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Simple Summary: Activins and inhibins are closely related protein heterodimers with opposing
functions in follicular development. The increased circulating follicle-stimulating hormone (FSH)
levels and strengthened estrus behavior may result from the immune neutralization of the inhibin
bioactivity, which might improve ovarian follicle formation. However, the direct effect of activins, or
immunization against inhibin, on the granulosa cells (GCs) functions remains largely unknown. We
aimed to examine the effects of activin A (ACT-A) on the function of porcine ovarian GCs. The results
showed that ACT-A could suppress ROS accumulation through the upregulation of the expression of
estrogen receptor-β (ERβ), thus attenuating apoptosis in the porcine granulosa cells and promoting
estradiol synthesis. These results identified a novel protective role of ACT-A in the regulation of
the follicle functions, which revealed the mechanism of improvement locally in the ovary caused by
immunization against inhibin.

Abstract: Unfavorable conditions compromise animal reproduction by altering the ovarian granulosa
cells’ follicular dynamics and normal physiological function (GCs), eventually resulting in oxidative
damage and cell apoptosis. Activin is produced in the GCs and plays a vital role in folliculogenesis.
This study investigated the effects of activin A (ACT-A) treatment in vitro on the apoptosis of porcine
GCs and the underlying molecular mechanism. We found that ACT-A could attenuate the apoptosis
of the GCs and enhance the synthesis of estrogen (E2). ACT-A also enhanced FSH-induced estrogen
receptor-β (ERβ) expression, inhibiting ERβ aggravated intracellular accumulation of the reactive
oxygen species (ROS) and apoptosis. The E2 levels in the culture medium, the mRNA expression
pattern of the apoptosis-related genes (CASPASE 3, BCL2, and BAX), steroidogenesis-related gene
(CYP19A1), and cell viability were analyzed to confirm the results. In summary, this study indicated
the protective role of ACT-A in apoptosis by attenuating the ROS accumulation through ERβ. These
results aim to enhance the follicular functions and improve animal reproductive performance.

Keywords: porcine granulosa cells; activin A; apoptosis; reactive oxygen species; estrogen receptor β
(ERβ)

1. Introduction

Researchers and practitioners are becoming more concerned about the growing infertil-
ity issue in people and animals, which may be brought on by stress and hyperandrogenism-
prompted ovarian follicular maldevelopments [1–3]. More than 99% of the follicles in
mammalian ovaries have atretic degeneration before ovulation [4]. During the past decades,
several endocrine manipulating reproductive protocols have been developed to enhance
the ovarian functions and improve reproductive performance [5,6], but the current proto-
cols are far from satisfactory. The three interrelated characteristics that impact an animal’s
ability to reproduce soundly are a sound-growing ovarian follicle that may create a high-
quality egg, a high-quality embryo consequently, and a high-quality corpus luteum [7,8]. By
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increasing the circulating follicle-stimulating hormone (FSH) concentrations, the bolstering
estrus behavior, and enhancing the oocyte and early embryo development competence
in dairy cows [9], water buffaloes [10], and pigs [11], a method of immunoneutralization
of inhibin bioactivity has been developed in recent decades to effectively stimulate or
enhance the granulosa cells and ovarian follicle development. In addition to increasing the
conception rate, immunization against inhibin, when combined with the OvSynch protocol,
also increased the plasma concentrations of the interferon tau (IFN-tau) in dairy cows
around the time of pregnancy recognition, further demonstrating its efficacy in enhancing
early embryo development and oocyte maturation [12,13].

