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Abstract: Epigenetic marks regulate the transcriptomic landscape by facilitating the structural pack-
ing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone
methylation is one such mark. It plays crucial roles during development, including in cell fate deci-
sions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated
with varying human developmental disorders. Heart disease has been linked to deregulated histone
lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more
numerous than expected by chance, among the genes with variants associated with congenital heart
disease. This review outlines the available evidence to support a role for individual KMTs in heart
development and/or disease, including genetic associations in patients and supporting cell culture
and animal model studies. It concludes with new advances in the field and new opportunities
for treatment.

Keywords: histone lysine methyltransferase; cardiac development; congenital heart disease; epige-
netic regulation

1. Introduction

Our genome is stored tightly wrapped around histone proteins as chromatin. This
compaction is necessary to fit inside the cell’s nucleus. Inherently, this necessitates a
system to ensure the genome remains accessible for gene expression [1]. For this purpose,
epigenetic regulation leaves a trail of marks that facilitate both the structural packing
and unwinding of the genome. Histones are largely globular structures organized into
octameric nucleosomes (four dimers defined by H3-H4 and H2A-H2B histone pairs), with
unstructured tails [2]. Histone modification marks on the tails can take on different forms,
of which methylation, at lysines or arginines, and acetylation are the most common forms
that regulate gene expression [3]. Methylation stands out for its specificity—lysine-specific
methyltransferases (KMTs) target a single lysine (K) on a single histone (H)—and flexibility,
with methylation marks both activating and repressing transcription, making it one of the
principal chromatin regulatory mechanisms acting upon fundamental nuclear processes [4].

Methylation of lysine residues at the N-terminal tails of histone H3 and the lysine
at the H4 N-terminus regulate major genomic functional processes [5]. Simply put, three
of the lysine methylation sites have been implicated in transcriptional activation: H3K4,
H3K36, and H3K79 (H3K4 and H3K36 have been associated with transcriptional initiation
and elongation, respectively); and three other sites have been implicated in transcriptional
repression: H3K9, H3K27, and H4K20 [6]. Each lysine residue can accept up to three
methyl groups to form mono-, di-, and trimethylated derivatives (Kme1, Kme2, and Kme3,
respectively) (Figure 1). Further regulatory finetuning is achieved by balancing the activity
of KMT with that of lysine demethylases (KDMs) (Figure 1). This shifts the epigenetic
regulatory landscape from static to dynamic. Different methylation sites can act together to
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“poise” genes, which enables rapid activation upon lineage commitment. These double-
methylated, i.e., bivalent, promoters carry marks for both activation and repression, so
that the definitive cell types carry marks either in support of a transcriptionally active
or a silent state, thus sustaining cell fate decisions [7]. Over fifty proteins encoded in
the human genome are known or predicted KMTs (catalytic SET domain KMTs) [8]; each
targets a specific histone-lysine (H_K_) and catalyzes any or a combination of me1, me2,
or me3 [5]. In addition, over thirty histone demethylases (KDMs) have been described in
humans, which can be broadly divided into lysine-specific demethylases (LSD, including
nine KDM subfamilies) and the Jumonji C (JmjC) histone demethylases [9,10]. Some
methylation marks are preferentially enriched at promoters of regulatory genes that control
a variety of developmental pathways. The surrounding positioning sequence, spacing, and
combination of methylation marks provide the context that links the methylated sites to
downstream biological functions mediated by methyl lysine-binding proteins [2].
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Figure 1. Dynamics of histone lysine methylation and demethylation. The methylation marks
regulate structural unwinding and packing of the genome, which facilitates and represses gene
expression, respectively. Methylases and demethylases combined offer a dynamic regulatory system
that can respond to endogenous and environmental changes. The enzymes catalyze addition and
removal of methylation marks, either stepwise (single) or multiple marks at once. K, lysine; me,
methyl group (CH3).

During development, enormous transcriptional shifts take place. Methylation plays a
crucial role to guide these transitions. In line with this are findings of deregulated methy-
lation marks in human aging and developmental disorders, as well as cancer [5,11–13].
Likewise, histone lysine methylation has been shown to be important during heart develop-
ment, and its deregulation has been linked to cardiac disease [14–16]. Similarly, KDMs show
preferential expression during fetal and adult stages of heart development [16]. Studies
using animal models have demonstrated their importance for heart development [17–20],
and several KDMs have shown differential expression in the heart of patients with heart
failure [21–23]. Moreover, deleterious de novo mutations in KDM5A and KDM5B have
been associated with congenital heart disease [24,25].

Recently, Davies et al. wrote a comprehensive review on demethylases in the heart [16].
Considering the growing number of genetic associations between KMTs and heart disease
within the past decade, herein, we outline the currently available evidence, both in patients
(genetic association studies) and supporting in vitro and in vivo (including animal) models,
to support the role of KMTs in heart development and/or disease (Figure 2). We conclude
with next steps in moving the field forward and how a greater understanding of the
epigenetic contributions might open new avenues for treatment to ultimately benefit
the patients.
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Figure 2. Histone lysine-specific methyltransferases (KMTs) and their targets. Each grey ball
represents a globular histone (H), together organized into a nucleosome (an octamer consisting of
two identical subunits of the core histones H4, H3, H2A, and H2B). The black line represents the
unstructured N-terminal ends of the H4 an H3 histones that contain the lysine (K) methylation sites.
Red font, KMT with sufficient evidence to support a regulatory role during heart development and/or
disease (defined by supporting data from multiple model systems, which can be strengthened by
disease association); yellow font, limited suggestive evidence (defined by supporting data from a
single model system); and black font, currently no data to indicate involvement. Details have been
described in this review.

