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Abstract: The genetic disorder Down syndrome is associated with a decreased susceptibility for
atherosclerotic cardiovascular disease. Hematological and immune abnormalities occur frequently in
Down syndrome patients. We evaluated, in a preclinical setting, the impact of a Down syndrome-like
hematological/immune phenotype on atherosclerosis susceptibility. Hereto, hypercholesterolemic
low-density lipoprotein receptor knockout mice were transplanted with bone marrow from either a
trisomic Ts65Dn mouse or euploid wild-type control and subsequently fed a Western-type diet to
induce the development of atherosclerotic lesions. T and B cell concentrations were markedly reduced
in blood of Ts65Dn bone marrow recipients (p < 0.001). Expression levels of the pro-atherogenic
scavenger receptor CD36 were respectively 37% and 59% lower (p < 0.001) in trisomic monocytes
and macrophages. However, these combined effects did not translate into an altered atherosclerosis
susceptibility. Notably, blood platelet numbers were elevated in Ts65Dn bone marrow recipients
(+57%; p < 0.001), which was paralleled by higher platelet GPVI protein expression (+35%; p < 0.001)
and an enhanced collagen-induced platelet activation (p < 0.001). In conclusion, we have shown that
providing mice with a Down syndrome-like hematological profile does not change the susceptibility
to atherosclerosis. Furthermore, our studies have uncovered a novel effect of the trisomy on platelet
functionality that may be relevant in human clinical settings.

Keywords: bone marrow; down syndrome; mouse model; lymphocytes; monocytes; macrophages;
blood platelets; atherosclerosis

1. Introduction

The high frequency genetic disorder Down syndrome (trisomy 21; global incidence:
1 in 800 births) is associated with a relatively low susceptibility for the development of
atherosclerotic cardiovascular disease, characterized by a narrowing of the vessel lumen due
to subendothelial accumulation of cholesterol within macrophages. Postmortem analysis
by Murdoch et al., in the 1970s, indicated that the coronary arteries, aorta and other large
arteries of Down syndrome carriers were virtually free of atherosclerosis [1]. The atheroscle-
rosis resistance phenotype was validated by Ylä-Herttuala et al. who detected significantly
reduced cholesterol and calcium levels within coronary arteries of institutionalized Down
syndrome carriers as compared to both institutionalized subjects suffering from non-Down
syndrome-related mental handicaps and non-institutionalized control subjects without mental
defects [2]. A more recent study on Down syndrome carriers with mild-to-moderate mental
retardation has further proven that the atherosclerotic disease burden, i.e., as measured by the
carotid intima-media thickness, is significantly lower in this specific population as compared
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to age-matched subjects without Down syndrome or mental retardation [3]. The relative
atherosclerosis resistance of Down syndrome carriers does not seem to be related to an effect
of the genetic disorder in the hyperlipidemia extent [3,4].

Down syndrome is the most common recognizable genetic syndrome associated with
hematological and immune abnormalities. These include a relatively high predisposition for
the development of acute myeloid and lymphoid leukemia, mild to moderate reductions in
T and B cells, reduced T cell proliferation, and decreased neutrophil chemotaxis (reviewed
by Ram et al. [5] and Satgé and Seidel [6]). Importantly, from the CANTOS trial it has
become evident that alterations in the activity of the immune system can significantly impact
cardiovascular disease burden in humans [7]. As such, a change in the immune status may
possibly contribute to the relative atherosclerosis resistance observed in Down syndrome
carriers. In the current study we therefore evaluated—in a preclinical setting—the impact of a
Down syndrome-like hematological/immune phenotype on atherosclerosis susceptibility.

2. Materials and Methods
2.1. Mice and Bone Marrow Transplantation

Ts65Dn mice are trisomic for the segment of mouse chromosome 16 that is conserved
in human chromosome 21 and display some classical features of human Down syndrome,
i.e., growth retardation and cognitive deficits [8–10]. Bone marrow transplantation was
performed at the Gorlaeus Laboratories of the Leiden Academic Centre for Drug Research
essentially as described [11]. Female LDL receptor knockout mice with an average plasma
total cholesterol level of ~200 mg/dL were irradiated and subsequently intravenously
injected with 5 × 106 bone marrow (BM) cells from a genotype-verified female trisomic
or euploid wild-type control mouse of 12 and 9 months age that were obtained from the
same crossing of a male C57BL/6 wild-type mouse and a Ts65Dn female mouse (Jack-
son Laboratories, Bar Harbor, ME, USA). Bone marrow recipient mice (n = 12 per group)
were maintained on regular chow diet (RM3, Special Diet Services, Whitham, UK) for
8 weeks to recover from the transplantation and subsequently fed a Western-type diet,
containing 15% (w/w) total fat and 0.25% (w/w) cholesterol (Diet W, Special Diet Ser-
vices, Whitham, UK) for 6 weeks to exacerbate the hypercholesterolemia and induce the
development of atherosclerotic lesions.

