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Simple Summary: Experimental research using atopic dermatitis (AD) models is required to develop
and advance novel therapeutics in AD. Intradermal (i.d.) injections of anti-immunoglobulin E (IgE)
antibodies in healthy dogs have been utilized as a model of AD; however, the activated inflammatory
and pruritic pathways in IgE-induced skin lesions have not been characterized. This study aimed
to characterize the inflammatory transcriptome of experimental acute canine IgE-induced lesions
using RNA sequencing and to determine how these correlate to the transcriptome of naturally
occurring human and canine acute atopic dermatitis. Acute IgE-mediated lesions had a significant
upregulation of pro-, T helper-(Th)1 and Th2 genes and Th2 chemokines. Pathway analysis revealed
strong significant upregulation of Janus kinase/signal transducers and activators of transcription
(JAK-STAT), histamine, IL-4 and IL13 signaling. Correlation analysis to acute human AD lesions
showed a significant moderate positive correlation for anti-canine-IgE 6-h samples (r = 0.53) and
24-h samples (r = 0.47). In summary, acute canine IgE-mediated skin lesions exhibit a multipolar
immunological axis upregulation (Th1, Th2 and Th17) in healthy dogs, resembling acute spontaneous
human AD lesions.

Abstract: Intradermal injection of anti-immunoglobulin E (IgE) antibodies in dogs grossly and histo-
logically resemble naturally occurring atopic dermatitis (AD). However, the activated inflammatory
and pruritic pathways have not been characterized. The objectives of this study were to characterize
the inflammatory transcriptome of experimental acute canine IgE-induced lesions and to determine
how these correlate to the transcriptome of naturally occurring human and canine acute atopic der-
matitis. Biopsies were collected at 6 and 24 h after intradermal injections of anticanine-IgE antibodies
to eight healthy male castrated Beagles; healthy and saline-injected skin served as controls. We
extracted total RNA from skin biopsies and analyzed transcriptome using RNA-sequencing. Gene
expressions of IgE-induced biopsies were compared to that of controls from the same subject (1.5-fold
change, p-adjusted value ≤ 0.05). Acute IgE-mediated lesions had a significant upregulation of
pro-inflammatory (e.g., LTB, IL-1B, PTX3, CCL2, IL6, IL8, IL18), T helper-(Th)1/IFNγ signal (e.g.,
STAT-1, OASL, MX-1, CXCL10, IL-12A) and Th2 (e.g., IL4R, IL5, IL13, IL33 and POSTN) genes, as well
as Th2 chemokines (CCL17, CCL24). Pathway analysis revealed strong significant upregulation of
JAK-STAT, histamine, IL-4 and IL13 signaling. Spearman correlation coefficient for the shared DEGs
between canine anti-canine-IgE and human AD samples revealed a significant moderate positive
correlation for anti-canine-IgE 6-h samples (r = 0.53) and 24-h samples (r = 0.47). In conclusion, acute
canine IgE-mediated skin lesions exhibit a multipolar immunological axis upregulation (Th1, Th2
and Th17) in healthy dogs, resembling acute spontaneous human AD lesions.
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1. Introduction

Atopic dermatitis (AD) is a pruritic, recurrent and chronic inflammatory skin disease,
frequently associated with elevated systemic immunoglobulin-E (IgE) levels, that spon-
taneously develops in humans and dogs [1]. In both species, the pathogenesis of AD is
thought to involve a complex interaction of genetic, immune and environmental factors
leading to immune dysregulation and skin barrier dysfunction [1].

Immunoglobulin-E plays a role in allergen-induced inflammatory processes in atopic
subjects via preformed allergen-specific IgE molecules bounded to the high-affinity IgE
receptors (FcεRI) on the surfaces of various immune cells [2,3]. By binding with incoming
allergens, IgE acts as an effector for activation of immune cells, chemical mediator release
and cytokine/chemokine production.

