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Simple Summary: Propylthiouracil (PTU) is commonly used to create a model of hypothyroidism,
one of the most common diseases worldwide that has a significant social impact. This study aimed
to examine the changes in the behavior, cognition, and memory in rats with PTU-induced overt
hypothyroidism as well as the effects of tryptophan treatment on this state. For this purpose, we
administered 5-OH-tryptophan intraperitoneally or directly into the hippocampus of the hypothyroid
animals. Their behavior and cognition were assessed using an open field test, T-maze, and novel
object recognition test. There were significant differences in the behavioral patterns of the hypothy-
roid animals, showing a reduction in locomotor activity, rearing, and memory function compared
to the controls. The treatment with 5- hydroxy-tryptophan (5-OH-TRP) alleviated those changes. A
staggering amount of research is suggesting that the usual denominators in the pathophysiology
of depression and the cognitive decline in hypothyroidism are the hippocampal complex and the
distorted serotonin metabolism. In our study, we observed significant beneficial effects on cognitive
impairment after 5-OH-TRP administration. Current results are promising and may serve as ground-
work for further investigation of functional and structural changes in the hippocampus during a
hypothyroid state, and in particular, the effects of serotonin mediation in hypothyroid-associated
depressive behavior.

Abstract: Thyroid hormones play an important role in the modeling of neural networks in the brain.
Besides its metabolic effects, thyroid dysfunction, and hypothyroidism in particular, is frequently
associated with cognitive decline and depressive-like behavior. The current study aimed to examine
the changes in behavior, cognition, and memory in rats with propylthiouracil-induced overt hypothy-
roidism. The behavior and cognition were assessed using the open field test, T-maze, and novel object
recognition test. We found significant differences in the behavioral patterns of the hypothyroid ani-
mals showing a reduction in locomotor activity, frequency of rearing, and impaired memory function
compared to the euthyroid controls. As serotonin is an essential biomarker regulating cognition and
mood, we tried to modulate the serotonin mediation in hypothyroid animals through tryptophan
administration. Treatment with 5-hydroxy-tryptophan (5-OH-TRP) intraperitoneally for 10 days or
directly into the hippocampus as a single injection led to attenuation of the hypothyroidism-induced
cognitive and memory decline. A staggering amount of research is suggesting that the common
denominators in the pathophysiology of depression and the behavior changes in hypothyroidism
are the hippocampal complex and the distorted serotonin metabolism. In our study, it was observed
a significant alleviation of cognitive impairment and an improvement of memory performance in
hypothyroid rats after 5-OH-TRP administration. Current results are promising and may serve as
groundwork for further investigation of functional and structural changes in the hippocampus during
a hypothyroid state, and in particular, the effects of serotonin mediation in hypothyroid-associated
depressive-like behavior.
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1. Introduction

Hypothyroidism is one of the most common metabolic disorders with varying dis-
tribution throughout the world according to local dietary specifics and demographic
characteristics. Because of the extensive role of thyroid hormones in the regulation of
the metabolism, the symptoms of hypothyroidism are frequently attributed to other dis-
eases [1,2]. Large observational studies and meta-analyses have shown that about 4–7%
of community-derived populations in the USA and Europe have undiagnosed hypothy-
roidism. Nearly 80% of the cases have subclinical hypothyroidism with the remainder
having overt hypothyroidism [3]. Notably, thyroid hormones play an important role in the
regulation of brain development in fetuses and neonates, but also in maintaining synaptic
plasticity, learning, and memory processes in adults [4,5]. The role of the thyroid gland in
the proper function of the adult brain becomes even more evident with significant epidemi-
ological data showing that hypothyroidism frequently coexists with depression or dementia
and the positive effect of thyroid hormone supplementation in patients with drug-resistant
depression [6,7]. A large-scale study showed that individuals with hypothyroidism faced
a higher risk of memory impairment (up to 81%), higher perceived stress, more than a
3-fold increase in dementia risk, higher rates of depression and anxiety, greater fatigue,
poorer concentration, and less motivation [8]. Some rare cases of autoimmune thyroiditis
could lead to Hashimoto’s encephalopathy, presented by nonspecific clinical manifestations
rapidly leading to progressive dementia, reversed by corticosteroid therapy [9,10].