Activins and inhibins are closely related protein heterodimers [14], belonging to the
transforming growth factor-beta (TGF-β) superfamily, however, these two complexes have
opposing functions in follicular development [15,16]. The hormone inhibin is a dimeric
glycoprotein which is composed of an α-subunit and either a βA or a βB-subunit (inhibin
A and inhibin B, respectively). It is primarily secreted by the gonads and inhibits the
pituitary secretion of the FSH through negative feedback regulation [17,18]. Activins are
composed of homodimers of β subunits, namely activin A (βA βA), activin AB (βA βB),
and activin B (βB βB). In the pituitary, the activin increased the synthesis and secretion of
FSH, and this process could be counter regulated by inhibin. The inhibin antagonizes the
activin signaling by competitively binding to the activin type 2 receptors (ActRII). It has
been hypothesized that, in addition to the stimulation brought on by the increased FSH
secretion, the immunoneutralization of the inhibin bioactivity may also directly boost the
granulosa or follicular cell function [19]. Additionally, Cai [20] cultivated porcine granulosa
cells using an anti-inhibin-subunit antibody and found that, through enhancing activin
signaling pathways, the immunoneutralization of inhibin bioactivity allowed the formation
of healthy and viable granulosa cells. Currently, the reported effects of activins on the
proliferation in the ovary are conflicting. Some groups reported that activin A (ACT-A)
played a role in the oocyte maturation and the proliferation of the granulosa cells and
pre-antral follicles in mice, as well as increased the FSH receptor (FSHR) expression in vitro.
In cattle ovary research, ACT-A was reported to attenuate the apoptosis of the bovine
ovarian granulosa cell in the atretic follicles [21]. However, the mechanism underlying the
enhanced growth and development of the ovarian follicles by activin remains to be further
understood. Others observed the opposite outcome, which hindered human follicular
development and lowered the swine granulosa cells in vitro production of estradiol (E2)
and progesterone (P4).

Therefore, in this study, we investigated the effect of ACT-A from the perspectives of
development and apoptosis on porcine granulosa cells, per se. Our findings revealed a
primary protective role of ACT-A, with induced GC survival in an estradiol receptor beta
(ERβ) dependent mode.

2. Materials and Methods
2.1. Granulosa Cell Isolation and Culture

The granulosa cells in the ovaries of prepubertal gilts aged 165–180 days were isolated
and grown following the methods used in other investigations. In a nutshell, the follicles
with a diameter of 3–6 mm were used to aspirate the granulosa cells using a syringe and
sterile needles. The granulosa cells were then separated by centrifuging them for 5 min
at 1000× g, rinsing them in a sterile F12 medium (Wisent Corporation, Nanjing, China),
and resuspending them in the same medium with 10% fetal calf serum (10099141C, Gibco;
Shanghai, China) and 1% antibiotic-antimycotic solution (Sigma, St. Louis, MO, USA) at a
final density of 106 cells/mL. The cell suspension was then divided into aliquots and placed
onto 6-well culture plates made by Nunc International (Naperville, IL, USA; 2 mL/well).
The cells were incubated in humidified air with 5% CO2 at 37 ◦C. After 48 h of incubation,
the wells were twice rinsed with PBS to remove the single cells and then refilled with 2 mL
of brand-new F12 media with 2% fetal calf serum.
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2.2. Cell Treatment

The unattached cells were eliminated and the cells were treated in a new cell culture
media consisting of F12 medium supplemented with 2% FBS and 0.1 µM androstene-
dione. ACT-A (R&D systems, Minneapolis, MN, USA) was dissolved in the new media at
50 ng/mL. The H2O2 was diluted to 0.4 mM, as previously reported [22,23]. PHTPP (4-[2-
Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]-pyrimidin-3-yl] phenol, Sigma, Burlington,
MA, USA) was used at the concentration of 10 µM, as previously described [24,25]. The
cells were treated for 24 h and harvested for mRNA and protein detection.

2.3. Cell Viability Assay

The optical density of the yellow color was measured at 490 nm using a BioTek Eon
microtiter plate reader. The GCs were cultured in 96-well plates, and their viability was
assessed using the CCK-8 cell viability assay kit (Cell Counting Kit-8; Beyotime Co., Ltd.,
Shanghai, China), following the manufacturer’s instructions after the heat treatment. The
percentage of the absorbance readings compared to the control was used to indicate the
cell viability. Three distinct cultures were used in the tests, and three copies of each sample
were analyzed.

