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Abstract: Genetic and clinical studies have demonstrated that loss-of-function variants in the
angiopoietin-like 3 (ANGPTL3) gene are associated with decreased plasma levels of triglycerides
(TGs), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C),
which leads to a significant reduction in cardiovascular risk. For this reason, ANGPTL3 is considered
an important new pharmacological target for the treatment of cardiovascular diseases (CVDs) together
with more conventional lipid lowering therapies, such as statins and anti proprotein convertase
subtilisin/kexin type 9 (PCSK9) monoclonal antibodies. Experimental evidence demonstrates that
anti-ANGPTL3 therapies have an important anti-atherosclerotic effect. Results from phase I clinical
trials with a monoclonal anti-ANGPTL3 antibody (evinacumab) and anti-sense oligonucleotide
(ASO) clearly show a significant lipid lowering effect. In addition, from the analysis of the protein
structure of ANGPTL3, it has been hypothesized that, beyond its inhibitory activity on lipoprotein
and endothelial lipases, this molecule may have a pro-inflammatory, pro-angiogenic effect and a
negative effect on cholesterol efflux, implying additional pro-atherosclerotic properties. In the future,
data from phase II clinical trials and additional experimental evidence will help to define the efficacy
and the additional anti-atherosclerotic properties of anti-ANGPTL3 therapies beyond the already
available lipid lowering therapies.

Keywords: ANGPTL3; integrin; lipoprotein lipase; monoclonal antibodies; antisense oligonucleotide;
atherosclerosis

1. Introduction

Since its discovery in 1999 by Conklin and colleagues [1], angiopoietin-like 3 (ANGPTL3) has
been considered a very potent modulator of triglyceride (TG), low-density lipoprotein cholesterol
(LDL-C), and high-density lipoprotein cholesterol (HDL-C) plasma levels by inhibiting lipoprotein
lipase (LPL) [2–4] and endotelial lipase (EL) activities [5]. Its effect on lipid metabolism was
originally identified in a subgroup of inbred strain KK obese mice (name derived from Kondo
Keiichi subsequently renamed KK/San strain) [6], expressing a truncated form of ANGPTL3 that was
associated with hyperinsulinemia and hyperglycemia. These data indicate that TG levels are positively
correlated with a loss of activity of ANGPTL3 [2].

1.1. Genetics of ANGPTL3

From experimental evidence, it was then observed that individuals with loss-of-function (LOF)
mutations (Table 1) in the ANGPTL3 gene were affected by familial combined hypolipidemia (FHBL2)
and characterized by very low levels of apolipoprotein B (apoB), apolipoprotein A1 (apoA-1) and their
associated lipoproteins -very low-density lipoprotein (VLDL), LDL and HDL respectively compared
to non-carriers [7–9]. These subjects were protected from cardiovascular events, making ANGPTL3
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an important pharmacological target for reducing cardiovascular risk, especially for homozygous
familial hypercholesterolemic (HoFH) patients, where statins and mAb anti-proprotein convertase
subtilisin/kexin type 9 (PCSK9) are not effective [10]. Indeed, plasma TG levels—of which ANGPTL3
is one of the main modulators—have been recognized as cardiovascular risk factors beyond LDL-C
levels [11,12].

Carriers of LOF mutations on the ANGPTL3 gene are associated with a 34% decrease in
cardiovascular events [13], and ANGPTL3 plasma levels are closely associated with arterial wall
thickness in human subjects [14]. A decreased expression of ANGPTL3 in apolipoprotein E (apoE)-null
mice is protective in the development of atherosclerosis [15]. In addition, emerging evidence supports
a possible role of ANGPTL3 in the progression of atherosclerosis through a lipid-independent
mechanism [16]. Moreover, gain-of-function (GOF) mutations are associated with high plasma TG
levels (Table 1).

Table 1. ANGPTL3 mutations and observed phenotype.