2. Lysine-Specific Methylation in Heart Development and Disease

The SET domain lysine methyltransferases are active KMTs, and their SET domain
catalyzes methylation of specific lysine marks at both histone and non-histone substrates [4].
The domain was first discovered in Drosophila, where three proteins shared the conserved
SET sequence: the modifier of position-effect variegation, Suppressor of variegation 3-9
[Su(var)3-9]; the polycomb-group chromatin regulator, Enhancer of zeste [E(z)]; and the
trithorax-group chromatin regulator, Trithorax (Trx) [4,26]. Proteins carrying variants of
the approximately 130-amino-acid SET domain have been identified in the genomes of all
eukaryotic organisms sequenced to date, as well as many bacterial genomes [26–28].

Below, the KMTs have been grouped by the histone-lysine (H_K_) mark at which
they are primarily active. For each methyltransferase, the available evidence from genetic
association studies in patients that have linked variants in that KMT to heart disease
(Table 1) and for its role in heart development, including evidence from cell and animal
model studies, have been provided (Figure 2).

2.1. H3K4 Methylation

KMT2A (HUGO Gene Nomenclature Committee, HGNC, alias: MLL1, MLL1A, TRX1)
is a histone lysine methyltransferase that belongs to the SET1 family, members of which
have the SET domain, which is responsible for their histone methyltransferase activity.
Mutations in KMT2A cause Wiedemann−Steiner syndrome (WSS; OMIM #605130), a rare
congenital disease characterized by excessive hair growth, short stature, and distinctive
facial features [29,30]. Early on, a subpopulation of patients was misdiagnosed with Kabuki
syndrome (KS; OMIM #147920), another multiple congenital anomaly syndrome that
commonly presents with heart disease, which is caused by variants in KMT2D [30]. Since
then, the phenotypic spectrum of Wiedemann−Steiner syndrome has been expanded to
include congenital heart disease and other phenotypes. In fact, one study reported cardiac
abnormalities, mostly of a structural nature, in ~35% of patients [31].

In Drosophila, silencing trx, the fly homolog of mammalian KMT2A and KMT2B in
the heart, led to non-detectable cardiac actin indicative of a completely absent heart tube,
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as well as a reduced lifespan [32]. These findings in the fly support the causative role of
KMT2A variants in congenital heart disease.

KMT2D (HGNC alias: MLL4) is another member of the SET1 family, and like KMT2A,
acts as a histone lysine methyltransferase. Variants in KMT2D cause Kabuki syndrome, a
rare congenital disease marked by multiple anomalies, including short stature, distinctive
facial features, intellectual disability, persistent fingertip pads, and skeletal abnormalities.
Kabuki syndrome frequently presents with congenital heart defects (~70% of patients),
which display a unique predilection for left-sided obstructive lesions [33–35]. Additional
variants in KMT2D have been reported in patients with varying cardiac diseases, including
left-sided cardiac lesions, heterotaxy, left heart hypoplasia, and a multiple congenital
anomaly syndrome distinct from Kabuki syndrome [36–40].

Multiple animal models have been used to study the role and mechanism of KMT2D
in heart development and disease. A study in mice demonstrated the importance of
KMT2D in cardiac precursors and cardiomyocytes during heart development [34]. It
showed that deletion of Kmt2d in the myocardium results in decreased H3K4me1 and
H3K4me2 levels at enhancers and promoters, which affects the expression of genes in-
volved in ion homeostasis/transport (Atp1a2, Fxyd1, Atp2b4, Snta1, and Kcnj12), wound-
ing/immune/inflammatory response (Tgfb1, Ccl2, and Ccl7), hypoxia–reoxygenation (Vegfa,
Hmox1, and Gpx3), and cell cycle regulation/differentiation (Eid1, Smyd1, Nkx2-5, Snta1, and
Prrx2) [34]. A frog (Xenopus laevis) kmt2d knockdown model showed hypoplastic hearts that
lacked the three-chambered structure due to abnormal development of the first and second
heart fields and abnormal cardiac differentiation [41]. This model mimics the hypoplastic
heart defects observed in patients with Kabuki syndrome. Zebrafish (Danio rerio) kmt2d null
mutants displayed a complex phenotype that resembles the foremost features of Kabuki
syndrome, including microcephaly, palate defects, abnormal ear development, and cardiac
defects [42]. The cardiac phenotype was related to a vasculogenesis defect that affected
endocardium patterning and, as a result, the formation of the heart ventricle lumen, as well
as angiogenesis defects. They further found hyperactive Notch signaling in endocardial
and endothelial cells of the kmt2d null zebrafish, which was associated with increased Rbpj
protein levels, a Notch transcription factor [42]. These findings encourage clinical pursuit in
patients with Kabuki syndrome to determine whether the role of KMT2D−Notch signaling
in heart development is conserved. In Drosophila, the Lpt and trr genes encode the N-
terminal and C-terminal homologs, respectively, of mammalian KMT2C and KMT2D [43].
Silencing either Lpt or trr, or silencing them simultaneously, in the fly heart led to similar
abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D,
Lpt, and trr were found to modulate histone H3K4me1 and H3K4me2 [43]; and, homologs
of the differentially expressed genes in Kmtd-targeted genes in mice were affected in the
Lpt- and trr-deficient flies, including genes involved in ion transport/binding (Ca-α1T
[mouse Cacna1h], CaMKII [mouse CamK2a], Syn [mouse Snta1], and Ype [mouse Ypel5]),
hypoxia (CG15116 [mouse Gpx1] and CG3156 [mouse Abcb10]), cell cycle regulation (E2f1
[mouse E2f2]), and more [43]. Altogether, these animal studies support a conserved role for
KMT2D in heart development and provide insight into the underlying molecular–genetic
mechanisms.

