure computed using the LDA (black points) and GW (red points)
methods: (A) graphene, (B) silicene, and (C) germanene. Green and cyan lines represent the linear fit.

3.3. Electronic Properties: Freestanding Ribbon Systems

In Figure 2 (and Table 2), we observe the variation of the Fermi velocity (Figure 2A),
effective electron mass (Figure 2B), and bandgap (Figure 2C) in relation to the atomic
number for a 155 nm wide nanoribbon. These data provide valuable insights into the
behavior of these crucial electronic properties as we move up the periodic table and
increase the atomic weight. While atomic nuclei fundamentally shape a system’s structural
(geometry) properties, there is a discernible trend in the variations of these properties with
the ascending atomic number.

In particular, we can observe a notable reduction in both the Fermi velocity and
bandgap, following a decreasing exponential trend as the atomic number increases. In the
context of bandgap and considering nanoribbons with identical widths (155 nm), there
is a reduction of 33.6% for SiNR and 37.0% for GeNR. Concurrently, the effective mass
experiences an increase, with increments of 33.5% and 37.1%, respectively, compared to
that of the GNR.
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Figure 2. Estimated parameters of (A) Fermi velocity, (B) electron effective mass, and (C) bandgap as
a function of the atomic number: C6, Si14, and Ge32. The ribbon width was fixed at 155 nm.

While the electronic properties of materials are primarily governed by their electronic
structures, it is worth noting that the atomic number’s significance comes into play due to
its influence on the nature of atomic orbitals. Atomic orbitals, determined via the atomic
number, have the potential to impact the degree of overlap between neighboring atoms
within the material. With a higher atomic number, the orbitals tend to be more extensive,
fostering stronger orbital overlap. This increased overlap can, in turn, broaden the energy
bands within the material, potentially resulting in a reduction of the bandgap and affecting
other related properties.

Figure 3 provides a helpful depiction of the bandgap variations in GNRs (red points),
SiNRs (blue points), and GeNRs (green points) in response to changes in nanoribbon width,
spanning from 5 nm to 5 µm, calculated using Equation (6). Notably, the bandgap of a
5 nm GNR approaches nearly 1 eV, aligning remarkably closely with the experimentally
measured value for a GNR on Ge(001) substrates [40]. This observation underscores the
potential adaptability of such systems concerning bandgap adjustments, a prospect that
holds significant relevance in the context of current semiconductor technology rooted in
silicon, which boasts a bandgap of 1.1 eV.
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While Equation (6) may appear straightforward, its simplicity is quite powerful in
enabling accurate predictions that align well with experimental findings. This simplicity
serves as a valuable tool for forecasting the bandgap values for SiNRs and GeNRs based on
their respective widths. An intriguing observation is that the bandgap of these nanoribbons
undergoes a significant reduction, transitioning from the eV scale to the realm of just a
few meV. This phenomenon underscores the adaptability of these nanoribbon systems,
mainly in contexts where extremely small bandgaps are required, such as in the domains of
photonics and plasmonics, to operate at THz frequencies [41–43].

In Figure 4, utilizing Equation (7), we gain valuable insights into the band structures
and DOS of the GNR (Figure 4A), SiNR (Figure 4B), and GeNR (Figure 4C) while main-
taining a constant width of 155 nm. One of the most significant observations is that as we
examine the region around ±0.04 eV, a change in the atomic element (C → Si → Ge) leads
to an increase in the number of bands, subsequently impacting the DOS. To illustrate, in
the case of the GNR, we discern the presence of three conduction bands and three valence
bands, whereas, in SiGNR and GeNR, we encounter five conduction bands and five valence
bands. It is worth that, as mentioned, the bandgap for the 155 nm wide SiNR (23.12 meV)
and 155 nm wide GeNR (15.34 meV) is smaller when compared to that of the 155 nm wide
GNR (14.52 meV). This distinctive alteration in electronic properties emphasizes the role of
atomic composition in shaping the band structure and DOS.
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3.4. Plasmonic Properties: Freestanding Ribbon Systems