2.4. Measurement of E2 Secretion

According to the manufacturer’s instructions, an ELISA kit (Beijing North Institute of
Biological Technology, Beijing, China) was used to quantify E2 in the culture media. The
kit’s standard curve covered the concentration range of 0 to 400 pg/mL, and the intra-
and inter-assay coefficients of the variation were both less than 10%. Every sample was
measured three times.

2.5. Gene Expression Analysis

The TRIzol Reagent (74104, Invitrogen, Shanghai, China) was used to separate the total
RNA from the grown GCs, and the 1st-Strand cDNA Synthesis Kit (11119ES60, YEASEN,
Shanghai, China) was used to reverse-transcribe the total RNA into cDNA, following the
manufacturer’s instructions. In porcine granulosa cells, the mRNA expression levels of
β-Actin, CYP19A1, FSHR, BAX, CASPASE 3, BCL2, and ERβ were quantified using a real-
time quantitative polymerase chain reaction (the primer information is shown in Table 1).
The PCRs were performed using a One-Step RT-qPCR SYBR Green Kit (11143ES850) on an
ABI 7500 (Applied Biosystems; Foster City, CA, USA) with a 20µL reaction volume. After
the real-time qPCR was finished, the ABI 7500 software V.2.0.6 determined the threshold
cycle (Ct) values (Applied Biosystems; Foster City, CA, USA). As reported in our earlier
work, the 2−∆∆Ct technique was used to quantify the gene expression levels, which were
then normalized to the expression levels of the internal housekeeping gene β-Actin. The
triplicates of each sample were analyzed.

Table 1. Primers utilized in this investigation.

Gene Primer Sequences (5′—3′) Length

β-Actin F: CTTCCTGGGCATGGAGTCC 201 bp
R: GGCGCGATGATCTTGATCTTC

CYP19A1 F: GGTCACAACAAGACAGGA 168 bp
R: AACCAAGAGAAGAAAGCC

FSHR F: GCCCAGAACTAAAACACAATG 107 bp
R: TATAGACAAGTAACCGTCAGC

BAX F: AATTGGCTTGGTCTGTAT 104 bp
R: CGGTCGTGATGGTATGTG

BCL2 F: CATGCGTATTTATATTTG 112 bp
R: CTCTGCTGCTTGCTGCTA
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Table 1. Cont.

Gene Primer Sequences (5′—3′) Length

CASPASE 3 F: ATGTCAGGCTAGTCTCTC 124 bp
R: TGGTATGTAACTTGGGGA

ERβ F: TATCTCCTCCCAGCAGCAGTCT 153 bp
F: TATCTCCTCCCAGCAGCAGTCT

2.6. Analysis and Detection of ROS

Using cell-permeant 2′, 7′-dichlorodihydrofluorescein diacetates (H2DCFDA; Bey-
otime Institute of Biotechnology, Shanghai, China), as previously reported [41], the intra-
cellular ROS levels in the cells following the H2O2 treatment were measured. In a 24-well
plate, the sterile coverslips were inserted in each well before the seeding of the granulosa
cells. The cells were treated, as previously indicated, and incubated in H2DCFDA/PBS
solutions (1:1000) at 37 ◦C for 30 min. The coverslips were placed on the glass slides after
being thoroughly washed in DPBS (with the cell side laid face down to the glass slide).
Finally, a confocal microscope was used to analyze the instantaneousness of the cells (Zeiss
LSM700 META). The average pixel intensity of three distinct fields from each experiment
was examined for the ROS level analysis (all the cells in each field were examined), and the
areas adjacent to the cells that do not fluoresce were designated as the background.