KMT2C (HGNC alias: MLL3) is another histone lysine methyltransferase belonging
to the SET1 family. Both mRNA and protein levels of KMT2C were increased in the left
ventricles of hearts from patients with dilated cardiomyopathy (DCM) that underwent
heart transplantation [44]. These expression levels correlated with pathological severity,
and accompanying increased H3K4me2, but not H3K4me3, marks were observed in the
hearts of patients [44]. Moreover, they found increased protein expression for Smad3,
GATA4, and EGR1 in hearts with dilated cardiomyopathy. All three are key mediators of
cardiomyocyte hypertrophy and cardiac fibrosis, which are prominent features of dilated
cardiomyopathy [44]. In another study, exome sequences revealed likely causal de novo
variants in KMT2C and KDM5A, both histone methylases, that segregated with disease in a
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family with a history of congenital heart disease [45]. However, a direct link from KMT2C
to heart development or congenital heart disease has not yet been shown.

A mouse model of cardiac remodeling (based on transverse aortic constriction) showed
a significant increase in mRNA levels for KMT2C [44]. Like the patients with dilated car-
diomyopathy, the mice displayed increased left ventricular end diastolic and systolic
dimensions, and reduced fractional shortening, as well as evidence of collagen deposi-
tion [44]. These findings suggest a conserved role for KMT2C in the pathomechanism
underlying dilated cardiomyopathy. Notable in the mouse hearts, unlike the human hearts,
mRNA levels for SETD1A were decreased, which might be due to the pressure-induced,
rather than genetic-induced, disease causation in this model [44].

SETD7 (HGNC alias: KMT7, SET7, SET7/9, Set9) is a histone methyltransferase that
specifically regulates H3K4 monomethylation (H3K4me1) [46]. SETD7 is highly expressed
in the developing heart of zebrafish (Danio rerio). Knockdown of setd7 (antisense mor-
pholino) during this time did not change the expression pattern of heart markers; however,
it did lead to severe defects in the zebrafish heart marked by cardiac edema (i.e., swelling
due to decreased blood flow) [47]. Moreover, simultaneous knockdown of setd7 and
smyd3, another H3K4 methyltransferase, during development caused synergistic cardiac
defects [47]. Using in vitro human embryonic stem cell- and human induced pluripotent
stem cell (iPSC)-derived cardiomyocytes, it was shown that SETD7 is a key regulator of
cardiac lineage commitment [48]. It does so by interaction with key co-factors at distinct
stages of differentiation. Notably, besides methylation of H3K4me1, SETD7 was shown
to mediate target gene expression via association with H3K36me3 modification on those
target genes, which included essential components of the SWI/SNF chromatin-remodeling
complex and NKX2-5, one of the major cardiac transcription factors [48]. SETD7 is also re-
quired for calcium processes in terminally differentiated cardiomyocytes, in which calcium
signaling is key for contraction and, thus, regulating the heart beat [48].

SMYD3 (HGNC alias: KMT3E), a SMYD family protein, is expressed ubiquitously
during development in zebrafish (Danio rerio) [49,50]. Aside from the synergistic action
with SETD7 during heart development [47], both deficiency (antisense morpholino) and
overexpression of smyd3 by itself during zebrafish development causes heart defects [47].
These cardiac defects are marked by pericardial edema and the abnormal expression of the
known heart-chamber markers cmlc2, amhc, and vmhc, as well as the abnormal expression of
the myogenic regulatory factors myod and myog [50]. These findings support an important
role for SMYD3 in heart development.

SMYD1 (HGNC alias: KMT3D, BOP) is a striated muscle-specific H3K4 methyltrans-
ferase, unlike the ubiquitously expressed SMYD3. The expression of SMYD1 (then named
BOP) was significantly increased in the explanted heart of patients with end-stage heart fail-
ure, which correlated with reduced expression of cardiac genes [51]. Later, variants in BOP
(SMYD1) were identified in patients diagnosed with hypertrophic cardiomyopathy [52].
However, these studies did not yet determine the molecular–genetic role of SMYD1 during
heart development.