2.2. Generation of Bone Marrow-Derived Macrophages

Bone marrow precursors were differentiated into macrophages in DMEM supple-
mented with 10% fetal bovine serum, 2 mM glutamine, 20% L929 cell-conditioned media
(as a source of M-CSF), and penicillin-streptomycin for 7 days and subsequently lysed
using guanidinium thiocyanate for the following gene expression analysis.

2.3. Analysis of Gene Expression by Real-Time Quantitative PCR

Total RNA was isolated using a standard chloroform-phenol extraction method and
reverse transcribed. Gene expression analysis was performed on an AB7500 Fast apparatus
using real-time SYBR Green technology, essentially as described [12].

2.4. Blood Cell Analysis

Platelet and total white blood cell counts were routinely measured using an automated
SYSMEX XT-2000iV Veterinary Heamatology analyzer (Sysmex Europe GMBH, Norderstedt,
Germany) in blood collected from the tail. The presence of specific cell surface markers on
leukocytes was detected by flow cytometry using the antibodies CD19-PerCP/Cy5.5, C36-
PE, F4/80-FITC, CD11b-APC, CD8-PerCP, and CD4-PE from eBioscience on a FACSCalibur
(Becton Dickinson, Mountain View, CA). Data were analyzed using Cell Quest software.
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2.5. Histological Analysis of Atherosclerosis

Ten µm cryosections of the aortic root, serially collected starting from the tricuspid valves,
were stained with Oil red O to identify atherosclerotic lesions. Mean lesion area from 5 sections
per mouse was quantified by using a Leica image analysis system, consisting of a Leica DMRE
microscope coupled to a camera and Leica QWin Imaging software (Leica Ltd., Cambridge,
UK). Lesional collagen content was determined from Masson’s Trichrome Accustain (Sigma-
Aldrich)-stained sections. Lesion analyses were performed in a blinded manner.

2.6. Platelet-Related Studies

To investigate platelet activation, we measured the ability of platelets to convert
integrin αIIbβ3 to its high-affinity open conformation upon stimulation by different ag-
onists. Hereto, equal volumes of blood (~900 µL) per mouse were collected by cardiac
puncture in needles prefilled with 100 µL citrate. Twenty-five microliters of diluted and
re-calcified whole blood was stimulated by ADP (Sigma-Aldrich, Zwijndrecht, the Nether-
lands), crosslinked collagen-related peptide (CRP-XL; Collagen Toolkits, Cambridge, UK),
or protease activated receptor 4 (PAR-4)-activating peptide (Bachem, Weil am Rhein, Ger-
many) for 15 min at 20 ◦C in the presence of PE-conjugated anti-active integrin αIIbβ3
(5 µL, clone JON/A; Emfret Analytics, Eibelstadt, Germany). Samples were fixed and
active integrin αIIbβ3 was determined by flow cytometry. Platelet expression levels of
GPVI (clone JAQ1; Emfret Analytics, Eibelstadt, Germany) were also assessed by flow
cytometry in whole blood samples.

2.7. Data Analysis

Statistical analysis was performed using Graphpad Instat software (San Diego, CA, USA,
http://www.graphpad.com (accessed on 10 September 2021)). Normality testing of the exper-
imental groups was performed using the method of Kolmogorov and Smirnov (Graphpad
Instat). The significance of differences was calculated using a two-tailed Student’s t-test or
two-way analysis of variance (ANOVA) with the Bonferroni post-test, where appropriate.
Probability values of p < 0.05 were considered significant.