In our study, we focused on another essential biomarker regulating cognition and
mood: serotonin (5-HT), implicated in the pathogenesis of hypothyroidism-associated
cognitive impairment [11–13]. Increased brain 5-HT concentration has been proven to
enhance cognitive function [14], whereas decreased 5-HT metabolism in the brain has been
shown to impair memory and cause depressive-like behavior [15,16]. Tryptophan (TRP), an
essential amino acid, is the sole precursor of 5-HT. The serotonergic system has a significant
role in memory regulation in the hippocampus [14,17]. Many brain regions are involved in
the learning process, but the hippocampus has a key role in learning and memory. TRP
depletion is well known for its detrimental effects on this system, such as disturbed novel
object recognition [18].

Chemically induced hypothyroidism is a well-established model in the literature for
studying the depressive-like behavior often found in this state [19,20]. The aim of the cur-
rent study was to examine the behavioral changes and cognitive performance in a rat model
of propylthiouracil-induced overt hypothyroidism and the effects of TRP, administrated
either intraperitoneally (i.p.) or directly in the hippocampus. TRP administration enhances
its availability in the brain and thus potentially increases 5-HT synthesis. We studied the
behavior, cognition, and memory characteristics of hypothyroid animals untreated and
treated with TRP

2. Methods
2.1. Ethics Statement

All animals were treated in agreement with the general regulations for the treatment
of experimental animals, established by the Ethics Committee of the Medical University
of Sofia and the Bulgarian Agency for Food Safety (approval No. 319/2021 from BAFS),
in agreement with EU Directive 2010/63/EU for the protection of animals used for scien-
tific purposes.

2.2. Drug-Induced Hypothyroidism

Hypothyroidism was induced in 20 male Wistar albino rats with an average starting
body weight of about 210 g by administration of 0.01% 6-n-propyl-2-thiouracil (PTU)
(Sigma-Aldrich®, St. Louis, MO, USA) for 5 weeks in the ad libitum consumed drinking
water [1,21,22]. After reaching the hypothyroid state, proofed by free T4 (fT4) levels
in the serum (measured by chemiluminescent immunoassay), 5 animals were injected
intraperitoneally (i.p.) with 50 mg/kg [23,24] of 5-hydroxy-L-tryptophan (5-OH-TRP)
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(Sigma-Aldrich®, St. Louis, MO, USA) in 1% PBS, 5 animals were subjected to stereotactic
hippocampal injections of 3 µL solution of 5-OH-TRP (17 mg/mL), and 10 hypothyroid
rats were treated with only 1% PBS (either i.p. or by stereotactic injection) for 10 days.

2.3. Open Field Test (OFT)

The device consists of a box with dimensions of 60 × 60 × 35 cm, divided into two
zones—external (60 × 60 cm) and internal (35 × 35 cm) squares and a video camera
connected to software recording the movement of the experimental animal (OBS Studio,
https://obsproject.com/). The procedure starts with placing the test animal in the center of
the box and tracking the length of the trajectory and the time the animal stays in the inner
and outer square over 10 min. The video analysis is performed with specialized ToxTrack
software (version 2.93) [25]. The inner zone is perceived as aversive and the stay duration
and the length of the trajectory traveled in it, calculated as a percentage of the total value,
express the level of anxiety. The total number of entries into the central area is considered
an indicator of research behavior, together with horizontal activity and rearing.

2.4. T-Maze with Spontaneous Alternation

The device (T-maze) is constructed as an initial alley (15 cm × 35 cm) connected
perpendicularly in the middle of an alley measuring 12 cm × 85 cm, forming a T-shape
with two arms 12 cm × 35 cm. A plexiglass barrier was placed at both entrances to the
shoulders. The test was performed according to Gerlai’s procedure (1998). The rat was
first directed to the left shoulder by blocking the entrance to the right one with a plexiglass
barrier. When the rat returned to the starting alley after examining the left shoulder, the
barrier was removed. The rat was allowed to descend the alley and choose one of the
two shoulders. Once the rat selected one arm, the opposite was blocked by the barrier.
The free selections were monitored continuously for 10 min which was the total time for
research and percentage of alternation (alternations must be above 50% to exclude change
of direction due to chance).