An early study using chicks and mice found that BOP acts as a histone deacetylase-
dependent transcriptional repressor and was expressed in cardiac and skeletal muscle
precursors prior to differentiation [53]. Moreover, knockdown of BOP in mice disrupted the
maturation of ventricular cardiomyocytes and impeded development of the right ventricle.
The expression of Hand2, an established and essential component for right ventricular
development, was dependent on BOP [53]. In zebrafish, it was shown that of the two
SmyD1 forms through alternative splicing, loss of smyd1b induced cardiac muscle defects;
these were more severe in double (smyd1a, smyd1b) mutants (antisense morpholino) [54–56].
The cardiac defects were attributed to aberrant sarcomere organization, which was ac-
companied by increased expression of hsp40, hsp90a1, and possibly unc45b [55,56]. In
mice, Smyd1 has been shown to be essential for cardiomyocyte differentiation and cardiac
morphogenesis [53]. Conditional knockdown of Smyd1 in either the first or second heart
field, specifically in mice, demonstrated its crucial role in maintaining cardiomyocyte pro-
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liferation during at least two distinct embryonic heart developmental stages. Upon loss of
Smyd1 in the heart, oxidative and endoplasmic reticulum (ER) stress responses induced
early lethality [57]. The role of Smyd1 in healthy early heart development is mediated
through its interaction with ASHL2, which activates the Isl1 promoter by H3K4me3, thereby
increasing Isl1 expression. In addition, Smyd1 interacts with HDAC via the deacetylase in-
hibitor TSA, which leads to decreased expression of ANF [58], a cardiac natriuretic peptide
and established marker for heart failure.

In adult mice, the importance of SMYD1 in restricting heart growth has been shown.
Smyd1 was upregulated in a mouse model of hypertrophy and heart failure, and loss
of function resulted in cellular hypertrophy and remodeling, ultimately leading to heart
failure [59,60]. Smyd1 regulated the expression of genes associated with cardiac pathology,
including mitochondrial energetics and cardiac energetics [59,60].

To date, no studies have shown association with heart development for any of the other
H3K4 methylases, such as KMT2B (HGNC alias: MLL2, TRX2, MLL1B, MLL4), KMT2E
(HGNC alias: SETD5B), SETD1A, SETD1B (HGNC alias: KMT2G), and PRDM9 (HGNC
alias: KMT8B) [61]. Notably, cardiomyocytes-specific deletion of Smyd2 (SMYD2; HGNC
alias: KMT3C) showed it was dispensable for heart structural and functional development
in mice, and it had no effect on H3K4 or H3K36 methylation [62].

2.2. H3K9 Methylation

SUV39H1 (HGNC alias: KMT1A) and SUV39H2 (HGNC alias: KMT1B) are members
of the SET domain-containing histone lysine methyltransferase family and have similar
enzymatic activities. Each regulates H3K9 methylation, which represses gene transcription.
Histone methylation (H3K4me3, H3K9me2, and H3K9me3) was reduced in the left ventri-
cles of patients diagnosed with end-stage non-ischemic dilated cardiomyopathy [63]. Upon
intervention through implantation of a left ventricular assist device (LVAD), the methyla-
tion levels were restored, with concurrent upregulation of SUV39H1 [63]. In another study,
MCP1 (HGNC alias: CCL2) was found significantly upregulated in CD14+ monocytes of
patients with coronary heart disease. These cardiac lesions have been linked to an inflam-
matory response. In the patient CD14+ monocytes, levels of SUV39H1, regulatory factor
(RFX1), and histone deacetylase (HDAC1) were reduced at the MCP1 promoter region [64].
These studies indirectly implicate SUV39H1 in cardiac disease.

Studies in mice and cell lines similarly, yet indirectly, suggest a role for SUV39H1 in
cardiac disease. Kindlin-2 is an important regulator of cardiac structure and function. It
interacts with SUV39H1 to facilitate recruitment of this KMT to the GATA4 promoter to
catalyze H3K9me2 and H3K9me3 methylation [65]. GATA4 is an established key transcrip-
tion factor during cardiogenesis, and disruption of this system in mice led to hypertrophic
cardiomyopathy [65]. An in vitro study using C2C12 mouse myoblasts and mouse embry-
onic fibroblasts showed the importance of Suv39h1-mediated H3K9 methylation on the
promoters of myogenic differentiation genes. Repression of gene transcription to activate
muscle differentiation was removed by SETD7 (HGNC alias: SET7) [66]. Whether this is
also true in vivo and in cardiac muscle remains to be determined.

While these studies provide some evidence to implicate SUV39H1 in cardiac diseases,
currently there is no evidence to support or deny a similar role for SUV39H2.

EHMT1 (HGNC alias: KMT1D) and EHMT2 (HGNC alias: KMT1C, G9A) are also
members of the SET domain-containing histone lysine methyltransferase family, and both
have similar enzymatic activities that regulate H3K9 methylation to repress gene transcrip-
tion. Variants in EHMT1, like those in KMT2C, have been found causative in Kleefstra
syndrome [67]. Of the patients with Kleefstra syndrome attributed to mutations in EHMT1,
~40–45% have cardiac defects; even in the absence of structural heart defects, cardiac
arrhythmia has been observed in these patients [68].