3. Results and Discussion

Bone marrow transplantation is an established means of studying the specific impact
of changes in the hematological/immune compartment on atherosclerosis outcome [13].
To pursue our research question, we therefore transplanted bone marrow from trisomic
Ts65Dn mice and euploid wild-type control mice into atherosclerosis-susceptible hyperc-
holesterolemic LDL receptor knockout mice that were subsequently fed a Western-type
diet for 6 weeks to exacerbate the hypercholesterolemia and initiate the development of
atherosclerotic lesions. Relative mRNA expression levels of the trisomy marker DYRK1A
were 1.6- to 1.8-fold higher (p < 0.001) in bone marrow-derived macrophages and spleens
from Ts65Dn bone marrow recipients as compared to wild-type bone marrow recipients
(Figure 1A), verifying effective bone marrow chimerism. In accordance with a negligible
role for the bone marrow compartment in the regulation of total body cholesterol homeosta-
sis, plasma total cholesterol levels were not significantly different between Ts65Dn bone
marrow and wild-type bone marrow recipient mice, both under chow diet (375 ± 19 and
367 ± 16 mg/dL) and Western-type diet (971 ± 237 and 905 ± 147 mg/dL) feeding condi-
tions (p > 0.05). Through combining routine hematological analysis and flow cytometry we
measured in our Ts65Dn bone marrow recipients the trisomy-associated lymphocytopenia
previously also detected in human Down syndrome carriers (Figure 1B). CD8+ cytotoxic
T cell concentrations were three-fold lower (p < 0.001) in blood of Ts65Dn bone marrow
recipients, whilst CD4+ helper T cell numbers also tended to be decreased (−32%; p = 0.07).
The general reduction in blood T cell counts in Ts65Dn bone marrow recipients can proba-
bly be attributed to the previously described reduction in common lymphoid progenitors
in bone marrow from the trisomic donor mice [14]. Given that, apart from their absolute
numbers, the activation state of T cells, i.e., the relative presence of inhibitory natural killer
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cell receptors [15] and their ability to stimulate secretion of vascular endothelial growth
factor [16], is also important in the body’s disease susceptibility, it is interesting to study,
in more detail, the T cell phenotypes in Ts65Dn mice and Down syndrome carriers. Bone
marrow trisomy was also associated with a marked eight-fold decrease (p < 0.001) in blood
CD19+ B cell concentrations. In accordance with the suggestion of Lorenzo et al. that
the B cell deficiency in Down syndrome is due to a diminished proliferation within the
spleen [17], the total number of splenic B cells was also >2× lower in Ts65Dn bone marrow
recipients (p < 0.001; Figure 1C).

Figure 1. Successful induction of bone marrow trisomy is associated with lymphocytopenia. (A) Relative mRNA expression
levels of the trisomic gene DYRK1A in spleens and bone marrow-derived macrophages (BMDM) and amounts of different
lymphocyte subsets in blood specimens (B) and spleens (C) from Western-type diet-fed LDL receptor knockout mice that have
received wild-type bone marrow (WT BM) or Ts65Dn bone marrow (Ts65Dn BM). Data represent means + SEM of respectively
10/12 mice (left figure in panel A) or 6 mice (all other figures) per group. ** p < 0.01, *** p < 0.001 versus WT BM.

