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Abstract: N6-methyladenosine (m6A) modification is a newly discovered regulatory mechanism in
eukaryotes. As one of the most common epigenetic mechanisms, m6A’s role in the development of
atherosclerosis (AS) and atherosclerotic diseases (AD) has also received increasing attention. Herein,
we elucidate the effect of m6A on major risk factors for AS, including lipid metabolism disorders,
hypertension, and hyperglycemia. We also describe how m6A methylation contributes to endothelial
cell injury, macrophage response, inflammation, and smooth muscle cell response in AS and AD.
Subsequently, we illustrate the m6A-mediated aberrant biological role in the pathogenesis of AS and
AD, and analyze the levels of m6A methylation in peripheral blood or local tissues of AS and AD,
which helps to further discuss the diagnostic and therapeutic potential of m6A regulation for AS
and AD. In summary, studies on m6A methylation provide new insights into the pathophysiologic
mechanisms of AS and AD, and m6A methylation could be a novel diagnostic biomarker and
therapeutic target for AS and AD.

Keywords: N6-methyladenosine (m6A); atherosclerosis; atherosclerotic diseases; diagnostic biomark-
ers; targeted therapeutics

1. Introduction

Atherosclerosis (AS) is a chronic inflammatory disease with multiple pathological
features, such as endothelial dysfunction, vascular inflammation, and cholesterol accumu-
lation. AS can cause artery plaque and stenosis, leading to the occurrence of atherosclerotic
diseases (AD), such as coronary artery disease, stroke, and other arterial diseases [1,2].
AD remain the leading causes of death worldwide, and have created a vital global bur-
den, which is still increasing [3,4]. However, the pathogenesis of AS and AD is extremely
complex and largely unclear. In a word, it is of great significance to investigate the new
mechanism and potential therapeutic targets of AS and AD.

A growing number of studies [5,6] show that post-transcriptional epigenetic modi-
fications are closely related to the processes of AS and AD. N6-methyladenosine (m6A)
modifications (one of the common post-transcriptional epigenetic modifications) are in-
volved in the occurrence and development of AS and AD, and are novel and potential
therapeutic targets and diagnostic biomarkers for AS and AD [7–9].

m6A methylation is a post-transcriptional epigenetic modification at the RNA level,
which is a process of methylation of adenine at the sixth nitrogen atom catalyzed by
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RNA methyltransferases. m6A methylation is the most prevalent and reversible type
of modification in eukaryotic mRNA, and it also plays a role in noncoding RNAs such
as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circR-
NAs) [10–13]. m6A methylation can regulate RNA stability, positioning, transport, splicing,
and translation [14,15], which will affect the structure and function of RNAs. It plays a
crucial regulatory role in the pathogenesis of various diseases, such as tumors, cardiovas-
cular, and cerebrovascular diseases, etc. [16,17]. Recent studies [7–9] have identified the
significant role of m6A methylation in the occurrence and development of AS and AD. In
this review, we describe the relationship between m6A and risk factors of AS, highlight its
mechanism in the pathogenesis of AS, and elucidate the impact of m6A methylation on
the development of AS and AD. We also discuss the diagnostic and therapeutic potential
of m6A methylation regulators for AS and AD. Our review may provide novel insights
into the pathophysiologic mechanisms, diagnostic biomarkers, and therapeutic targets for
AS and AD.

2. Regulators of m6A Methylation

Since its first discovery in the 1970s [18], m6A has been identified as the most common
mRNA internal modification in most eukaryotic species [18–23]. Similar to DNA methyla-
tion and histone modification, RNA methylation is a dynamic and reversible modification
that regulates gene expression. m6A modifications are mediated by three regulators: “writ-
ers” (methyltransferases), “erasers” (demethylases), and “readers” (m6A-binding proteins)
(Figure 1). The m6A methylation site has a typical consensus sequence RRACH (R=G or
A; H=A, C, or U), which is enriched in the coding sequence and 3′ untranslated region,
particularly around stop codon regions [20,21]. Interactions among m6A-modified writers,
readers, and erasers are involved in the regulation of the RNA life cycle, thereby affecting
many physiological and pathological processes, such as cell differentiation, self-renewal,
and apoptosis, and the development of cancer, cardiovascular, and metabolic diseases.
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Figure 1. Regulators of m6A methylation. MTTL3, methyltransferase-like 3; WTAP, Wilms tumor
1-associated protein; RBM15/15B, RNA binding motif protein 15/15B; FTO, fat mass and obesity-
related protein; ALKBH5, alkylation repair homologous protein 5; YTHS, YTDF homeodomain family
proteins; IGF2BP1-3, insulin-like growth factor 2 mRNA binding protein; HNRNPS, heterogeneous
ribonucleoproteins.