In vitro and animal model studies for EHMT1 and its variants have often focused on
the neurodevelopmental aspects of Kleefstra syndrome; thus, many questions remain about
the pathomechanism by which EHMT1 might contribute to congenital heart disease. For
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EHMT2, knockdown of G9A (an alias) significantly reduced H3K9me2 methylation in rat
bone mesenchymal stem cell-derived cardiomyocytes [69]. This coincided with increased
expression of several transcription factors (GATA4, NKX2-5, and MEF2C) known to be im-
portant during cardiomyocyte formation during early-stage myocardial development [69].
A knockdown study in mice demonstrated the importance of G9A in preventing hyper-
trophy in the adult heart. G9A interaction with EZH2, the catalytic subunit of polycomb
repressive complex 2 (PRC2), regulated its H3K27me3 activity, and interaction with MEF2C
maintained the heterochromatin structure that is required to silence developmental genes
in the adult cardiomyocytes [70]. A G9A-specific inhibitor, BIX01294, was able to expand
mouse cardiac progenitor cells without affecting their phenotype nor their potential to
differentiate [71]. Altogether, this demonstrates the importance of EHMT2 in regulating
cardiomyocyte hypertrophy.

SETDB1 (HGNC alias: KMT1E) is an H3K9 methyltransferase. Jarid2 is a key regulator
of cardiovascular development, as well as numerous other developmental processes. It
requires SETDB1 methylation activity to repress the expression of target genes, including
Notch1, during heart development in mice [72]. However, aside from this study, it remains
unclear to what extent SETDB1 is involved in heart development and cardiac disease.

MECOM (HGNC alias: KMT8E, PRDM3) displays histone H3K9 methyltransferase
activity and was initially described as an oncogenic putative transcription factor. Targeted
mutagenesis to disrupt the full-length Evi1 (mouse homolog of MECOM) in mouse embry-
onic stem cells demonstrated its importance for many developmental processes, including
heart development [73]. Mice deficient in Evi1 exhibited severe congenital heart defects
that resulted in perinatal death [74]. Many genes that had been previously associated
with congenital heart disease were found to carry a known Evi1-binding site, and expres-
sion of 18 of these genes was found dysregulated by Evi1 siRNA knockdown [74]. These
findings suggest MECOM could play a central role in transcriptional regulation during
cardiac development.

PRDM16 (HGNC alias: KMT8F) is a transcription factor that mediates H3K9 methy-
lation. PRDM16 is localized in the nuclei of cardiomyocytes, throughout development
(in mice and humans) and in the adult heart [75]. Variants of PRDM16 have been associ-
ated with non-syndromic left ventricular noncompaction cardiomyopathy (LVNC), dilated
cardiomyopathy associated with 1p36 deletion syndrome [75,76], and pediatric dilated
cardiomyopathy [77].

Zebrafish with PRDM16 haploinsufficiency or a human truncation mutant showed
contractive dysfunction and partial uncoupling of cardiomyocytes, as well as impaired
cardiomyocyte proliferative capacity [75]. Prdm16 was dispensable for early heart de-
velopment in mice; however, deficiency led to later-stage cardiac hypertrophy, adverse
remodeling, and ultimately heart failure. The hypertrophic genes were regulated by
Prdm16, together with Ehmt1/2 [78]. Furthermore, in the adult heart, Pdrm16 played a
crucial role in maintaining mitochondrial function and preventing metabolic stress [78].
The hearts of mice with cardiac-specific Prdm16 conditional knockout showed abnormal
cardiac conduction and phenotypes associated with cardiomyopathy, including cardiac
fibrosis and hypertrophy [79]. These were accompanied by impaired ion homeostasis
(Ca2+, K+, and Na+) in left ventricular heart tissue [79]. In addition, cardiomyocyte-specific
Prdm16 knockout mice displayed LVNC reminiscent of that seen in patients with variants
in PRDM16 [80]. Prdm16 transcription factor activity was enriched in the left ventricular
compacted myocardium in these mice, where it activated compact myocardial genes (Hey2
and Mb), while repressing trabecular myocardial (Nppa, Cited1, Nppb, and Mest) and neural
(Cttnbp2 and Spon1) genes, thus maintaining their transcriptional identity [80].

PRDM2 (HGNC alias: KMT8A) is near a candidate susceptibility locus for cardiotoxic-
ity (characterized by progressive systolic dysfunction of the left ventricle) induced by the
chemotherapeutic agent anthracycline, as identified by genome-wide sequence association
in a human cohort [81], providing a first hint at its possible role in heart development
and/or disease.
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No studies have yet provided evidence to support a role for other H3K9 methylases,
such as SETDB2 (HGNC alias: KMT1F), and PRDM8 (HGNC alias: KMT8D) in heart
development or disease.

2.3. H3K27 Methylation

EZH1 (HGNC alias: KMT6B) and EZH2 (HGNC alias: KMT6A) are alternative cat-
alytic components of the polycomb repressive complex 2 (PRC2), which is highly conserved
from Drosophila to primates [82]. It has been tasked with H3K27 mono-, di-, and trimethyla-
tion (H3K27me1/2/3), which enacts gene transcription repression during cell development,
differentiation, and cell fate [82].

EZH2 upregulation has been described in varying cardiac diseases, including in heart
tissue from patients with end-stage dilated cardiomyopathy [83], in atrial muscle and
atrial fibroblasts from patients with atrial fibrillation (marked by significant atrial fibrosis
and atrial fibroblast differentiation) [84], and in serum from patients with coronary heart
disease [85]. Both EZH2 and H3K27me3 were increased in heart tissue from patients with
ischemic heart disease [86].