Mutation Affected Domain Phenotype Reference

S17 * Not CCD N-terminal region
Homozygous carriers: ↓ All lipids (no ANGPTL3 in the plasma)

Heterozygous carriers: ↓ Total cholesterol ↓HDL-C
(low ANGPTL3 in the plasma)

[7,8]

I19Lfs * Not CCD N-terminal region ↓ TG ↓ total cholesterol [17,18]
D41N Not CCD N-terminal region ↓ TG [17]
N42D Not CCD N-terminal region ↓ TG ↓ total cholesterol [13]
G56V Not CCD N-terminal region ↓ LDL-C ↓ HDL-C [19]

F60Lfs * Not CCD N-terminal region ↓ TG [13]
K63T Not CCD N-terminal region ↓ TG (defective LPL inhibition) [17]
F72L Not CCD N-terminal region ↓ TG [17]
T83 * Not CCD N-terminal region ↓ TG ↓ total cholesterol [13]
E91G CCD ↓ TG (defective LPL inhibition) [17]
E98K CCD ↓ TG [17]

N121Kfs CCD ↓ TG ↓ total cholesterol [13,20]
S122fs CCD ↓ TG ↓ total cholesterol [8,17]
L127F CCD ↓ TG ↓ LDL-C [21]
E129 * CCD ↓ TG ↓ total cholesterol [7]
K131T CCD ↓ TG [17]
N147 * CCD ↓ TG ↓ total cholesterol [13,17–19]
L164F CCD ↓ TG (defective LPL inhibition) [17]
N173S CCD ↓ TG (defective LPL inhibition) [17]
Y186 * CCD ↓ TG ↓ total cholesterol [13]
Q192 * CCD ↓ TG ↓ total cholesterol [13]

S215Lfs * Linker Region ↓ TG ↓ total cholesterol [13]
N232fs Linker Region ↓ TG ↓ total cholesterol [13]
M259T FLD Apparently nonpathogenic [17]
R288Q FLD ↓ TG (lower ANGPTL3 secretion) [13,17]
S292P FLD ↓ TG (lower ANGPTL3 secretion) [13,17]
F295L FLD ↓ LDL-C ↓ HDL-C [19]

F306Lfs * FLD ↓ TG ↓ total cholesterol [13]
R332Q FLD ↓ LDL-C ↓ HDL-C [19]
Y347 * FLD ↓ TG ↓ total cholesterol [13]
E375K FLD ↓ TG (lower ANGPTL3 secretion) [17]
T383S FLD ↓ TG ↓ total cholesterol [13]

G400Vfs * FLD ↓ TG ↓ total cholesterol [17,18]
W404 * FLD ↓ TG ↓ total cholesterol [13]
Y417C FLD ↓ TG (lower ANGPTL3 secretion) [17]

A422Qfs * FLD ↓ TG [13]
R428M FLD ↓ TG [17]

I444Yfs * FLD ↓ TG [13]
T454Rfs * FLD ↓ TG [13]

CCD: Coiled-coil domain; FLD: Fibrinogen like domain; LPL: lipoprotein lipase; HDL-C: high-density lipoprotein
cholesterol; TG: triglycerides; LDL-C: low-density lipoprotein cholesterol. *: Premature stop codon leading to a not
functional truncated protein; fs: Frameshift mutation; underlined: L127F missense mutation lowers TG and LDL-C
only in Familial Hypercholesterolemia (FH) or Familial Defective apolipoproteinB-100 patients [21]; in bold: These
mutations completely abolish or severely decrease the secretion of ANGPTL3 in vitro, suggesting an impairment of
the protein fold or stability [17].
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1.2. Genome-Wide Association Studies (GWAS) and ANGPTL3

Many GWAS focused their attention on those traits that associate with different blood lipid profiles
and cardiovascular risk, confirming the central role of ANGPTL3 in lipid metabolism. A list of the
lead single nucleotide polymorphisms (SNPs) involving regions nearby ANGPTL3 that co-segregate
with lipid and cardiovascular risk biomarkers are listed in Table 2. Oldoni and co-workers focused
their attention on the SNPs discovered by Teslovich et al. [22] that are concomitantly associated
with plasma TG levels and LDL-C levels. Using a combination of in silico and in vitro investigations,
Oldoni et al. were able to identify two SNPs (rs6690733 A and rs10889352 T) that increase the expression
of ANGPTL3 by affecting putative binding sites for transcription factors [23]. One of them, rs10889352,
has been associated with an increase in chromatin accessibility by transcription factors.