2.7. Analytical Oxidative Stress-Associated Parameters

Using the xanthine oxidase technique, the activity of SOD in the granulosa cells was
quantified and represented as units per mg of protein. Thiobarbituric acid was used to
assess the MDA concentration in the granulosa cells, and the results were expressed as mol
per mg of protein. The exact stages were carried out following the instructions included
with the kits.

2.8. Statistical Analysis

The student’s t-test was used to examine the data presented as the mean SD. SPSS
Statistics version 25.0 was used to conduct all the statistical analyses (SPSS Inc., Chicago,
IL, USA). The cutoff for the statistical significance was p < 0.05.

3. Results
3.1. ACT-A Enhances the Expression of FSHR and ERβ and Significantly Increases Granulosa
Cells’ Sensitivity (GCs) Sensitivity to FSH Treatment

As shown in Figure 1A, ACT-A increased the gene expression of FSHR. As a result, we
included FSH in the following treatment to explore the effect of ACT-A on the sensitivity
of the GCs to the FSH. It was found that co-treatment of ACT-A and FSH dramatically
enhanced the secretion of estrogen (E2, Figure 1B) and the gene expression of CYP19A1
(Figure 1C), suggesting that ACT-A demonstrates a synergetic effect in FSH-induced follicle
development. As reported, ERβ expression contributes to E2 synthesis and plays a role in
FSH-mediated follicle development. Therefore, the impact of ACT-A and co-treatment of
ACT-A and FSH on ERβ abundance was investigated in this study. As shown in Figure 1D,
the ERβ expression level was significantly increased under both conditions, suggesting a
potential role of ERβ underlying ACT-A on the GC’s growth and survival.
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Figure 1. Effect of ACT-A on ERβ and FSHR expression and GC sensitivity to FSH therapy. qRT-
PCR was used to evaluate the gene expression level of FSHR (A), CYP19A1 (C), ERβ (D), and E2
concentration levels in GCs (B). The ctrl means control (untreated group). ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.2. ACT-A Attenuates Apoptosis of GCs

As observed in the CCK-8 assay (Figure 2A), ACT-A treatment inhibits the GC’s
apoptosis. So, using the real-time PCR, we determined the prevalence of the genes BAX,
BCL2, and CASPASE 3 associated with apoptosis. According to Figure 2B, ACT-A inhibits
the apoptosis of the GCs, as shown by the significantly reduced relative expression of BAX
and CASPASE 3, and the elevated expression of BCL2.

3.3. ACT-A Mediates GCs Apoptosis via Modulating ERβ Expression

Based on the findings above, we hypothesized that ERβ modulation could be the
underlying mechanism for ACT-A effect on the GC’s apoptosis. As a result, we treated the
GCs with the selective ERβ inhibitor PHTPP (10 µM), in combination with ACT-A, and
then examined the gene expression of BAX, BCL2, and CASPASE 3. Firstly, the decreased
CYP19A1 expression was used to confirm the effect of PHTPP on the E2 synthesis (data
not shown). Next, as shown in Figure 3C, the BAX and CASPASE 3 expressions were
significantly increased, while the BCL2 expression was downregulated with both the PHTPP
treatment alone and the co-treatment of PHTPP and ACT-A, indicating an induction effect
of ERβ inhibition on the cell apoptosis. Meantime, it is remarkable that the PHTPP also
inhibits the ERβ expression in Figure 3B, further implying an important role of the ERβ
expression in the observed ACT-A effect. Finally, the CCK-8 assay was utilized in the
following to validate this finding. As shown in Figure 3A, the result demonstrated that
the PHTPP treatment promotes the GC’s apoptosis and thus verified the hypothesis that
ACT-A mediates the GC’s apoptosis via the modulation ERβ expression.
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Figure 3. ACT-A mediates GCs apoptosis via modulation ERβ expression. (A). The CCK-8 test was
used to determine how PHTPP affected the apoptosis of GCs. B. C. Erβ. (B). BAX, CASPASE 3, and
BCL2 (C). The gene expression levels were assessed by qRT-PCR. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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3.4. ACT-A Mediates Intracellular ROS Levels in GCs via ERβ