The EZH1 and EZH2 catalytic domains of PRC2 show partial functional redundancy.
However, growing evidence suggests functional specialization, with EZH1 dominant
during heart regeneration and EZH2 dominant during heart development. In fact, Ezh1
knockdown by itself did not affect heart development or function [87]. However, Ezh1,
but not Ezh2, was required for regeneration following myocardial infarction, i.e., injury,
in mice. PRC2 composition is different for each: where Ezh1 acts with the suppressor of
the Zeste 12 (Suz12) component [87], Ezh2 prefers the embryonic ectoderm development
(Eed) component [88]. The findings indicate that a different epigenetic response is required
for development and regeneration of the heart [87]. This is also reflected in their gene
expression profiles: Ezh1 was shown to upregulate genes associated with cardiac muscle
growth in mice [87], whereas Ezh2 repressed mesenchymal and neuronal gene programs
in mouse cardiomyocytes [88]. Furthermore, heart-specific knockdown of Ezh2 in mice
resulted in decreased cardiomyocyte proliferation, increased apoptosis, and dysregulated
endothelial-to-mesenchymal transition. This was accompanied by varied cardiovascular
malformations, such as hypoplastic endocardial cushions, which led to perinatal death,
and were linked to the downstream target Hey2 [89]. Hey2 plays a key role during heart
development [90,91], and genetic variants have been associated with congenital heart dis-
ease [92]. Conditional knockout of Ezh2 in cardiomyocytes halted mouse neonatal heart
regeneration due to impeded proliferation of cardiomyocytes and H3K27me3 modifications.
This was linked to PDGFR-β signaling [93]. Like with patients, mouse models of atrial
fibrosis showed increased EZH2, and both pharmacological (GSK126; a selective EZH2
inhibitor) and molecular inhibition of EZH2 attenuated the cardiac phenotype. The un-
derlying pathomechanism involved EZH2-mediated Smad signaling to promote fibroblast
differentiation [84]. Disrupted interaction of EZH2 with Smad has also been associated
with cardiac fibrosis. Long noncoding RNA NEAT1 is upregulated in patients with heart
failure. A mouse model showed this results in increased recruitment of Ezh2 to the pro-
motor region of Smad7, thus repressing its expression and promoting cardiac fibrosis [94].
Heart tissue from mice with myocardial infarction, like tissue from patients with ischemic
heart disease, showed increased EZH2 and H3K27me3, as well as reduced Na+ channel
(Nav1.5) expression [86]. Again, both pharmacological (GSK126) and molecular inhibition
of EZH2 attenuated the cardiac phenotype [86]. Ezh2-deficient cardiac progenitors in mice
showed postnatal myocardial pathology and disrupted cardiac gene expression, including
increased Six1, which induced cardiomyocyte hypertrophy and increased the expression of
skeletal muscle genes [95]. Together, these animal model studies, like the patient studies,
demonstrate the diversity of cardiac conditions in which EZH2 plays a role. Given the
partial functional redundancy between EZH1 and EZH2, additional studies into the role of
EZH1 in these cardiac disease models is warranted, especially as a potential therapeutic
target to offer protection following cardiac injury [87].
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2.4. H3K36 Methylation

ASH1L (HGNC alias: KMT2H) is a histone lysine methyltransferase with H3K36-
specific (H3K36me1 and -me2) activity, which antagonizes polycomb silencing, thus acting
as a transcriptional activator [96–98]. Genetic variants in ASH1L have been associated with
congenital heart disease [25,99,100]

Preliminary data in Drosophila suggest that Ash1 (fly homolog of ASH1L) plays a role
in heart development (manuscript in preparation).

SETD2 (HGNC alias: HIF-1, KMT3A) is an H3K36me3 histone-lysine N-methyltransferase [101].
Setd2 is highly expressed across embryonic stages in mice and is largely responsible for
H3K36me3 in the mouse heart. Indeed, cardiac progenitors deficient for Setd2 showed
notable coronary vascular defects and ventricular non-compaction, which resulted in
fetus lethality at mid-gestation in mice [102]. These mice showed greatly decreased
H3K36me3, associated with dysregulated expression of key cardiac genes, including Rspo3
and Flrt2 [102]. The findings support a role for SETD2 in cardiovascular development and,
by extension, disease.

NSD1 (HGNC alias: KMT3B) and NSD2 (HGNC alias: KMT3G; MMSET) both enact
H3K36me1 and H3K36me2 activity [103–106]. Mutations in NSD1 have been identified
as the genetic cause of Sotos syndrome, which is characterized by pre- and postnatal
overgrowth, notable craniofacial features, advanced bone age, and developmental delay.
Moreover, a subset of patients presents with congenital heart defects [107–109]. A de
novo variant in NSD1 was associated with atrioventricular septal defect, a specific cardiac
malformation that presented as a congenital heart disease [110]; and, NSD1 genetic variants
have been associated with congenital heart disease [25,99]. NSD2 (HGNC previous symbol:
WHSC1) lies in the critical deletion region of Wolf–Hirschhorn syndrome (WHS; OMIM
#194190), a neurodevelopmental disorder marked by facial dysmorphology and growth
retardation, of which a subset of patients presented with congenital heart disease [111].
Finally, variants in NSD2 have been associated with congenital heart disease [100]; in fact,
both loss-of-function (LoF) and gain-of-function (GoF) variants in NSD2 have been associ-
ated with abnormal heart morphology linked to disrupted cardiac patterning [100,112].