Table 2. ANGPTL3 Genome-Wide Association Studies lead single nucleotide polymorphisms associated
to plasma lipid traits.

SNP ID Normal Allele Risk Allele Phenotypic Trait Ref.

rs12130333 T C TG [24]
rs10889353 A C TG, TC, LDL-C [25–28]
rs2131925 T G TG, TC, LDL-C [22,29,30]

rs10889352 C T TG, LDL-C [22,23]
rs6690733 C A TG, LDL-C [22,23]

rs11485618 G G LDL-C [30]
rs995000 C T TG [30]

rs11208004 G A TC [30]

TC: total cholesterol; TG: triglycerides; LDL-C: low-density lipoprotein cholesterol.

2. ANGPTL3 Structure

ANGPTL3 is a 70 kDa-secreted protein (54 KDa before glycosylation) mainly expressed in the
liver, both during embryonic development and in the adult stage [1,17]. It belongs to the angiopoietin
growth factor family and shares with its family members an N-teminal α-helix region predicted to
fold into a coiled-coil structure and a C-terminal Fibrinogen-like domain (FLD) conserving the overall
fold of the fibrinogen domain (~40% of sequence identity), as well as a 16aa signal peptide required
for secretion [4,31] (Figure 1). A linker region between N-terminal and C-terminal domains is strictly
required for the activation of ANGPTL3 in mice, and its inhibition of LPL activity and the canonical
hepatic proprotein convertases (furin, PCSK1, PCSK2, PCSK4, PACE4, PCSK5, and PCSK7) cleave
ANGPTL3 into its two domains at the linker level. An N-terminal domain is more efficient at inhibiting
LPL activity than the full-length ANGPTL3 [4].J. Cardiovasc. Dev. Dis. 2018, 5, x FOR PEER REVIEW  4 of 13 
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Figure 1. The ANGPTL3/4/8 triad. Belonging to the angiopoietins family, ANGPTL3 is composed
of an N-terminal coiled-coil domain involved in LPL (Lipoprotein lipase) and EL (Endothelial lipase)
binding and inhibition as well as by a C-terminal fibrinogen-like domain mediating ANGPTL3
angiogenic properties. ANGPTL4 shares with ANGPTL3 both the coiled-coil domain and the
fibrinogen-like domain. ANGPTL8 is paralog of the N-terminal region of ANGPTL3 and it is required
for ANGPTL3 activation.
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Upon secretion, ANGPTL3 targets the adipose tissue and muscles activating lipolysis in the
former, increasing the release of fatty free acids (FFA) and glycerol from adipocytes [32], and inhibiting
LPL in the latter, increasing TG-rich lipoproteins (TRLs).

A minor expression of ANGPTL3 is found in healthy kidneys [1], with an increase in its secretion
by podocytes in case of renal damage [33–35]. To date, the actual role of ANGPTL3 in the kidney is
still unknown.

3. ANGPTL3 Post-Translational Modifications

ANGPTL3 undergoes several post-translational modifications (Table 3). The GalNAc-T2-mediated
O-glycosylation at threonine 226 (T226) plays a crucial role in the accessibility of the nearby cleavage
site by proprotein convertases (PCs) [36]. PCs recognize and cleave ANGPTL3 at the RAPR224↓TT
motif into the linker region (LR) producing an N-terminal-cleaved coiled-coil domain (CCD) that more
efficiently inhibits LPL [4]. The O-glycosylation at T226 hinders the cleavage by PCs at arginine 224
(R224). As a consequence, the unprocessed ANGPTL3 is still able to inhibit LPL, but only to a minor
extent [36]. GalNAc-T2, encoded by GALNT2, is a liver-expressed N-acetylgalactosaminyltransferase
that catalyzes the initial step in the pathway of protein glycosylation. It is worth noting that the same
GWAS that shed light on the association between ANGPTL3 and TG, LDL-C and HDL-C also identified
GALNT2 as being correlated with the same phenotypical traits [22,24,29]. Thus, O-glycosylation at
T226 GalNAc-T2 significantly affects the activity of ANGPTL3, and thus the plasma TG levels.