Intradermal injection of anti-canine-IgE in healthy dogs results in immediate and late-
phase reactions (LPR); LPRs follow 3 to 48 h after allergen challenge and are accompanied
by inflammatory cell infiltration that histologically resembles changes seen in naturally
occurring canine atopic dermatitis [4,5]. Therefore, cutaneous IgE-mediated LPRs have
been used as a screening atopic dermatitis model for studying the anti-inflammatory effect
of anti-allergic drugs before entering clinical trials [6–9]. Interestingly, a pilot quantitative
reverse-transcription PCR analysis of canine IgE-mediated LPRs with only a few genes
investigated revealed increased expression of proallergic cytokine interleukin-13 (IL-13) and
CC chemokine ligand 5 (CCL5) and CCL17 [5]. However, to the best of the authors’ knowl-
edge, there have been no evaluations of activated inflammatory and pruritic molecular
pathways in IgE-mediated cutaneous LPRs of healthy dogs [10].

Given that emerging novel AD treatments are designed to target specific inflammatory
mediators or pruritogens, it is imperative to understand the molecular signature of the
pre-clinical AD models in humans and dogs. In the past decade, the molecular signatures of
numerous human inflammatory skin diseases have been evaluated using gene expression
microarrays, which contain a limited number of genes for analysis. Currently, RNA-
sequencing (RNA-seq) is commonly used for the evaluation of molecular signatures in skin
diseases as it provides the analysis of whole transcriptome and avoids technical issues with
microarray (e.g., probe performance).

In this study, we characterized the activation of early immunologic and pruritogenic
pathways in an experimental canine acute IgE-mediated LPR model using RNA-seq of skin
biopsy samples sequentially obtained after anti-IgE intradermal injections. Furthermore,
we searched through the published RNA-seq databases for acute spontaneous human and
canine AD skin biopsies datasets with the goal of performing a comparative analysis of
the differentially expressed genes (DEGs) and transcriptional pathways between the acute
canine IgE-mediated LPR model and the acute spontaneous AD data.

2. Materials and Methods
2.1. Patient Inclusion

Eight clinically healthy male castrated research beagle dogs (age 2–3 years) with
no previous history of pruritus or skin disease were included in this study. The dogs
were housed in the laboratory animal facilities at the university setting under conditions
compliant with laboratory animal requirements. All aspects of the study were conducted
in accordance with the Institutional Animal Care and Use Committee.

2.2. Intradermal Injections and Skin Biopsy Collection of Late Phase Reactions (LPRs)

The IgE-mediated LPRs model was performed as previously described [5]
(Supplementary Material S1). Dogs were sedated intravenously using medetomidine
(Domitor, Pfizer, Exton, PA, USA) and baseline healthy skin biopsies were obtained seven
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days before the anti-IgE/control intradermal injections. Two intradermal injections of
0.05 mL of anti-canine-IgE polyclonal antibodies (0.08 mg/mL, goat anti-canine IgE AHP946,
Bio-Rad Laboratories, Inc., Hercules, CA, USA) and 0.05 mL phosphate-buffered saline
(diluent, negative control; Sigma-Aldrich, St Louis, MO, USA) were administered on one
side of the thorax and blindly evaluated by an investigator (XX); histamine (0.1 mg/mL,
Sigma-Aldrich, St. Louis, MO, USA) served as a positive control.

The order of injections was randomized for every dog using statistical computer
software (GraphPad Prism version 8.0, Boston, MA, USA) and the investigator FB) was
blinded during intradermal injection evaluations. Clinical scoring by blinded investigator
(FB) involved a global wheal score (GWS) and LPRs [5,6].

Skin biopsy samples were collected from IgE-mediated cutaneous reactions at 6- and
24-h post-injections; the 6- and 24-h saline sample served as negative controls. All biopsies
were bisected; one half was placed in 10% neutral buffered formalin, and the other was
immersed immediately in RNALater and kept frozen until RNA extraction.

2.3. Histopathology

Five-micrometer paraffin-embedded sections were stained with haematoxylin and
eosin for examination of inflammatory cells. All slides were evaluated by a board-certified
pathologist and the results were expressed as a number of positively staining cells in the
superficial dermis per 10 consecutive 40X high power fields (HPF), excluding endothelial
cells and adnexa.