We now focus on the plasmonic properties of nanoribbons in the THz scale, all fea-
turing a width of 155 nm and using Equation (8). Figure 5 presents the tunability of
the plasmon frequency on both the excitation angle (±90◦) and three different momen-
tum values: q = 100 cm−1 (red line), q = 1000 cm−1 (blue line), and q = 10, 000 cm−1

(green line).
In the context of a GNR (Figure 5A), we can discern a distinctive pattern in the

plasmonic frequency. At a momentum of 100 cm−1 (red line) and an angle of θ = 0◦,
the plasmonic frequency exhibits a pronounced minimum, hovering around the 2 THz
range. As we endeavor into higher momentum values, this frequency increases, surging
to nearly 5 THz at 1000 cm−1 (blue line) and a notable 17 THz at 10,000 cm−1 (green line),
all while maintaining an angle of θ = 0◦. A noteworthy trend across all these scenarios is
the frequency attenuation as the angle progresses toward 90◦, consistent with the behavior
predicted using Equation (8), which hinges on the cosine function.

Likewise, when we turn our attention to SiNR (Figure 5B) and GeNR (Figure 5C), a
parallel trend unfolds. Increasing the momentum while maintaining θ = 0◦ yields a distinct
peak in the plasmonic frequency. However, it is noteworthy that the frequency maxima for
SiNR and GeNR fall on the lower end of the spectrum compared to the GNR. Specifically,
SiNR reaches an approximate maximum of 14 THz, while GeNR achieves nearly 13 THz.
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Our next parameter of scrutiny is the 2D charge density. While this value can be
computed using Equation (12), for the sake of clarity and visualization, we have opted to
employ three distinct magnitudes: 0.25× 1012 cm−2 (green line), 0.5× 1012 cm−2 (blue line),
and 1.0× 1012 cm−2 (red line). Furthermore, as stated, this parameter can be controlled by em-
ploying Equation (9), specifically by adjusting the separation distance between nanoribbons.

It is worth noting that from an experimental perspective, these alterations in charge
density can be achieved through charge-transfer mechanisms during interactions between
nanoribbons and the substrate on which they are placed. A similar effect unfolds in
biosensor applications, where nanoribbons interface with the target molecule, leading to
potential shifts in charge density due to nucleophilic or electrophilic interactions.

In light of this, we delve into the plasmon frequency behavior, as depicted in Figure 6,
for the GNR (Figure 6A), SiNR (Figure 6B), and GeNR (Figure 6C). As previously discussed,
the GNR demonstrates its maximum peak frequency at θ = 0◦. However, when we test
a momentum value of q = 100 cm−1, we observe a noteworthy shift in these maxima.
Specifically, for a charge density of 1.0 × 1012 cm−2 (red line), the maximum hits almost
1.8 THz, reducing to nearly 1 THz for a charge density of 0.5 × 1012 cm−2 (blue line),
and further declining to approximately 0.8 THz for a charge density of 0.25 × 1012 cm−2

(green line). Aside from highlighting the material adaptability, these findings unveil
resonances occurring at frequencies below 2 THz, a region highly relevant for numerous
biosensing applications.
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As an example, consider the challenge of detecting molecules in aqueous environments.
The significant hurdle here is the interference caused by water, which exhibits a resonance
at nearly 1 THz. This underscores the need for ultra-sensitive materials operating within
this frequency range to pinpoint and identify the molecules of interest effectively.