Table 3. Post-translational modifications (PTM) of ANGPTL3.

PTM Position(s) Enzyme Ref.

N-glycosilation N115 GlcNAc [1,37]
O-glycosilation T226 GalNAc-T2 [36]
Disulfide bond C246↔ C274 [1]
N-glycosilation N296 GlcNAc [37,38]
N-glycosilation N357 GlcNAc [37]
Disulfide bond C394↔ C408 [1]

In bold are the PTM that preserve ANGPTL3 from PC’s proteolytic cleavage.

4. ANGPTL3 Transcriptional Regulation

At transcriptional levels, ANGPTL3 is mainly regulated by the Liver X receptors (LXRs) and
Hepatocyte Nuclear Factor 1α (HNF1α) pathways.

LXRs play a pivotal role in cholesterol homeostasis by inducing the expression of ATP-binding
cassette sub-family A member 1 (ABCA1)—essential for HDL formation through reverse cholesterol
transport (RCT) from peripheral cells, including macrophages in the vessels [39]—and fatty acid
metabolism by inducing the transcription of sterol regulatory element-binding protein-1c (SREBP-1c),
fatty acid synthase (FAS) and LPL [40]. The ANGPTL3 promoter contains LXR responsive elements
(LXREs) [41]. A high-cholesterol diet induces ANGPTL3 hepatic expression in mice by activating
LXRs [41], leading to hypertriglyceridemia, an effect that is not observed in ANGPTL3-null mice [42].
Notably, LXR also directly triggers the expression of LPL [43] and ANGPTL8 [44], suggesting an
LXR-mediated regulatory network among these TG-influencing-level players.

The discovery of an HNF1α-mediated expression (previously supposed by Kaplan’s group [41])
was discovered by treating hypothyroid rats with a subcutaneous injection of thyroid hormone (T3).
After treatment, ANGPTL3 gene expression dramatically reduced by 70% when compared to an
untreated control group [45]. This reduction is mediated by thyroid hormone receptor β (TRβ) at
the transcriptional level, without affecting ANGPTL3 mRNA stability [45]. The promoter region
involved in this inhibition contains LXR and HNF1α binding sites, however only mutations on the
latter abolished the expression of ANGPTL3 after T3 stimulation. Moreover, the TRβ seems to act
indirectly on the HNF1α pathway, through a mechanism that does not require DNA binding, since
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its efficacy is preserved in the TRβ-lacking DNA binding domain. Since co-immunoprecipitation
experiments fail to detect TRβ:HNF1α complexes, it has been proposed that TRβ could sequester a
limiting co-activator or co-repressor recruited by HNF1α on the ANGPTL3 promoter [46].

Two known negative regulators of ANGPTL3 transcription are insulin and leptin, which
is a relevant issue in hypertriglyceridemia and hyperfattyacidemia in diabetic patients [47,48].
Unfortunately, very little is known on the transcription factors involved in this regulation. To date,
no investigations about a putative presence of Insulin Responsive Elements (IREs) have been performed.
This could be a relevant issue that needs to be addressed since IREs are involved in insulin-mediated
genetic inhibition on ANGPTL3.

5. ANGPTL3 Coiled-Coil Fold: Its Role in Lipid Metabolism

By injecting KK/San mice with adenoviral ANGPTL3 deletion mutants missing either the
C-terminal FLD or the N-terminal coiled-coil regions, Ono and co-workers highlighted its pivotal
role in lipid metabolism [4]. Indeed, the loss of this region prevents the inhibition of LPL and EL
by ANGPTL3.

LPL is a lipase anchored to endothelial cells via heparan sulphate-proteoglycans (HSPG) [49,50]
and glycerophosphatidylinositol high-density lipoprotein binding protein 1 (GPIHBP1) [51]. It is
expressed by skeletal and cardiac muscle, adipose tissue, the lung, the spleen, and lactating
mammary glands [52,53]. Upon activation by apolipoprotein C2 (apoC2)-carrying lipoprotein
particles (chylomicrons and VLDLs) [54,55], LPL is able to produce ready-to-use TG [56,57]. Since its
essential role in the lipid homeostasis it is associated with severe pathological conditions, such as
atherosclerosis [58], diabetes, obesity, Alzheimer’s diseases and cachexia [56]. KK/San mice and
wild-type mice treated with recombinant ANGPTL3 show a rescue in the low-TG phenotype in the
former and hypertriglyceridemia due to ANGPTL3-mediated inhibition of LPL in the latter [2,3,59].