2.1. Writers

The methyltransferases, also known as the codons or writers, are involved in the composi-
tion of the methyltransferase complex (MTC). MTC is composed of methyltransferase-like 3
(METTL3), METTL14, and other related regulators such as Wilms tumor 1-associated protein
(WTAP), METTL5, METTL16, and RNA binding motif protein 15/15B (RBM15/15B) [24–28].

METTL3 was discovered in 1997 and it contains two S-adenosylmethionine binding
sites called catalytically active methyltransferase domains [29]. METTL14, a homolog of
METTL3, plays an important role in structurally supporting RNA binding by providing
an RNA-binding scaffold [30,31]. WTAP can bind to the METTL3-METTL14 complex and
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plays an important role in regulating the localization of the METTL3-METTL14 complex to
nuclear foci [32]. In addition, METTL5, METTL16, RBM15/15B, and ZC3H13 play integral
roles in m6A methylation [25–28].

2.2. Erasers

In contrast to MTC, demethylases are called erasers. Their role is to remove m6A
methylation [33]. Demethylases include fat mass and obesity-related protein (FTO) and
alkylation repair homologous protein 5 (ALKBH5) [22,34]. Although these two enzymes
have similar functions, they play different roles in the process of demethylation.

In 2007, Frayling et al. [30] discovered a genetic variation in a gene associated with
obesity risk, which was officially named FTO. FTO is abundant in the brain, especially
in neurons. Hence, it may play an important role in the brain. FTO-dependent m6A
demethylation contributes to human obesity and regulates energy balance, which is critical
for its biological role in the cardiovascular system [35]. ALKBH5 is another nuclear-
localized m6A demethylase. Zheng et al. [22] found that m6A total RNA levels were reduced
in ALKBH5-overexpressing cells, which have been shown to regulate mRNA export, RNA
metabolism, and mRNA assembly in nuclear speckles. In addition, ALKBH5 also plays a
key role in biological processes such as cell cycle, stress response, and apoptosis [36].

2.3. Readers

Similar to DNA methylation, the biological function of m6A methylation is medi-
ated by the recognition of m6A sites by m6A “readers”. m6A readers include YTDF
homeodomain family proteins (YTDF1, YTDF2, YTDF3, YTDC1, and YTDC2), insulin-like
growth factor 2 mRNA binding protein (IGF2BP1-3), and heterogeneous ribonucleoproteins
(HNRNPA2B1, HNRNPC, and HNRNPG) [37].

Different readers have different biological functions. YTHDF1 promotes the trans-
lation of m6A methylated mRNAs, YTHDF2 accelerates the decay of m6A methylated
mRNAs, and YTHDF3, together with YTHDF1 and YTHDF 2, significantly enhances
the metabolism of m6A methylated mRNAs in the cytoplasm [38]. In addition, IGF2BP
expressed in the cytoplasm not only enhances mRNA stability but also increases trans-
lation efficiency [39]. Moreover, HNRNPG is involved in mRNA splicing and regulates
pre-mRNA processing [40].

3. The Effects of m6A Methylation in AS Major Risk Factors

Dyslipidemia, hypertension, and diabetes are the most common risk factors for AS.
We reviewed the effects of m6A methylation on the development of AS major risk factors
as follows (Figure 2).

3.1. Lipid Metabolism Disorder

Atherosclerotic lesions are based on lipid metabolism disorders [41]. Serum low-
density lipoprotein levels are negatively correlated with m6A levels [42]. In addition, FTO
catalyzes the demethylation of m6A methylation to alter mRNA processing, maturation,
and translation of lipid-related genes [22,43,44].