2.5. Novel Object Recognition Test (NOR)

The device is an opaque box (60 × 60 × 35 cm), located in a soundproofed, evenly-
lit room. The procedure consists of 3 phases: on the first day—getting used to the new
environment for a period of 15 min; on the second day—5 min of training by using two
identical objects placed in the box, and the time during which the animal examines them
is recorded; phase 3—a 5 min test one hour after the training session. During this phase,
one of the already studied objects is replaced with a new one which has a different shape
and color. The time for investigation of the familiar and the novel object is taken into
account. The objects are selected in order not to resemble food and water and not to have a
specific smell. Research behavior is defined as directing the animal’s nose to the object at a
distance of fewer than two centimeters, accompanied by a vibration of the whiskers. The
ability to distinguish the new from the already known object is presented as the recognition
index (RI).

I =
time o f research o f the new object × 100%

time o f research o f the new object + time o f research o f the known object

After each of the behavioral tests, the apparatus is thoroughly cleaned with 0.1% acetic
acid solution to remove olfactory traces.

2.6. Stereotactic Injection

After anesthesia with ketamine and xylazine, an incision was made in the skin of
each animal to reveal the skull, and after a careful cleaning of the aponeurosis, the lambda
and bregma were detected. Subsequently, and in accordance with stereotactic coordinates
ML = 1 mm, AP= −3.4 mm, and DV = 3 mm (Figure 1A,B,C - according to the Atlas of
Paxinos and Watson, 1998), the hippocampus was reached, where 3 µL solution of 5-OH-

https://obsproject.com/
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TRP (17 mg/mL) or 1% PBS at a rate of 1 µL/min were injected using a Hamilton syringe
(Figure 1D).
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Figure 1. Stereotactic injection of 5-OH-TRP according to the Paxinos and Watson (1998) stereotactic
coordinates of the hippocampal complex (marked as red dots). (A–C) Coronal, sagittal, and axial
plains. (D) One of our experimental animals during the surgery.

This was followed by the closure of the operative field and follow-up of the animal
in a separate clean cage. The animal was subjected to behavioral tests 7 days after the
stereotactic injection.

2.7. Statistics

All data from behavioral experiments are presented as means ± SD. Statistical analysis
was performed with two-way ANOVA with the following factors: thyroid status (control
euthyroid levels and hypothyroidism) and treatment (saline and 5-OH-TRP) with Bonfer-
roni post-test. p < 0.05 is considered statistically significant. Software used was Sigma Plot
11.0 and GraphPad Prism 9.0.

3. Results
3.1. fT4

A significant difference (p < 0.001) in the serum concentration of fT4 levels (p < 0.001)
was observed in the PTU-treated group (0.64 ± 0.36 ng/dl) compared to the control
euthyroid group (20.40 ± 3.99 ng/dl), confirming the induction of a hypothyroid state.

3.2. Open Field Test

The experimental data showed that PTU-induced hypothyroidism significantly changed
the total horizontal motor activity (F (1, 24) = 76.84, p < 0.05). The i.p. administration of
5-OH-TRP for 10 days and the direct single stereotactic injection in hypothyroid rats nor-
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malized their motor activity (F (2, 24) = 25.38, p < 0.05; Figure 2) without a significant
difference between the two routes of treatment (p = 0.084).
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Hypothyroidism intensified the anxiety-like behavior by significantly reducing the
length of the trajectory in the central aversive part of the apparatus (two-way ANOVA
F (1, 24) = 55.82; p < 0.05), while i.p. treatment and the direct stereotactic injection with
5-OH-TRP significantly and comparably increased the distance traveled in the center
(F (2, 24) = 53.66; p < 0.05) (Figure 3) and increased the number of re-entries in the center of
the device (F (2, 24) = 11.52; p = 0.0002), causing a pronounced anxiolytic effect (Figure 4).
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Furthermore, our tests showed that hypothyroidism caused suppressed exploratory
behavior by significantly reducing the number of times the animals reared (two-way
ANOVA F (1, 16) = 27.52; p < 0.05), while 5-OH-TRP i.p. treatment for 10 days significantly
increased the number of times the hypothyroid animals reared (F (1, 24 = 12.53; p < 0.05)
(Figure 5) suppressing the effects of hypothyroidism. It was observed that hypothyroid
animals treated with a stereotactic injection of 3 µL solution of 5-OH-TRP (17 mg/mL)
in the hippocampal formation demonstrated a significant improvement in the behavioral
markers, being similar to the results from rats treated with 5-OH-TRP i.p. for 10 days.
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3.3. Novel Object Recognition Test