EL is synthesized by endothelial cells and works in the plasma compartment similarly to LPL.
It shares an HSPG chain to anchor into luminal endothelial cell membranes. Conversely to LPL, EL
acts mainly on HDL fraction, hydrolyzing HDL phospholipids [5,60].

The ANGPTL3 coiled-coil region seems to directly interact with LPL [61] and EL [5]. The ANGPTL3
inhibitory effect is completely abolished in HSPG-missing EL, suggesting a pivotal role of this
membrane-anchoring segment in ANGPTL3-induced inhibition of EL activity [5]. Moreover,
if ANGPTL3 misses the coiled-coil region, it is not able to inhibit LPL activity [4]. Liu and collaborators
suggested that ANGPTL3 could inhibit LPL activity by enhancing its cleavage by the proprotein
convertases PACE4 and furin, an effect specific to LPL but not to EL [62]. However, the ANGPTL3
action seems not to be sufficient to inhibit LPL activity, but requires the support of two other
angiopoietin-like proteins, namely ANGPTL4 and ANGPTL8.

6. The ANGPTL 3-4-8 Model

The discovery of ANGPTL4 as a potent LPL inhibitor precedes that of ANGPTL3 [63,64].
Moreover, bioinformatic searching on the ANGPTL4 LPL binding led to the discovery that ANGPTL3
is the only member of the angiopoietin family that shares a high percentage of both identity and
similarity with the LPL binding core of ANGPTL4 [61]. ANGPTL4 levels increase during fasting.
LOF mutations on ANGPTL4 develop into a hypolipidemic phenotype [65,66].

ANGPTL8 entered the “wall of fame” of lipid metabolism regulators in 2012 [67–69]. It is a
feeding-induced hepatokine, highly enriched in the liver, white adipose tissue (WAT) and brown
adipose tissue (BAT) [67–69], whose LOF mutations cause a low TG condition [69,70]. Indeed, murine
animal models in which ANGPTL8 is over-expressed in the liver show a dramatic increase in serum
TG levels [68]. Moreover, this increase strictly depends on ANGPTL3 levels, at least in mice [69].

It has been suggested that ANGPTL3-4-8 regulate TG trafficking by inhibiting LPL in different
tissues and under different nutritional conditions. While ANGPTL4 and ANGPTL8 levels are strictly
dependent on nutritional state in an opposite fashion, ANGPTL3 levels are stable (i.e., its level does
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not depend on nutritional state), but it requires ANGPTL8 to be activated [69]. Evidence from the work
by Quagliarini et al. [69] suggest that ANGPTL8 could itself promote the cleavage at the linker region
level and the activation of ANGPTL3, but the authors do not exclude any other mechanism of action.

During fasting conditions or during physical exercise, ANGPTL4 reaches its maximal plasma
level, while ANGPTL8 is not synthesized. Under these conditions, ANGPTL4 binds to LPL in WAT,
inhibiting its TG hydrolyzing activity [71]. On the other hand, in cardiac and skeletal muscles, under
the same conditions, LPL is free from any ANGPTL protein, being free to exert its function. In this
way, according to this model, TG are mobilized from WAT to highly oxidizing tissues.

After a defined meal, ANGPTL8 plasma levels increase and ANGPTL4 levels dramatically fall
down. ANGPTL8 binds to ANGPTL3 to form a heterodimer which then binds and inhibits LPL in
cardiac and skeletal muscles. Conversely, LPL in WAT is free from any inhibition and is able to produce
free TG.

So far, there is no evidence that ANGPTL3 and ANGPTL4 act jointly to inhibit LPL. Moreover,
ANGPTL4 seems to work alone and not in conjunction with ANGPTL8 or any other ANGPTL proteins.
How the ANGPTL3/8 working model fits with the reported ANGPTL3-induced PACE4 and furin in
inhibiting LPL activity [62] is still to be fully elucidated.