To further investigate the underlying mechanism by which ACT-A and ERβ regulate
the GC’s apoptosis process, we drew attention to the cellular ROS level detection. As
shown in Figure 4A, the ACT-A treatment could decrease the intracellular ROS levels of
the granulosa cells, which might contribute to the inhibitory effect of ACT-A on apoptosis.
Meanwhile, it was observed that the co-treatment of PHTPP with ACT-A attenuated the im-
pact of ACT-A on ROS, further implying the role of ERβ in this process. Lipid peroxidation
(MDA) detection (Figure 4B) and Superoxide Dismutase (SOD) measurement (Figure 4C)
were thus performed, and the data indicated that ACT- A reduces ROS-mediated apoptosis
through ERβ.
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Figure 4. ACT-A mediates intracellular ROS level of GCs in ERβ-dependent mode. (A). Measurement
of cellular ROS level by treatment of ACT-A and PHTPP. (B). Lipid peroxidation assay was performed
to detect MDA changes. (C). Superoxide dismutase assay was performed to detect SOD changes. “a”
means a significant change compared with the control (untreated group), “b” means a substantial
change to H2O2 treatment, and “c” means a considerable change to co-treatment of H2O2 and ACT-A.

4. Discussion

In this work, we demonstrated how ACT-A changed the E2 production and the cell
death of granulosa cells. Substantial modulation of ROS by ERβ expression was found
to contribute to these reactions. These results effectively combine the currently known
effects of activin as a local factor on follicular growth with the impact of inhibin vaccination
on the granulosa cell proliferation and steroid hormone release to enhance the follicle
development.
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GCs are steroidogenic cells surrounding the oocyte, which play an essential role in
follicular development, oocyte maturation, and the subsequent embryo implantation [26].
The maintenance of the GCs contributes to normal follicular growth and, in particular,
plays an important role in deciding the fate of the follicles. The apoptotic GCs may cause
follicle development disturbance, poor quality of oocytes, and induce low reproductive
performance [27]. As reported, multiple apoptotic signaling molecules in the GCs, such as
hormones, growth factors, death ligand-receptor system, and Bcl-2 family members, affect
each other, and activate Caspase 3 and the subsequent DNA fragmentation, and result in
the GC’s apoptosis [28].

From the earliest stages of follicle development, the granulosa cells begin to produce
activin, and as follicle growth progresses, inhibin/follistatin, which inhibits activin’s actions,
takes over in the granulosa cells [29]. The granulosa cells of dominant or prominent ovarian
follicles are primarily responsible for the inhibin secretion [30]. Through a negative feedback
loop [31], inhibin suppresses pituitary follicle-stimulating hormone (FSH) release. It limits
the growth of subordinate follicles through the para/autocrine regulatory pathways, which
adversely control ovarian follicular development [32]. Inhibin is known to act locally
in the ovary, the most clearly defined paracrine function being to antagonize the effect
of activin [33]. By passive or active immunization against the inhibin subunit peptide,
the immuno-neutralization of inhibin’s ovarian follicle suppression activity improves the
follicle development and hormone secretion capacity, significantly boosting ovulation rates
and reproductive performance in various animal models.