2.4. RNA-Sequencing Analysis

The sample size for RNA-seq was determined to be sufficient to provide at least
80% power to detect a significant 1.5-fold difference in values (mRNA transcription) be-
tween pre- and post-injections skin biopsy samples using ssizeRNA [8]. Total mRNA was
extracted using miRNAeasy kit from Qiagen (Qiagen, Valencia, CA, USA) following the
manufacturer’s specifications. Only samples with a 260/280 ratio of ~1.8–2.0 (RNA) and
showing a ribosomal integrity number (RIN) above 7 were subjected to further library
preparation and sequencing. Forty RNA samples were analyzed in this study: eight healthy
non-treated skin samples, eight samples from 6 and 24 h post-intradermal saline (con-
trol) and eight samples from 6 and 24 h post-intradermal anti-IgE injection. Sequencing
was performed on NovaSeq 6000 with 150 paired-end base pairs (32 samples) and with
the NextSeq 2000 with 75 paired-end base pairs (8 samples) according to the manufac-
turer’s protocol (Illumina, San Diego, CA, USA). For RNA-seq data analysis, please see
Supplementary Material S1.

2.5. Quantitative Reverse-Transcription PCR Analysis

To confirm the gene expression results from RNA-seq data in this study, Quantitative
real-time polymerase chain reaction (qRT-PCR) was performed for anti-canine IgE skin
reactions at 6- and 24-h timepoints for selected genes. Expression of CCL2, C-X-C motif
chemokine ligand 10 (CXCL10), CCL17, IL-1B, tissue necrosis factor alpha (TNF-α) and IL-
33 was measured by quantitative reverse-transcription PCR (qRT-PCR; see Supplementary
Material S1).

2.6. Correlation Analysis to Previously Published Transcriptome Data Using RNA Sequencing for
Acute Skin Lesions in Human and Canine Atopic Dermatitis

To assess the molecular similarity of canine IgE-mediated LPRs and acute lesions
of human/canine spontaneous AD skin, Gene Expression Omnibus (GEO) repository
(http://www.ncbi.nlm.nih.gov/geo; accessed on 1 November 2023), a public gene-related
database was searched for original RNA seq expression data for human and canine acute
atopic dermatitis using the following selection criteria: (1) the study should contain ex-
pression data of normal skin biopsy and acute AD (e.g., lesion developed in less than
72-h duration, lack of skin lichenification and histopathologic features of chronic AD le-

http://www.ncbi.nlm.nih.gov/geo
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sions) lesional skin biopsy without any immunomodulatory drugs provided to patients
at the time of biopsy (i.e., to avoid potential effect of drugs); and (2) samples should
be from Homo Sapiens and Canis lupus; and (3) the transcriptome expression profiling
by RNA-seq ≥ 75 paired end base pairs reads so it can be compared to the sequencing
platform performed in this study.

Correlation between significantly upregulated/downregulated DEGs (FC = +/−1.5;
FDR < 0.05) of anti-canine-IgE reactions at 6- and 24-h and spontaneous human and canine
AD acute lesional skin specimens was evaluated using Spearman correlation coefficients
on log2-transformed levels as previously described. Data were presented in scatterplots
with estimated linear regression and a 95% confidence interval.

2.7. Statistical and Bioinformatics Analyses

Results of the clinical evaluation (GWS and GLS), as well as cell counts for each time
point, were compared with using nonparametric repeated measures one-way ANOVA
(Friedman test) with a level of significance set at p < 0.05. Normalization of RNA-seq data
and DE analysis between different conditions (e.g., healthy, control, IgE, atopic lesional)
was performed using empirical Bayes linear model, DESeq2, as implemented through
the vignette [11]. A false discovery rate (FDR) of less than 0.05 and fold change (FC) of
+/−1.5 or greater was used to determine differentially expressed genes (DEGs). Pheno-
typically unbiased evaluation of gene set variation between groups was performed with
Gene Set Variation Analysis (GSVA) [12,13]. Functional enrichment analysis for pathway
identification was done using the Metacore platform for all DEGs [14,15].