The RI of the new object from the already known one showed that hypothyroidism
impaired working memory (F (1, 24) = 18.89, p = 0.0001), whereas TRP administration
(either i.p. or stereotactic) relieved amnesia caused by hypothyroidism to levels compara-
ble to euthyroid controls (F (2, 24) = 9.397, p = 0.007) (Figure 6). Here, as in OFT, it was
observed that untreated hypothyroid animals showed significantly lower exploratory
behavior (F (4, 40) = 22.63; p < 0.05) (Figure 7).
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Figure 7. Influence of hypothyroidism and 5-OH-TRP treatment on the exploration time in the
novel object recognition test of male Wistar albino rats. Data are presented as means ± SD, p < 0.05
compared to 5-OH-TRP-treated hypothyroid rats. **** p < 0.005.

3.4. T-Maze Test

To study their working memory, the animals were tested for their spontaneous al-
ternation in the T-maze. The difference in the alternation percentage (mean ± SD) of the
hypothyroid animals (44.00 ± 5.477) was statistically significant (F (1, 24) = 13.66; p = 0.0001)
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compared to 78.00 ± 8.367 for euthyroid controls, 73.69 ± 4.159 for euthyroid controls
treated i.p. with 5-OH-TRP, 79.09 ± 7.416 for euthyroid controls treated stereotactically
with 5-OH-TRP, 68.00 ± 4.472 for hypothyroid animals treated i.p. with 5-OH-TRP, and
68.00 ± 7.583 for hypothyroid animals treated stereotactically with 5-OH-TRP.

4. Discussion

For our cognitive tests, Wistar albino rats were used to study hypothyroid-associated
behavior changes. We have previously published that PTU-induced hypothyroid rats
demonstrated a depressive-like behavior tested by the forced swimming test (FST) [21].
Additionally, we have already reported that hypothyroidism significantly alters the levels
of 5-HT in the brains of hypothyroid compared to euthyroid animals [22].

Although brain thyroid hormone levels do not correlate with their concentration in the
blood, there are reports that the thyroid hormone content in the hippocampus is decreased
in Wistar albino and Wistar–Kyoto (WKY) rats receiving PTU [13].

In OFT, we observed that PTU-induced hypothyroidism significantly decreased total
horizontal locomotor activity, which confirms several previous reports [26–28]. There was
also a diminished risk-taking behavior, demonstrated by reducing the number of re-entries
to the central aversive area of the OFT apparatus. The decrease in locomotor behavior could
be explained by either hypoactivity or by a reduction in exploration. The activity pattern
is less vulnerable in the adult period, and the decrease in observed locomotion may be a
result of reduced exploration in the hypothyroid rats. The treatment with 5-OH-TRP almost
completely abolished hypothyroid-induced hypoactivity and reduced risk-taking behavior
in experimental animals, but with a slight difference; it was not significant compared to the
baseline, which demonstrated a marked anxiolytic effect from the administrated 5-OH-TRP
(i.p. or stereotactic). At the same time, although tryptophan treatment of euthyroid animals
demonstrated a tendency to increase locomotor activity, compared to the untreated controls,
it was not statistically significant.