Previous studies have shown that (leukemic) immune cells of human subjects with
trisomy 21 are more likely to express CD36 [18]. CD36 is an active contributor to atheroscle-
rotic lesion development as judged from the observation that ablation of CD36 function in
macrophages decreases atherosclerosis susceptibility in both hypercholesterolemic LDL
receptor and apolipoprotein E knockout mice [19,20]. We therefore performed additional
flow cytometric analysis on trisomic and euploid leukocytes, isolated from blood and
spleen, to measure relative expression levels of CD36. Interestingly, cell surface CD36
protein expression levels were respectively 37% and 59% lower (p < 0.001) in trisomic
CD11b+Gr1− blood monocytes and F4/80+ splenic macrophages as compared to those
from euploid bone marrow-transplanted controls (Figure 2A). However, probably as a
result of only partial elimination of the macrophage CD36 functionality, this effect did
not translate into a bone marrow genotype-associated difference in atherosclerosis suscep-
tibility. Atherosclerotic lesions in the aortic root of Ts65Dn and wild-type bone marrow
recipients did not differ in size or their collagen content (Figure 2B–D). It can therefore be
suggested that the relative protection against atherosclerosis seen with Down syndrome is
rather due to other trisomy-associated changes than those in immune cells derived from
the bone marrow. In this context it is interesting to note that Pogribna et al. have shown
that plasma levels of the pro-atherogenic molecule homocysteine are reduced in Down
syndrome carriers [21]. Total plasma homocysteine levels are similarly reduced in trisomic
Ts65Dn mice [22,23]. Notably, the Down syndrome-related hypohomocysteinemia is highly
likely not driven by changes to the immune system, as this phenotype can be recapitulated
by hepatocyte-specific trisomic overexpression of DYRK1A [24,25].
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Figure 2. Bone marrow trisomy is not associated with an altered atherosclerosis susceptibility despite a reduced mono-
cyte/macrophage CD36 expression. (A) Relative protein expression levels of CD36 in blood monocytes and splenic
macrophages, (B) aortic root atherosclerotic lesion sizes and (C) lesional collagen contents in Western-type diet-fed LDL
receptor knockout mice that have received wild-type bone marrow (WT BM) or Ts65Dn bone marrow (Ts65Dn BM). Data in
panel A represent means + SEM of 6 mice per group. Horizontal lines in panels B and C indicate respective group averages
of the depicted individual mice. *** p < 0.001 versus WT BM. Panel D shows representative images of atherosclerotic lesions
stained for neutral lipids (Oil red O) or collagen (Trichrome; blue staining).

An interesting finding from our study was that providing mice with a Down syndrome-
like bone marrow genotype not only induces lymphocytopenia but is also associated with
a significant change in the number of platelets (Figure 3A) and their ability to become
activated (Figure 3B). The thrombocytosis observed in Ts65Dn bone marrow recipients
was highly likely due to megakaryocyte hyperplasia and extramedullary hematopoiesis,
as previously observed by Kirsammer et al. in total body Ts65Dn mice [26]. Bone marrow
trisomy did not significantly impact the ADP-induced ex vivo platelet activation, which
fits with findings in human platelets from Down syndrome carriers and unaffected con-
trols [27]. The PAR-4-activating peptide-induced platelet response was also normal in
Ts65Dn platelets. In contrast, a relatively high fraction of the platelets from Ts65Dn bone
marrow recipients expressed active integrin αIIbβ3 upon ex vivo exposure to collagen
as compared with platelets from wild-type bone marrow recipients (two way ANOVA:
p < 0.001 for genotype; Figure 3B). The exacerbated platelet response to collagen can be
attributed to an increase in the surface expression of the glycoprotein receptor for collagen
GPVI (+35%; p < 0.001; Figure 3C), whilst total integrin αIIbβ3 expression levels were not
different between the groups of mice (Figure 3C). Notably, since we executed our platelet
studies in whole blood specimens, the observed effect on platelet functionality is not nec-
essarily solely resultant from a Ts65Dn platelet genotype, as it may also be secondary to
other changes in the blood compartment, i.e., a difference in the concentration of platelet
activating factors. However, in light of the finding by Journeycake and Brumley that Down
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syndrome may be an independent risk factor for developing thromboembolic disease in
childhood [28] and other related case reports [29,30], it will be interesting to determine
whether our murine platelet findings can be replicated using (washed) platelets obtained
from infants and adults with Down syndrome.

Figure 3. Bone marrow trisomy is associated with thrombocytosis and an exacerbated platelet response to collagen.
(A) Blood platelet concentrations, (B) ex vivo platelet responses to ADP, PAR-4 peptide, and CRP-XL exposure as measured
by the presence of active integrin αIIbβ3, and (C) platelet protein expression levels of integrin αIIbβ3 and GPVI in Western-
type diet-fed LDL receptor knockout mice that have received wild-type bone marrow (WT BM) or Ts65Dn bone marrow
(Ts65Dn BM). Data represent means + SEM of 4 mice per group. ** p < 0.01, *** p < 0.001 versus WT BM.

4. Conclusions

We have shown that transplantation of trisomic bone marrow into LDL receptor
knockout mice does recapitulate the lymphocytopenia phenotype of Down syndrome
carriers but is not associated with an altered atherosclerosis susceptibility. Our preclinical
findings (1) argue against a prominent role for the hematological compartment in the
relative atherosclerosis resistance found in human Down syndrome carriers and (2) have
uncovered a novel effect of the Ts65Dn-associated trisomy on platelet functionality that
can potentially be relevant in human clinical settings.
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