3. Results
3.1. Global Wheal Score, Late Phase Reaction Scores and Histopathological Examination

Intradermal injections of anti-canine-IgE and histamine resulted in positive wheal
and erythema reactions on the thorax in all eight dogs (Figure 1a,c). There were no wheal
and flare reactions observed after the intradermal injections of phosphate-buffered saline
(control, Figure 1a). Anti-canine-IgE injections induced significant LPRs at 6 (Wilcoxon
matched-pairs signed-rank test, p = 0.007 for saline, p = 0.005 for histamine) and 24 (p = 0.044
for saline, p = 0.044 for histamine) hours, compared to phosphate-buffered saline and
histamine (Figure 1b,d), respectively. A blinded histological evaluation of 6- and 24-h anti-
IgE-associated LPRs revealed a significant increase in total leukocyte superficial dermal cell
infiltrate (Figure 1e; p = 0.041 for 6-h, p = 0.003 for 24-h), as well as lymphocyte (Figure 1g;
p = 0.022 for 6-h, p = 0.007 for 24-h), counts compared with corresponding saline timepoints.
Elevated eosinophil numbers were observed in 6- and 24-h IgE-mediated LPRs, but a
significant increase was only identified in 24-h IgE LPRs (Figure 1f; p = 0.011, respectively).

3.2. RNA-seq Molecular Profiling of Anti-Canine-IgE- and Saline-Mediated Late Phase
Reactions (LPRs)

Using criteria of fold change/FC of +/−1.5 and false-discovery rate/FDR < 0.05 to
define differentially expressed genes/DEGs, we identified 5042 (6 h; 2481 up- and 2561-
downregulated) and 3551 DEGs (6 h; 1970 up- and 1581-downregulated) in anti-canine
IgE groups versus healthy normal skin, respectively. In contrast, saline injections induced
lower number of DEGs at 6 (total 1540; 775 up- and 764-downregulated) and 24 (total 1152;
591 up- and 561-downregulated) hours compared to normal skin. A principal component
analysis (PCA), as depicted by the fitted ellipses, demonstrates separation within each
group and clear deviation of groups between healthy, saline, and IgE at the 6- and 24-h
timepoints after batch correction and normalization (Supplementary Figure S1).

Overall, both injections (anti-canine-IgE and saline) induced significant differences
in treated versus healthy skin for numerous immune genes, with anti-canine-IgE-induced
lesions generally producing stronger immune responses (Figure 2 and Supplementary
Table S1). These include significant upregulations of pro-inflammatory (IL-1β, IL-8/CXCL8,
IL-6, IL-18) and Th1 (CXCL10, STAT1, MX1, CCL4) markers.
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line (arrow). Anti-canine-IgE injections induced strong global wheal scores (GWS; (c) and late phase 
reactions (LPRs; (d) at 6- and 24-h, compared to phosphate-buffered saline and histamine control. 
(e–g) Histopathological evaluation of the number of inflammatory infiltration cells (e), eosinophils 
(f) and lymphocytes (g) in saline and anti-IgE late phase reactions (LPRs). * p-adj < 0.05, ** p-adj < 
0.01, *** p-adj < 0.005. 
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Figure 1. Clinical images of wheal and flare responses after 20 min GWS; (a) and 6 h LPRs, (b) of
injected compounds anti-canine IgE (asterisk), histamine (arrowhead) and phosphate-buffered saline
(arrow). Anti-canine-IgE injections induced strong global wheal scores GWS; (c) and late phase
reactions LPRs; (d) at 6- and 24-h, compared to phosphate-buffered saline and histamine control.
(e–g) Histopathological evaluation of the number of inflammatory infiltration cells (e), eosinophils (f)
and lymphocytes (g) in saline and anti-IgE late phase reactions (LPRs). * p-adj < 0.05, ** p-adj < 0.01,
*** p-adj < 0.005.