Previous studies [45] have demonstrated that FTO inhibits the macrophage uptake
of extracellular lipids, promotes intracellular lipid efflux, and inhibits macrophage lipid
accumulation and foam cell formation. Scavenger receptor CD36, the primary trans-
porter mediating extracellular lipid uptake by macrophages, is directly targeted by the
oxisome proliferator-activated receptor γ (PPARγ). Mo et al. [46] subsequently observed
that FTO-dependent m6A demethylation reduced PPARγ protein expression, resulting in
downregulation of CD36 expression and decreased lipid uptake in RAW264.7 cells. Further-
more, Wu et al. showed that [47] FTO promotes AMPK phosphorylation and up-regulated
ATP-binding cassette transporter A1 (ABCA1) in macrophages of mice. ABCA1 consumes
ATP to mediate intracellular cholesterol efflux, which strongly prevents excessive lipid
accumulation in macrophages. Reduced AMPK activity was shown to block FTO-induced
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upregulation of ABCA1. Additionally, FTO increases ABCA1 expression in an AMPK
activity-dependent manner [46,48].
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In conclusion, FTO is the key to regulating lipid homeostasis. m6A demethylation
of FTO inhibits macrophage lipid influx by downregulating PPARγ protein expression
and accelerates cholesterol efflux by phosphorylating AMPK, thereby preventing foam cell
formation and development of AS.

3.2. Hypertension

Hypertension is one of the main risk factors for AS, but the mechanism by which
hypertension promotes the occurrence of AS is unclear. However, one study showed [49]
that epigenetics could influence the pathogenesis of hypertension.

Wu et al. [50] demonstrated by m6A high-throughput sequencing analysis that the
average abundance of m6A was reduced in microvascular pericytes of spontaneously hy-
pertensive rats. This means that m6A methylation may regulate hypertension in mammals.
Genetic variation affects m6A expression by altering the RNA sequence of the target site,
which can be referred to as m6A-related single nucleotide polymorphisms (SNPs) [51].
The study by Mo et al. [52] showed that many m6A-related SNPs, such as rs9847953 and
rs197922, affect the expression of related genes, such as C1orf167, DOT1L, and thus produce
blood pressure effects. These findings may shed light on the underlying mechanism of
hypertension from the perspective of m6A modification.

3.3. Type 2 Diabetes Mellitus (T2DM)

T2DM is a common risk factor for AS. A previous study [53] showed that specific
variants in FTO could predispose individuals to T2DM. Among these variants, the FTO
rs9939609 (T > A) polymorphism is the most studied; for example, in the Oulu Project Eluci-
dation of Atherosclerosis Risk study [54], it was shown that the FTO rs9939609 minor allele
individuals with genetic variants had significantly higher rates of cardiovascular disease
events or deaths. Yang et al. [55] showed that FTO positively regulates gluconeogenesis-
related genes, such as the glucose-6-phosphatase catalytic subunit (G6PC) and forkhead
box protein O1 (FOXO1), in an m6A-dependent manner. In T2DM patients, decreased m6A
promotes hepatic gluconeogenesis, which leads to increased blood glucose by reducing the
expression of gluconeogenesis-related genes. Furthermore, in a study of pancreatic islet
cells from T2DM patients [56], m6A methylation was significantly reduced in β cells, but
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not in α cells, providing evidence that m6A methylation controls cellular insulin secretion.
This evidence suggests that m6A methylation plays a vital role in T2DM.

4. The Mechanisms of m6A Methylation in AS

Endothelial cells, macrophages, and smooth muscle cells are the most important
initiating and developing cell types of AS. We summarized the mechanism by which m6A
regulates these cell types to induce AS as follows (Figure 3).
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nuclear receptor subfamily 4 group A member 3; GSK3, glycogen synthase kinase 3; TET2, ten-eleven
translocation 2; SM22α, smooth muscle 22α; ADSCs, adipose-derived stem cells; VSMCs, Vascular
Smooth Muscle Cells; MSR1, macrophage scavenger receptor A; SR-B1, scavenger receptor B type 1;
STAT1, signal transducer and activator of transcription 1; IRF-1, interferon regulatory factor-1.
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4.1. Vascular Endothelial Cells

During the initial stages of AS, endothelial dysfunction and morphological damage
occur, which lead to leukocyte adhesion, vasoconstriction, platelet aggregation, and throm-
bosis [57]. Vascular endothelial cell dysfunction is a key factor in the pathogenesis of AS.