According to reports, activin induces the expression of FSH-R and LH receptors, while
also increasing the activity of the FSH-induced aromatase. In this study, after 24 h of
culture, ACT-A was added to the culture medium. Compared with the cultured control,
ACT-A promoted E2 secretion and caused an increase in FSHR mRNA levels and, as a
result, increased GC sensitivity to FSH, which led to an increased CYP19A1 expression.
Additionally, we discovered that ACT-A stimulates ERβ expression, and ERβ inhibition
results in a deficit in E2 production. Our results align with the earlier research that suggests
the GCs play a fundamental role in forming the ovarian follicles stimulated by FSH [21].
According to in vitro studies, the presence of ERβ in GCs is necessary to produce a subset
of FSH-induced genes, including CYP19A1 [21]. In addition, previous studies conducted on
ERβ-null mice reported that the knockout of ERβ significantly reduced the levels of FSH-
induced estrogen synthesis [34,35]. In the meantime, the expression of ERβ is regulated
by FSH through the PI3K/AKT pathway [35]. Our findings demonstrated that ACT-A
increased the expression of ERβ caused by FSH. The underlying regulatory mechanism of
the FSH, ERβ, and CYP19A1 network might explain the phenomenon that the elevation of
E2 induced by ACT-A depends on FSH’s presence [36].

The cellular redox status is crucial to cell survival, growth, and death. The accelerated
metabolic rates and the cumulative accumulation of the reactive oxygen species (ROS) are
linked to higher demands for energy and nutrients throughout the reproductive process.
Unfavorable environmental conditions, such as bacterial infection and heat stress, are well
known to promote the accumulation of ROS [22,37]. Although ROS are by-products of
aerobic metabolism that are naturally occurring, the excessive ROS production causes
oxidative stress and cellular damage. In GCs, the excessive intracellular ROS could cause a
series of damage, such as disruptive apoptosis, altered cell proliferation, and disordered E2
synthesis [23,38]. The death of GCs during follicular atresia, which may result in certain
anovulatory illnesses, such as premature ovarian failure, is strongly supported by the data
that oxidative stress plays a vital role in the process [39].

In this study, we demonstrated that ACT-A attenuated the GC’s apoptosis via mediat-
ing ROS production, and induced ERβ expression in the GCs. As observed in the rat ovary
follicular growth and atresia development, the ERβ expression level decreases along with
the apoptosis increasing in the follicular granulosa cells [40]. Moreover, ERβ was found to
interact with vigilin to protect the ovarian granulosa cell-like human granulosa cells from
the palmitic acid-induced apoptosis [41]. We thus hypothesized and validated that ERβ
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plays an essential role in the ACT-A action mode. Our data showed for the first time that
the inhibition of ERβ significantly enhanced the intracellular ROS level of the GCs and
resulted in a remarkable increase in cell apoptosis.

According to available research on ERβ, it may promote invasion, adhesion, inflam-
matory body activity, proliferation, and inflammatory signals of the ectopic lesions, while
inhibiting apoptosis [42,43], which verifies the unveiled protective role of ERβ in our study.
To prevent TNF-α induced apoptosis, it is well known that ERβ interacts with the cellu-
lar apoptotic machinery in the cytoplasm [44,45]. Meanwhile, synchronized changes in
ERβ expression and ROS induction were detected in the human granulosa cells [46]. It
is indicated in the human granulosa cell line KGN study that both the ERβ expression
and the ROS-ASK1-JNK axis take part in Bisphenol AF-induced cell apoptosis [47]. A
working model was also further proposed for the protecting action of ERβ against semi-
noma, in which ERβ regulated the gene expression of SIRT3, a major mitochondria nicotine
adenine dinucleotide (NAD)+-dependent deacetylase, and resulted in ROS level reduc-
tion [46]. Therefore, our study proves that ACT-A could mediate the GC’s apoptosis in
ERβ-dependent mode, and gene expression in mitochondrial adaptative responses to stress
might be a potential mechanism for further exploration.

5. Conclusions

According to our results, ACT-A can suppress the ROS accumulation through the
upregulation of the expression of ERβ, thus attenuating apoptosis in porcine granulosa
cells. These results identified a novel protective role of ACT-A in the regulation of follicle
functions, which revealed the mechanism of improvement locally in the ovary caused by
the immunization against inhibin. This study also provides proof of principle for enhancing
follicular functions and improving animal reproductive performance.
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