Interestingly, SiNR and GeNR exhibit resonances within a similar frequency range
at the same moment (q = 100 cm−1) and θ = 0◦. This observation strongly indicates that
these materials hold significant promise for a wide array of applications, particularly in
the realm of molecular sensing. Nevertheless, we point out that the plasmon frequency
in both materials is slightly lower compared to the GNR. Their maximum frequencies are
approximately 1.4 THz, with minimums at around 0.6 THz. This can be attributed to the
relationship outlined in Equation (10), which indicates an inverse proportionality between

the plasmon frequency and effective mass ( ω ∼
√

1
m∗ ). In simpler terms, the higher

the effective mass, the lower the plasmon frequency, or a lower Fermi velocity results in
lower plasmon frequencies. It is essential to highlight that the plasmon frequency can be
enhanced and raised by increasing the charge density or the transferred charge, which, in
turn, relies on the specific molecule of interest or substrate. We will delve into this aspect
further in the following analysis (Table 3 and Figure 7). As stated, we observed a decrease
in Fermi velocity and plasmon frequency as we transitioned between different systems
(GNR→SiNR→GeNR). To gain a deeper understanding, we will now examine individual
cases to analyze the influence of the substrate in GNR (Figure 7A), SiNR (Figure 7B), and
GeNR (Figure 7C).
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Table 3. Summary of estimated parameters by increasing the Fermi velocity.

Material Variation (vF, %) vF (m/s) (106) m*×m0 (10−3)

GrapheneGW

25 1.398 1.301
50 1.677 1.084
75 1.957 0.929

SiliceneGW

25 0.928 1.961
50 1.113 1.634
75 1.299 1.400

GermaneneGW

25 0.878 2.072
50 1.053 1.727
75 1.229 1.480
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Hwang et al. [26] have demonstrated the tunability of the Fermi velocity of graphene
through substrate engineering. They achieved these results by depositing graphene on
different substrates, resulting in distinct Fermi velocities while maintaining the electronic
properties. Specifically, graphene deposited on SiC(000-1), hBN, and Quartz exhibited
Fermi velocities of 1.15 × 106 m/s, 1.49 × 106 m/s, and 2.49 × 106 m/s, respectively. In
other words, graphene can significantly enhance its Fermi velocity by up to approximately
150% without sacrificing its Dirac-like behavior. Similar expectations could be extended to
silicene and germanene.

In Table 3, we have conservatively increased the Fermi velocity from 25% to 75%, as
achieving a 150% boost in silicene and germanene might be more challenging due to their
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buckled structures, which could potentially disrupt symmetry. Also, Table 3 provides the
calculated effective masses for various increments in Fermi velocity. These values serve as
essential inputs for determining the plasmon frequencies across different nanoribbons, all
while keeping their ribbon width constant at 155 nm and q = 100 cm−1.

Across all systems, an increase in Fermi velocity results in a decreased effective mass,
which in turn spurs the plasmon frequency to rise. For the GNR and θ = 0◦, we observe
a maximum frequency of nearly 1.1 THz at 0.9 × 10−3 m0 (green line) and a minimum of
0.9 THz at 1.3× 10−3 m0 (red line). Meanwhile, for SiNR and GeNR, the plasmon frequency
remains slightly lower, with a maximum of approximately 0.9 THz and a minimum of
around 0.7 THz, alongside similar effective mass values.

3.5. Comparison with the Literature

Our results expand additional relevance in light of recent advancements in the pro-
duction of graphene, silicene, and germanene nanostrips, which can now be manufactured
in wide or narrow dimensions, as indicated in Refs. [20,40]. This technological progress is
complemented by our demonstration of the adjustable band gaps in these materials. The
success in manipulating these properties has spurred further research into more complex
structures. A notable example is the investigation into two-dimensional (2D) metallic
transition metal dichalcogenide nanoclusters, such as MoTe2 in its metallic (1T’ phase)
form embedded within a semiconducting polymorph (MoTe2 in 1H phase), as discussed in
Ref. [44].

While extended tight-binding models incorporating third-nearest-neighbor hopping
and a Hubbard mean-field interaction term [45], as well as density-functional computations
based on the generalized gradient approximation (GGA) [46], are viable for understanding
the electronic properties of narrower graphene, silicene, and germanene nanoribbons, they
have a significant limitation. These approaches are typically constrained to systems of
only a few nanometers. This restriction becomes particularly challenging for ab initio
methods when modeling larger systems, such as the 155 nm systems described in our data
descriptor article, which align with experimental observations [20]. Consequently, while
these methods offer valuable insights, their applicability is limited in the context of our
larger-scale studies.