Anti-canine-IgE reactions showed stronger increase in Th2-related markers (e.g., IL-13,
IL-4R, IL-5RA, CCL5, CCL13, CCL17, CCL24, POSTN, STAT6) compared to saline group;
saline group did not reach significance for multiple Th2-related cytokines and chemokines
(e.g., IL-13, IL-5RA, CCL24, POSTN, STAT6). In addition, there was an upregulation of
IL-9R (FC = 7.9) only for anti-canine-IgE-mediated reaction at 24 h; IL-9 (FC = 4.3) was
upregulated as well, however, did not reach statistical significance (FDR = 0.05). Although
significant modulation of several Th17/Th22-related markers (e.g., IL-17RA, IL-23A, CCL20,
S100A12) was seen across both groups, there were no significant changes in key Th17 (i.e.,
IL-17A/IL-17F) and Th22 (i.e., IL-22) markers in both anti-canine-IgE and saline at 6 and
24-h groups compared to healthy control.
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Figure 2. Expression of selected relevant cytokine, chemokine and receptor genes in anti-canine-IgE
and saline cutaneous reactions at 6 and 24 h after intradermal injections. Genes are arranged by their
dominant function or family and color responds to downregulation (dark blue) and upregulation
(bright red); fold changes (FC) with asterisks are statistically significant at * false rate discovery
(FDR) < 0.05.

We next evaluated genes associated with epidermal barrier differentiation and lipid
synthesis [16,17] (Supplementary Table S1). While both interventions, the anti-canine IgE
and saline injections, induced significant changes in epidermal barrier genes compared
to healthy, only anti-canine IgE LPRs showed significant downregulation of terminal
differentiation (FLG, FLG2, CDSN, LOR, LCE1E, LCE6A, CAPN1, ST14), gap/tight-junctions
(CLDN1, CLDN4, CLDN5, GJB5) and lipid metabolism/biosynthesis markers (ELOVL1,
ELOVL2, ELOVL6, ALOXE3). Saline and anti-IgE injections increased stress-associated
(alarmin) keratins (KRT6A, KRT6B) and TIMP-1, a tissue inhibitor of metalloproteinase 1.
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In the anti-canine IgE skin biopsy samples, several significantly up-regulated noncy-
tokine pruritogens (Supplementary Figure S2) were genes encoding nerve growth factor
(NGF) and its high affinity receptor NTRK1 (TrkA), the proteases cathepsin S (CTSS),
chymase (CMA1) and the tryptic peptidase mastin, periostin (POSTN) and the enzymes
involved in leukotriene-B4 (LTB4) synthesis (5-lipoxygenase [ALOX5] and its activating pro-
tein FLAP [ALOX5AP]) and the cysteinyl leukotriene receptor 1 (CYSLTR1) and 2 (CYSLTR2)
(Supplementary Table S1). Both interventions (anti-canine IgE and saline injections) signifi-
cantly upregulated the enzyme involved in histamine metabolism, histidine decarboxylase
(HDC), and histamine receptor 1 (HRH1); however, only anti-canine IgE LPRs showed
upregulation of histamine N-methyltransferase (HNMT at 24 h) and histamine receptor 4
(HRH4 at 6 h). Interestingly, anti-canine IgE injections significantly downregulated genes
encoding substance P (TAC1), MAS-related GPR family member X2 (MRGPRX2) and en-
dothelin 1 (EDN1). No significant differences in IL-31 expression existed between any
interventions and healthy normal skin.

3.3. Pathway and Enrichment Analysis of of Anti-Canine-IgE- and Saline-Mediated Late Phase
Reactions (LPRs)

To perform pathway-level comparisons across the molecular skin profiles induced by
each agent, we conducted a Gene Set Variation Analysis (GSVA) using previously published
immune gene-sets for Th1, Th2, Th17 and Th22_IL22 [16,17] (Figure 3).
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Figure 3. Gene Set Variation Analysis (GSVA) scores for T-helper (Th) 1, 2, 17 and 22/IL-22 immune
pathway for each group (saline or anti-canine IgE) and time (6- or 24-h) versus healthy demonstrated
in vertical box and whisker plots. * implies p-adj < 0.05, ** implies p-adj < 0.01, *** implies p-adj < 0.005.
(a) 6-h saline vs. healthy with no significance. (b) 24-h saline vs. healthy with only Th1 showing
significance. (c) 6-h anti-canine IgE vs. healthy with significance in Th1, Th2 and Th17 gene groups.
(d) 24-h anti-canine IgE vs. healthy with significance in all GSVA gene groups.
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Intradermal injection of saline induced elevated Th1 response at 24 h; there was no
significant increases in the Th1-, Th2-, Th17- and Th22-related pathways for any other
time point. Anti-canine IgE injections showed significant upregulation in Th1-, Th2- and
Th17-regulated genes at 6 and 24 h; the Th22_IL-22 pathway was significantly elevated
only at 24 h.