Another important marker of exploration in OFT is rearing, which is one of the most
common responses of an animal exposed to an unknown environment. In the current study,
we observed significantly reduced rearing in PTU-induced hypothyroid rats, which was
reflected by their low exploratory motivation. Sapronov et al. described this phenomenon
of decreased rearing in adult rats after thyroidectomy; however, it was found to be not
significant [29]. On the other hand, several studies in adult rats with PTU-induced hy-
pothyroidism have found significant impairments in spatial learning and memory [30,31]
and changes in the CA1 area of the hippocampus. These changes include alterations in the
expression of a gene called neurogranin (RC3), a gene regulated by the thyroid hormones,
which is involved in memory formation and synaptic plasticity [32]. Treatment with PTU
has been found to reduce brain and hippocampus volume and alter the expression of RC3,
calmodulins (CaMs), and ERK, important for the animals’ spatial memory [33]. Notably, it
was reported that PTU stimulates the development of neuroinflammation, Aβ production,
tau hyperphosphorylation, and altered neuroplasticity of the hippocampus leading to
memory deficits [33,34]. The exploratory behavior is frequently diminished in affective
disorders, and rats subjected to chronic stress, as a model of depression, have been found
to display a significantly reduced rearing in OFT [35]. Furthermore, because exploration is
rewarding, this was speculated to be a sign of anhedonia, a hallmark of depression [36].

A similar pattern was observed in the NOR test. The total time spent exploring the
novel object in the NOR test session by the hypothyroid rats was significantly decreased
compared to that spent exploring the familiar object, and the total exploration time in
hypothyroid rats was delayed in comparison with the euthyroid controls, demonstrating a
reduction in short-term memory. On the other hand, there was no significant difference
in the time spent exploring the objects by 5-OH-TRP-treated euthyroid rats compared
to the untreated control group. These results indicated that the memory formed in the
familiarization session was retained for at least 1 h in the group that received 5-OH-TRP.
The NOR task evaluates the rodents’ ability to recognize a novel object in the environment.
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The dorsal hippocampus plays an important role in memory formation, especially when
spatial or contextual information is a relevant factor, as in the NOR test [37,38].

At the same time, untreated euthyroid rats and 5-OH-TRP-treated hypothyroid ani-
mals demonstrated similar choice accuracy during the acquisition of T-maze alternation
behavior, showing a positive effect of TRP supplementation—either i.p. or intracerebral.
Taken together, these data indicate that rats in a hypothyroid state have a deficit in the
retention of spatial information for a longer period, which is a process normally dependent
on the hippocampus. Data presented in Figure 8 indicate that 5-OH-TRP administration
increased the number of alternations during acquisition and did affect the rate of acquisition
by diminishing the amnesic effects of hypothyroidism.
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The modulation of tryptophan and 5-HT by thyroid hormones has been well doc-
umented in the brain areas of developing hypothyroid rats [39–41], but the effect of hy-
pothyroidism on 5-OH-TRP metabolism and turnover of catecholamines is still not fully
understood in adult rats. Based on previously published data on hyperthyroidism [42] and
hypothyroidism [43], we could speculate that in a hypothyroid state, the level of 5-OH-TRP,
the activity of tryptophan hydroxylase, and the synthesis of 5-HT might be reduced in
some areas of the brain, such as the hypothalamus.

Our results confirm previous reports that serotonin mediation can counteract the
effects of hippocampal dysfunction caused by hypothyroidism [29,44]. Thus, the behav-
ioral, learning, and memory effects of TRP may be due to its beneficial influence on the
hippocampus. This assumption is supported by increasing evidence showing that the
neurotransmitter serotonin is a key regulator of the hippocampal functions, being directly
involved with the active learning process and memory [45–47]. Both serotonin depletion
and specific serotonin antagonists can lower memory performance. However, serotonin
does not cross the blood–brain barrier, and its synthesis depends on the intake of amino
acids, such as tryptophan [48].

Studies evaluating the effects of increased hippocampal serotonin metabolism follow-
ing 5-OH-TRP administration showed enhanced short- and long-term memory, improved
learning acquisition, and memory consolidation [49].
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5. Conclusions

A staggering amount of research is suggesting that the usual denominators in the
pathophysiology of depression and the cognitive decline in hypothyroidism are the hip-
pocampal complex and the distorted serotonin metabolism. In our study, we explored the
behavioral and memory effects of overt hypothyroidism and observed significant beneficial
effects on cognitive impairment after 5-OH-TRP administration. Current results are promis-
ing and may serve as groundwork for further investigation of functional and structural
changes in the hippocampus during a hypothyroid state, and in particular, the effects of
serotonin mediation in hypothyroid-associated depressive behavior.
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