7. ANGPTL3 C-Terminal Domain: Fibrinogen-Like Domain Binds to Integrin αVβ3

Apart from being a pro-atherogenic protein due to its N-terminal coiled-coil LPL/EL-binding
domain, ANGPTL3 is deemed to play another role by affecting the arterial thickness [14] and
macrophage activity in the lesions through the C-terminal FLD. Conversely to the FLDs from other
angiopoietins that bind to endothelial cells via Tie receptors (Tie1 and Tie2) [72], ANGPTL3’s FLD
binds to integrin αVβ3 [31]; while this interaction has a proven role in the case of renal damage [33–35],
a more puzzling scenario is depicted for its importance in atherosclerosis.

Integrin αVβ3 is indeed strongly involved in atherosclerotic plaque formation. Hoshiga et al.
showed that αVβ3 correlates with vasa vasorum and derived intraplaque vessels both at the endothelial
and the smooth muscle cell (SMC) levels. This suggests that SMCs could be stimulated to migrate
toward and to accumulate in the intima by several αVβ3 ligands, such as osteopontin [73]. The finding
by Camenish and collaborators that ANGPTL3 promotes angiogenesis by binding αVβ3 [31]
highlighted once more the importance of ANGPTL3 in atherosclerosis, in which neo-angiogenesis is
one of the main hallmarks [74]. Antonov and co-workers described a connection between αVβ3 and
foam cell formation during the progression of atherosclerotic lesions [75]. Indeed, macrophages in the
lesioned arteries express αVβ3, which suppresses scavenger receptor A (SRA) and CD36 expression,
and thus potentially foam cell formation. Moreover, the role of αVβ3 in inflammatory responses
is well-known [76], another event that strongly marks the atherosclerotic environment. Thus, the
investigation of the possible involvement of ANGPTL3 in inflammation, through the interaction of
FLD to αVβ3, could envision new pathophysiological functions.

8. Pharmacological Inhibition of ANGPTL3

On July 2017, three different works regarding the pharmacological inhibition of ANGPTL3
have been concomitantly published in the New England Journal of Medicine [77–79]. The first
two regarded a pre-clinical trial on mice and a phase I clinical trial of evinacumab, a full human
monoclonal antibody against ANGPTL3, and the third regarded an inhibition of ANGPTL3 based
on an antisense oligonucleotide (ASO) mechanism, tested both in a pre-clinical trial on mice and in a
phase I clinical trial.

Evinacumab is able to bind to ANGPTL3 with high affinity and specificity, and to completely
reverse its inhibitory activity on LPL and EL both in vitro and in vivo [80]. In vivo studies on
normolipidemic C57BL/6 mice showed a dose-dependent reduction in TG, TC, LDL-C and HDL-C
serum levels after subcutaneous injections of evinacumab. An increase in LPL and EL activity has been
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recorded in normolipidemic C57BL/6 mice as well as in dyslipidemic C57BL/6 and db/db mice [80].
The same results have been obtained by treating dyslipidemic cynomolgus monkeys [80].

Dewey and co-workers showed a consistent lipid-lowering effect in APO*3Leiden—an established
strain resembling some features of hyperlipidemic and atherosclerotic patients [81]—as well as healthy
mildly-dyslipidemic volunteers with evinacumab (phase I clinical trial). Mice under evinacumab
treatment showed a significant decrease in TC and TG content as well as in atherosclerotic lesion size.
The phase I trial on healthy volunteers strengthened these results, with a significant reduction of TG,
LDL-C and HDL-C levels. The administration of evinacumab to HoFH patients resulted in a nearly
50% reduction of LDL-C levels, along with a similar reduction in apoB and TG levels, as well as HDL-C
(−40%) [78].