To understand whether the DEGs are significantly enriched in the transcriptional
enrichment and pathway analysis, upregulated and downregulated DEGs were ana-
lyzed by using Metacore software. Skin lesions induced by anti-canine-IgE injections
at 6 and 24-h induced 47 and 59 significantly upregulated process networks, respectively
(Supplementary Table S2). In contrast, intradermal saline injections induced weaker re-
sponses at 6 and 24-h with only 24 and 28 significantly upregulated process networks,
respectively (Supplementary Table S2).

The top 20 most upregulated process networks (Supplementary Table S2) for anti-
canine-IgE injections for both time points were related to the immune system, such as
chemotaxis, JAK-STAT pathway, lymphocyte proliferation, leukocyte chemotaxis, interferon
signaling, phagocytosis, antigen presentation, neutrophil activation, IL-4 signaling, NK
cell cytotoxicity, T helper differentiation and innate inflammatory responses. There was
also upregulation of inflammatory responses via IL-5-, IL-13- and IgE-signaling, histamine
signaling and Th17 cytokine immune response.

The intradermal injections of saline control upregulated immune responses as well,
such as chemotaxis, JAK-STAT pathway, cell-matrix interactions, extracellular remodeling,
connective tissue degradation, phagocytosis, antigen presentation, neutrophil activation,
innate inflammatory responses, Th17 cytokine immune response and IFN-y signaling.
However, the number of upregulated genes in these pathways induced by saline control
was significantly lower compared to anti-canine IgE-induced pathways. Furthermore, the
robust immune response of interleukin signaling pathways associated with Th2 pathways,
such as IL-4-, IL-5-, IL-13- and IgE signaling pathways, that were increased in anti-canine-
IgE reactions were not observed in saline control reactions at any time point.

Finally, the downregulated DEGs from anti-canine-IgE reactions at 6 and 24-h induced 11
and 9 significantly downregulated process networks, respectively (Supplementary Table S2).
The downregulated process networks were associated with neurogenesis synaptogenesis,
neurogenesis axonal guidance, synaptic contact, transmission of nerve impulse, potassium
and calcium transport, confirming the functional connection between the IgE activation of
the immune system and free nerve endings in the skin. In contrast, there were only 2 and 4
significantly downregulated process networks from saline control DEGs at at 6 and 24-h,
respectively (Supplementary Table S2); these networks were associated with translation
initiation, muscle contraction, actin filaments and skeletal muscle development.

3.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Quantitative reverse-transcription PCR performed for selected genes (CCL2, C-X-C
motif chemokine ligand 10 (CXCL10), CCL17, IL-1B, tissue necrosis factor alpha (TNF-α)
and IL-33) at the 6-h and 24-h IgE timepoints were strong, at 0.90 (p = 0.01) and 0.93
(p = 0.007) correlation coefficients with a 95% confidence interval for Pearson correlations,
respectively, demonstrating efficacy of RNA-seq to capture expression data accurately.

3.5. Correlation Analysis to Acute Skin Lesions in Human and Canine Spontaneous AD

The search of the database identified only a single spontaneous human AD study that
analyzed 38 healthy and 11 acute skin lesional AD samples using RNA seq at 125 base
pairs; no spontaneous canine AD RNA seq studies that incorporated healthy and acute
lesional AD skin samples using RNA seq analysis were found. Therefore, we investigated
the overlap between these human orthologues of canine DEGs in anti-canine-IgE reactions
at 6 and 24-h and a previously published transcriptome skin data from acute spontaneous
human AD skin lesions using criteria of −1.5 ≥ FC ≥ 1.5 and FDR < 0.05. Spearman
correlation coefficient for the shared DEGs between canine anti-canine-IgE and human
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AD samples revealed a significant moderate positive correlation for anti-canine-IgE 6-h
samples (1198 shared DEGs; r = 0.53; p < 0.001; Figure 4a) and 24-h samples (1020 shared
DEGs; r = 0.47; p < 0.001; Figure 4b).
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4. Discussion