On the other hand, the effectiveness of our modeling approach was demonstrated
through its alignment with the previous literature. For example, Ref. [27] provides a
comparison of the bandgap values predicted using our semi-analytical model against ex-
perimental measurements, focusing on graphene nanoribbons with widths ranging from 15
to 90 nm. This comparison highlighted a notable agreement between our model predictions
and experimental data [47]. Furthermore, we have also compared our results with those ob-
tained using the GW approximation for various widths of graphene nanoribbons [48]. This
comparison is particularly insightful, showing a remarkable correlation for nanoribbons
wider than 1.5 nm.

In Ref. [32], we applied the semi-analytical model to estimate the bandgap of a 2.7 nm
wide graphene nanoribbon, as experimentally observed by Kiraly et al. [40] on Ge(001).
Our findings indicate that this nanoribbon exhibits a bandgap of approximately 1.7 eV.
Remarkably, the smoothed curve of the density of states (DOS) histogram from our model
aligns perfectly with the results obtained using scanning tunneling spectroscopy (STS).

Finally, and of equal significance, in Ref. [13], we compared our predictions with
those in Ref. [18], which reports on a freestanding, narrow-wide five-armchair graphene
nanoribbon (5AGNR) with similar plasmonic properties. In this comparison, we explicitly
establish a relationship and observe a perfect alignment between the semi-analytical model
and time-dependent density functional theory (TDDFT) results. All this concordance
highlights the robustness of the semi-analytical approach, demonstrating its capability to
accurately predict complex plasmonic behaviors in nanoribbons or nanostrips.
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4. Conclusions

The data presented were produced in [13,27,31,32], and the findings are discussed
as a comparative analysis of the electronic and plasmonic properties of freestanding and
ribbon-like structures of graphene, silicene, and germanene with a constant ribbon width
of 155 nm.

From the perspective of electronic properties:

• Freestanding graphene, silicene, and germanene all exhibit linear band dispersion, with
higher Fermi velocities obtained from GW calculations compared to LDA calculations;

• The Fermi velocity for freestanding graphene, silicene, and germanene was determined
to be 1.12 × 106 m/s, 0.74 × 106 m/s, and 0.70 × 106 m/s, respectively;

• As we move up the periodic table, we observe a reduction in both Fermi velocity and
bandgap, highlighting the influence of the atomic number on these electronic properties;

• The bandgap of nanoribbons (GNRs, SiNRs, and GeNRs) can be significantly adjusted
by changing the ribbon width, showing potential applications in optoelectronics and
current semiconductor technology.

From the perspective of plasmonic properties:

• Plasmon frequencies were investigated for GNRs, SiNRs, and GeNRs at various
excitation angles and momentum values. GNRs exhibited a pronounced plasmon
frequency variation with angle and momentum, while SiNRs and GeNRs showed
lower maximum frequencies;

• The plasmon frequency can be controlled by adjusting charge density, making these
materials suitable for biosensing applications;

• The plasmon frequency can be enhanced by increasing charge density or modifying
the substrate, demonstrating their adaptability for specific applications.

An important outcome is that the Fermi velocity can be increased, and effective mass
can be reduced through substrate engineering, similar to observations in graphene. The
increase in Fermi velocity resulted in higher plasmon frequencies. This suggests that silicene
and germanene also hold promise for Fermi velocity tuning and plasmonic applications.

The intent of this study is to increase the reproducibility of the work achieved
in [27,31,32]. We hope to elucidate our methods and computational models to create
a framework that other researchers can follow to build on or validate our work. The data
are published in a text file format to make it accessible to researchers who may not have
access to or experience with the Abinit package. The base semi-analytical model is also
made available for other work that may want to use and modify it for new geometries
and studies. We hope that other sophisticated computational methods can produce similar
results and thus encourage more research, particularly in the field of bandgap engineering
and plasmonics.
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