The molecular mechanism of NSD1 in heart development is unknown. Mice deficient
in Nsd2 showed delayed growth, midline defects, and related congenital cardiovascular de-
fects reminiscent of Wolf–Hirschhorn syndrome [113]. Nsd2 genetically interacted with the
Nkx2-5 transcription factor, which disrupted gene expression in the developing embryonic
mouse hearts [113]. In addition, a mouse model of cardiac hypertrophy with concurrent
conditional knockdown of Nsd2 in the myocardium resulted in a milder ventricular remod-
eling phenotype and improved cardiac function, attributed to reduced H3K36me2 [114],
thus demonstrating a role for NSD2 in ventricular remodeling.

A role for NSD3 (HGNC alias: KMT3F)-mediated H3K36 methylation during heart
development remains to be determined.

2.5. Additional Methylation Marks

In addition to the methylation types above, H3K79 and H4K20 specific lysine methy-
lases could play a role during heart development.

DOT1L (HGNC alias: KMT4) catalyzes methylation at H3K79. DOT1L expression
was downregulated in myocardial samples from patients with idiopathic dilated cardiomy-
opathy [115].

Cardiac-specific knockdown of Dot1L in mice resulted in chamber dilation, increased
cardiomyocyte cell death, systolic dysfunction, and conduction abnormalities, as well as
increased mortality rate. This phenotype is reminiscent of that in patients with dilated
cardiomyopathy [115]. In the mouse cardiomyocytes, Dot1L acts through regulating the
transcription of Dystrophin (Dmd), which affects the stability of the Dmd-glycoprotein
complex that is required for cardiomyocyte viability [115]. Further, mouse cardiomyocyte
models, in vitro and in vivo, showed that Dot1L drives a transitional pattern of H3K79me2
that is required for cardiomyogenesis [116].
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PRDM6 (HGNC alias: KMT8C) is involved in H4K20 methylation. A genetic variant
in PRDM6 has been associated with QRS duration (a measure of the conduction time
from the atrioventricular node to the His-Purkinje system and ventricular myocardium).
Changes in the QRS interval have been linked to disease progression for several cardiac
etiologies, as well as to sudden death [117].

In mouse embryos, Prdm6 is expressed in tissues known to be enriched in vascular
precursor cells, including the heart, as well as in embryonic and adult-derived endothelial
cell lines [118]. Overexpression of Prdm6 induced apoptosis and inhibited proliferation in
endothelial cells [118], indirectly suggesting a role in heart development.

Specific knockdown of Prdm6 in mouse cardiac neural crest cells demonstrated its
importance in embryonic heart development, as the hearts of deficient mice showed
biventricular noncompaction and an inability to close the ductus arteriosus (small artery
that connects the aorta and pulmonary artery) [119]; these findings were associated with
reduced H4K20me1. Prdm6 was shown to regulate a network of genes required for cardiac
neural crest specification, including Wnt1, Tfap2b, and Sox9 [119].

Currently no evidence points towards a role for H4K20 methylation or any of its key
components—KMT5A (HGNC alias: SETD8), KMT5B, and KMT5C—during heart development.

Table 1. Variants in lysine-specific methyl transferases associated with heart disease. KMT, lysine-
specific methyltransferase; fs, frame-stop; N/A, detailed variant information not available. *, transla-
tion stop codon. Footnote 1: The authors apologize for any relevant studies that might have been
omitted. Footnote 2: Patient also carried a variant in histone demethylase KDM5A (R1467W). Foot-
note 3: Both genetic variants were synonymous, i.e., they did not lead to an amino acid change in the
protein sequence.

KMT Variant Cardiac Phenotype Reference(s) (Footnote 1)

KMT2A N/A Congenital heart disease;
Structural abnormalities Sheppard et al., 2021 [31]

KMT2D 12 variants Congenital heart defects;
Kabuki syndrome Van Laarhoven et al., 2015 [33]

19 variants Congenital heart defects;
Kabuki syndrome Digilio et al., 2017 [35]

1 variant Congenital cardiovascular
malformation; Left-sided lesions Li et al., 2017 [36]

L3542P; G3553V Congenital heart disease Cuvertino et al., 2020 [37]

R2860H; T1710M; V1561G Congenital heart disease;
Heterotaxy Liang et al., 2020 [38]

7 variants Cardiac left-sided lesions;
Hypoplastic left heart syndrome Sun et al., 2020 [39]

G3465Dfs * 37 Congenital heart defect;
Left heart hypoplasia Luo et al., 2021 [40]

KMT2C N/A Dilated cardiomyopathy Jiang et al., 2017 [44]

Q4753L (footnote 2)
Congenital heart disease;
Ventricular septal defect Szot et al., 2018 [45]

SMYD1 S91S; S321S (footnote 3) Hypertrophic cardiomyopathy Abaci et al., 2010 [52]

EHMT1 10 variants Heart defects, unspecified;
Kleefstra syndrome Willemsen et al., 2012 [68]

PRDM16 R525Pfs * 79; K702 *; N816S Left ventricular noncompaction;
Deletion 1p36 syndrome Arndt et al., 2013 [75]
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Table 1. Cont.