This is the first global molecular profiling study of inflammatory skin lesions activated
through IgE signaling in the skin of healthy dogs. Despite similar activation of pro-
inflammatory genes in both groups, our data revealed significant variations in cellular
infiltration and expression of immune and barrier genes between anti-canine-IgE and saline
control skin lesions. With AD representing one the most prevalent inflammatory skin
disease in humans and dogs, there is a need for the development of screening experimental
models for studying the anti-inflammatory effect of anti-allergic drugs before entering
clinical trials, like anti-canine-IgE reactions.

Historically, AD has been characterized as a biphasic disease with a Th2-to-Th1 transi-
tion from acute to chronic AD stage; however, there are conflicting data [19,20]. To elucidate
the transition from acute to chronic AD disease stages and the factors and mechanisms that
shape chronic inflammatory activity, Tsoi et al., recently performed RNA sequencing on
acute and chronic AD lesions within the same individuals [21]. The results by Tsoi et al., in
2020 showed that the changes accompanying the transition from nonlesional to acute to
chronic inflammation in AD are quantitative rather than qualitative; approximately 74% of
the genes dysregulated in acute lesions remain or are further dysregulated in chronic le-
sions [21]. All the major Th1, Th2, Th17 and Th22 responses were progressively heightened
from nonlesional AD to acute and then chronic AD lesions, whereas nonlesional AD was
enriched in Th2 and Th17 responses [21]. In the study of this report, intradermal injections
of anti-canine IgE in healthy dogs induced acute multipolar Th polarization in the skin
with early upregulation of Th1, Th2 and Th17 pathways at 6 h and additionally at 24 h
the Th22_IL-22 pathway. In addition, anti-canine IgE-mediated reactions transcriptomic
profile was compared with the spontaneous acute human AD transcriptome to compare
how well the IgE-induced skin lesions represent human AD. Previous studies utilizing
murine AD-like models revealed that murine transcriptomes represent only 37%, 18%,
17%, and 11% of the human meta-analysis–derived atopic dermatitis profile (MADAD) for
IL-23–injected, NC/Nga, oxazolone (OXA)-challenged, and ovalbumin (OVA)-challenged
mice, respectively [22]. Interestingly, there were 1198 overlapped DEGs (−1.5 ≥ FC ≥ 1.5
and FDR < 0.05) with moderate positive correlation (r = 0.53) between the transcriptome
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of anti-canine IgE skin lesions at 6-h and acute human AD in our study. Although IgE-
induced lesions did not capture all immune and barrier aspects of chronic spontaneous
human AD, the results of this study demonstrate that acute IgE-mediated signaling in skin
induces a wide array of inflammatory axes, including Th2 activation, and could be suited
in pre-clinical studies to evaluate Th2 AD-centric axis and how it communicates with other
activated immune responses in AD patients.

Histologically, acute AD skin lesions in humans and dogs exhibit spongiosis with mild
to moderate acanthosis in addition to a superficial perivascular infiltrate of lymphocytes,
dendritic cells and macrophages [23–25]. In addition, mast cells can show degranulation,
and occasionally eosinophils may be present with rare neutrophils [23–25]. Anti-canine
IgE acute skin lesions in this study featured similar changes with mild acanthosis and
superficial dermis expanded by mild edema, intermixed with neutrophils, eosinophils,
lymphocytes, and plasma cells; eosinophils and mononuclear cells dominated the late-
phase reactions at 24 h. Eosinophil recruitment to allergic inflammation sites in the skin
and other tissues is driven by IL-5 signaling and by eotaxins (CCL11, CCL24, CCL26) and
other chemokines such as regulated on activation, normal T cell expressed and secreted
(RANTES; CCL5) and CCL3; these chemokines bind to eosinophils via the ß-chemokine
receptor CCR3 [26]. The significant eosinophilic inflammation in the IgE-mediated skin
lesions in this study compared to controls can be explained by the strong upregulation of
IL-5 signaling pathway with IL-5RA (FC = 33.5 and FC = 52.4 at 6- and 24-h reactions) as
well as chemokines CCL3, CCL11 and chemokine receptor CCR3 (FC = 113.6 and FC = 79.5
at 6- and 24-h reactions)