Graham and collaborators blocked ANGPTL3 action by hampering its translation through an
ASO targeting ANGPTL3 mRNA [79]. This ASO has been administered to mice with different lipid
backgrounds (wild-type C57BL/6, LDLR knockout, double knockout ApoC3−/− Ldlr−/−, heterozygous
ApoC3+/− Ldlr−/−, diet-induce obese mice, mice over-expressing human apoC-III) and to healthy
volunteers. A significant decrease in levels of TG, LDL-C and HDL-C in each tested murine strain
has been observed, reinforcing the hypothesis that ANGPTL3 lowers LDL-C through a mechanism
independent from LDLR. Together with a lipid lowering effect, ASO reduced atherosclerotic plaque
development. In this regard, it could be very interesting to see whether ASO can stabilize the plaques
in the Tandem Stenosis animal model [82] or reduce the incidence of cardiovascular events in the
ApoE−/−Fibrillin-1 animal model [83]. A phase I trial on healthy volunteers confirmed the pre-clinical
results, with a significant reduction of TG, LDL-C, HDL-C, apoB and apoC-III [79].

Finally, Chadwick and colleagues [84] exploited a modified CRISPR-Cas9 platform, namely Base
Editor 3 (BE3), to permanently inhibit in vivo ANGPTL3 by introducing non-sense mutations within
the murine ANGPTL3 gene. This expedient strongly lowers the possibility of undesired indels events
at double-strand DNA breaks (DSB) sites [85]. After injections with adenoviral vectors expressing
BE3-ANGPTL3 in C57BL/6 wild-type mice and in hyperlipidemic Ldlr−/− mice, TG and TC levels
were halved compared to mice injected with BE3-control. These results are very compelling, paving
the way to a complete “non-adherence-to-therapies” troubleshooting method with potentially one
lifelong site-specific injection.

9. Conclusions

The discovery that LOF mutation of the ANGPTL3 gene leads to low plasma levels of TGs and
cholesterol as well as to a reduction in atherosclerotic lesion size [2,8,14,15,17,31] brought attention to
ANGPTL3 as compelling pharmacological target to use, besides the canonical lipid-lowering treatments
used in the management of CVDs, such as statins, PCSK9 inhibitors, and ezetimibe. ANGPTL3
inhibitors could result in a complementary support to these treatments, focusing on reducing TG
levels as the main objective instead of LDL-C. To date, three strategies for lowering ANGPTL3 have
been proposed. Two of them, the full-human monoclonal antibody evinacumab [77,78] and antisense
oligonucleotide [79], have proven positive effects on the lipid profile both in pre-clinical trials in
murine models and in phase I trial in healthy volunteers and patients affected by homozygous familial
hypercholesterolemia. The third strategy is based on an innovative CRISPR/Cas mechanism still
under refinement. However, the initial outcomes are encouraging [84].

Ignoring the effect of ANGPTL3 on lipid metabolism, the analysis of its peculiar protein
structure has suggested additional anti-atherosclerotic effect, such as an anti-inflammatory action, an
anti-angiogenic effect, and an increase of macrophage cholesterol efflux. These effects may be mediated
through the interaction of ANGPTL3 with the integrin αVβ3, although additional experimental studies
are required in order to refine this hypothesis (Figure 2).
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Figure 2. Lipid and non-lipid direct effects of ANGPTL3 and its pharmacological inhibition.
Upon activation by ANGPTL8, ANGPTL3 binds to LPL and EL through its coiled-coil domain (CCD),
inhibiting their ability to release free fatty acids and phospholipids from VLDL and HDL-C, respectively.
Consequently, TG plasma levels increase, eliciting hypertriglyceridemia and atherosclerotic plaque
development. Atherosclerotic plaque progression can be enhanced after the activation of the integrin
αVβ3 by the fibrinogen-like domain (FLD) of ANGPTL3, leading to plaque neovascularization,
intima thickening, foam cell formation and inflammation. To date, three different pharmacological
inhibitors have been tested: Monoclonal antibody (evinacumab), antisense oligonucleotide (ASO) and
CRISPR/Cas9 editing. All of these effectively reduce ANGPTL3 activity, and thus hypertriglyceridemia
and atherosclerotic lesion size in rodent models.

Besides the potentially relevant action of ANGPTL3 inhibitors for the treatment of CVDs, the safety
of these new therapies is certainly an unresolved issue. Additional and more extensive phase II and III
clinical trials are required.
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