KMT Variant Cardiac Phenotype Reference(s) (Footnote 1)

E271K; P291L; L887P; V1101M Dilated cardiomyopathy;
Deletion 1p36 syndrome Arndt et al., 2013 [75]

S350fs * 48 Dilated cardiomyopathy, pediatric Long et al., 2017 [77]

Q353 * Cardiomyopathy;
Left ventricular noncompaction Delplancq et al., 2020 [76]

ASH1L L1346 * Anomalous coronary branching;
Single left coronary

Homsy et al., 2015 [99];
Jin et al., 2017 [25];
Ji et al., 2020 [100]

N/A Congenital heart disease Ji et al., 2020 [100]

NSD1 7 variants
Congenital heart defect,

unspecified/Heart conduction
defect

Cecconi et al., 2005 [108]

A933P; R361S Congenital heart disease;
Atrioventricular septal defects Priest et al., 2016 [110]

NSD2 N/A Congenital heart disease Ji et al., 2020 [100]

10+ variants Congenital heart defects;
Wolf–Hirschhorn syndrome Zanoni et al., 2021 [112]

3. Future Perspective

Genomic sequencing studies of cardiac disease, including those for patients with con-
genital heart disease, have identified large numbers of candidate disease genes [24,25,99].
Among them are many genes involved in histone modification (Table 1). While some of
these have been validated in animal models [24,32], the contributions of most of these
genes to congenital heart disease cannot be confirmed due to a lack of in vivo functional
data in the context of heart development. Moreover, KMT catalytic activity is often induced
by complex formation; therefore, the importance of cofactors and interactors of the KMTs
in regulating heart development cannot be overstated, nor the important counterbalance
and dynamics offered by KMDs. The rapid screening of large numbers of genes involved
in histone modification necessitates a high-throughput model system, such as Drosophila,
which has already demonstrated its potential in this regard [32].

Taken together, the existing literature indicate that each methylation of a histone-lysine,
whether activating or repressing transcription, plays a role in heart development and, by ex-
tension, disease. But, whether it be their effect on cell fate decision and pattern specification
during critical developmental stages or mediating cellular processes during development
or in mature cells, methylation sites do not act in isolation. Ultimately, to comprehend the
contribution of histone methylation in regulating the transcriptional transitions during
processes of health and disease, we need to observe the entire methylation landscape. Initial
studies towards this goal have already reported new insights. A study of multiple histone
modifications (H3K4me3, active promoters; H3K27me3, inactive promoters; H3K4me1
and H3K27ac, promoters and enhancers), alongside the transcriptome at defined stages of
cardiac differentiation (mouse embryonic stem cells to cardiomyocytes), identified complex,
yet distinct, chromatin patterns that correlated with lineage decisions [120]. The data
revealed distinct chromatin patterns that correlated to stage-specific gene expression, many
of which were human candidate cardiac disease genes. They also revealed a multitude
of chromatin patterns that rapidly diminished the expression of pluripotency-associated
genes upon differentiation initiation, and chromatin patterns that could predict sets of
functional related genes to orchestrate shared (early on) and distinguished (later stage) gene
expression patterns during cardiomyocyte differentiation [120]. Another report studied
H3K4me3 (transcription initiation), H3K36me3 (transcription elongation), and H3K27me3
(transcription repression) at five stages during the differentiation of human embryonic stem
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cells into cardiomyocytes [121]. It found that H3K4me2 and H3K27me3 temporal patterns
during cardiomyocyte differentiation were more complex than the hitherto bivalent model,
and demonstrated intricate histone-lysine pattern changes on the promotors of transcrip-
tion factors known to have critical roles during cardiovascular development [121]. These
studies set the stage for capturing the ever-increasing complexity of the changing methy-
lation landscape and how it, as a whole, regulates the required intricacies for successful
development of cardiac tissue.

The identification of methylation-associated genes in cardiac disease opens the door
to new approaches in modifying disease-associated gene expression, such as administer-
ing small molecules that target specific KMTs. Pinometostat (EPZ-5676; Epizyme, Inc.,
Cambridge, MA, USA) is a DOT1L inhibitor and the first KMT inhibitor to enter a phase 1
clinical trial to study its safety and tolerability in patients with leukemia (NCT01684150)
and a later phase 1/2 clinical trial (NCT03701295) to test its efficacy as a treatment for
leukemia [122,123]. Since then, EZH2 inhibitors GSK2816126 (GlaxoSmithKline) and
tazemetostat (EPZ-6438; Epizyme, Inc., Cambridge, MA, USA) have entered phase 1/2
clinical trials for the treatment of B-cell lymphoma (NCT02082977 and NCT01897571, respec-
tively) [123,124]. Positive trial findings on safety and administration would encourage test-
ing of these specific KMT inhibitors for their efficacy in treating congenital and other heart
diseases associated with KMT variants. Like the genetic functional screens, the Drosophila
models could be used for rapid, large-scale screens of candidate compounds [125–128].
Findings from the pharmacological screens (e.g., on efficacy and toxicity) in fly models
could inform the prioritization of candidate compounds for subsequent testing in mam-
malian models, which are more costly and time-consuming, before ultimately moving to
clinical trials.
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