As previously mentioned, AD has long been considered a Th2 disease. A recent study
revealed that IL13 is the dominant Th2 cytokine in spontaneous acute and chronic human
AD skin lesions [18]. Currently, IL-13 is considered the central driver of Th2 inflammation
in human and canine atopic skin [18,27]. Interleukin 13, along with receptors IL4R and
IL13Rα1, was the dominant Th2 cytokine in the anti-canine IgE skin lesions in this study,
whereas IL-4 was not affected by the IgE-mediated activation. Interleukin 31 is another
Th2 cytokine with a dominant pruritogenic effect across different species, such as humans,
primates, mice, and dogs [28,29]. Increased IL-31 serum levels have been observed in some
AD dogs; a subset of dogs with AD had no detectable levels of IL31 in circulation [30]. In this
study, the RNA-seq showed no significant upregulation of IL31 in any groups. Interestingly,
previous murine and canine studies have also had issues amplifying IL31 in the skin of
atopic dogs using RNA-seq [31–33]. It is possible that cutaneous IL-31 mRNA is temporary,
unstable, and unpredictable or that the IL-31 sequence in the current canine genome utilized
in RNA-seq analysis is not accurate and further studies using immunohistochemistry or
immunofluorescence to target IL31 protein presence can be performed to elucidate the
presence of IL31 in anti-canine IgE activated skin lesions.

Lesional AD skin features skin barrier dysfunction, characterized by multiple factors,
including reduction of epidermal barrier proteins, ceramides, adhesion intercellular pro-
teins and antimicrobial peptides [16–18]. Th2 cytokines, IL-4 and IL-13, have been shown to
downregulate the expression of skin barrier proteins and lipids in human keratinocyte cul-
tures [34]. In contrast to saline control, anti-canine IgE-mediated inflammation significantly
downregulated the expression of several epidermal proteins (FLG, FLG2, CDSN, LOR), tight-
junction adhesion molecules (CLDN1, CLDN4, CLDN5) and lipid metabolism/biosynthesis
markers (ELOVL1, ELOVL2, ELOVL6) in this study. The increased IL-13 expression with
the lack of upregulation of IL-4 in anti-canine IgE skin lesions is likely the result of the
observed skin barrier changes, resembling barrier dysfunction in spontaneous AD lesional
skin in dogs and humans.

Some of the limitations in this study included a small sample size and a lack of
identification of protein expression. We determined the sample size using the sample size
calculator recommended for RNA-seq studies. In addition, the current canine protein
multiplex assays have a limited number of markers available to analyze, in contrast to
human assays that allow evaluations of up to 300 proteins [35]. Furthermore, the batch
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effects present between samples in this study (specifically 75PE and 150PE reads depending
on the sample) could cause a limit in the proper detection of DEGs by confounding the
analysis. However, utilizing ComBat-seq, an extension of the ComBat approach, is optimal
in this scenario as it works well on smaller sample sizes and is robust against outliers [36].

5. Conclusions

In summary, the molecular characterization of experimental models utilized to evalu-
ate therapeutics for spontaneous inflammatory skin diseases is essential for future mech-
anistic and immunomodulatory pre-clinical studies in humans and dogs. In this study,
IgE-mediated skin lesions appear to mediate similar T-helper pathways and barrier changes
to that of acute spontaneous human AD lesions through examination of the RNA-seq tran-
scriptome; IL-13 represents the dominant Th2 cytokine in this model. Although the initial
pilot study using qRT-PCR revealed that prednisolone reduced IL-13, IL-5, CCL2, CCL5 and
CCL17 in IgE-mediated skin lesions, further molecular studies using RNA-seq should in-
vestigate the effect of established canine anti-allergic drugs (e.g., glucocorticoids, oclacitinib
as JAK inhibitor) to validate the canine IgE model.
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