m6A methylation plays a major role in post-transcriptional regulation in vascular
endothelial cells. Zhu et al. [58] found that human cytomegalovirus (HCMV) infection
could induce abnormally elevated m6A methylation, especially METTL3 and YTHDF3,
leading to endothelial cell apoptosis. Wang et al. [59] used RNA transcriptome sequencing
and found that in cerebral arteriovenous malformations, the expression levels of WTAP
were significantly reduced but could inhibit endothelial cell angiogenesis.

m6A demethylation also plays important roles in endothelial cell angiogenesis. For ex-
ample, Rajesh Kumari et al. [60] found that ALKBH5 levels were up-regulated after ischemia
and correlated with the maintenance of ischemia-induced endothelial cell angiogenesis.
ALKBH5 contributes to the maintenance of endothelial angiogenesis after acute ischemic
stress by reducing SPHK1 m6A methylation and downstream eNOS-AKT signaling.

4.2. Macrophages Response and Inflammation

m6A methylation can influence AS progression by affecting macrophage cholesterol
efflux and cell death. Cholesterol accumulation in macrophages, foam cell formation,
and atherosclerotic lesions are all affected by macrophage cholesterol efflux capacity [61].
Zhao et al. [62] showed that during AS, oxidized low-density lipoprotein (ox-LDL) induced
the expression of dead box protein 5 (DDX5) in macrophages and restricted the METTL3
function. METTL3 can transfer methyl groups to macrophage scavenger receptor A (MSR1)
mRNA. Eventually, MSR1 mRNA stabilizes, and more MSR1 is synthesized. The uptake of
more lipids further promotes the formation of foam cells, leading to the progression of AS.
However, the specific mechanism of METTL3 inhibition by DDX5 is unclear. Park et al. [63]
showed that MELL14 knockout attenuated cholesterol efflux and promoted foam cell
formation by affecting m6A levels of scavenger receptor B type 1 (SR-B1) mRNA.

Inflammation is one of the major and fundamental pathological processes for all stages
of AS [64]. The transformation of macrophages into an inflammatory phenotype is closely
related to the progression of AS. Signal transducer and activator of transcription 1 (STAT1)
is a key transcription factor whose activation leads to signaling cascades activated by
pro-inflammatory macrophages. Liu et al. [65] showed that METTL3 has been shown to
directly methylate STAT1 mRNA to increase mRNA stability, thereby upregulating STAT1
expression and promoting the polarization of M1 macrophages. Huang et al. [66] demon-
strated that RBM4 regulates M1 macrophage polarization by targeting STAT1-mediated
glycolysis. This study shows that RBM4 may be a candidate for regulating M1 polarization
and inflammatory responses in macrophages. In addition, Gu et al. [67] found that the FTO
gene knockout of m6A demethylase inhibited the phosphorylation of key proteins in the
NF-κB signaling pathway, and was involved in reducing the mRNA stability of STAT1 and
PPARγ through YTHDF2, thereby hindering macrophages polarization of cells. Similarly,
Li et al. [68] also showed that ox-LDL stimulation significantly increased m6A-modified
mRNA levels in macrophages. METTL3 promotes ox-LDL-triggered inflammation by
interacting with STAT1 protein and mRNA in macrophages. In summary, m6A via the
STAT1 pathway plays an important role in macrophage inflammation in AS.

In addition, m6A via the NF/κB signaling pathway also plays a crucial role in
macrophage inflammation in AS. Wang et al. [69] showed that METTL3 reduced lipopolysac-
charide (LPS)-induced macrophage inflammatory response by inhibiting the NF-κB path-
way. However, Yu et al. [70] showed that downregulation of YTHDF2 significantly increased
the LPS-induced expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, and
activated the MAPK and NF-κB signaling pathways. In addition, Yu et al. [71] found
that the inhibition of METTL14 and METTL3 expression in macrophages could abolish
m6A methylation of NF-κB mRNA, affect the stability of NF-κB mRNA, and ultimately
lead to the inactivation of inflammatory macrophages, thereby significantly alleviating
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the progression of AS. Zheng et al. [72] found that Mettl14 knockout significantly reduced
macrophage inflammatory response and atherosclerotic plaque formation through the
NF-κB/IL-6 signaling pathway.

Moreover, Zhang et al. [73] identified a role for METTL3 in promoting oxidized
LDL-induced monocyte inflammation. Guo et al. [74] showed that overexpression of
interferon regulatory factor-1 (IRF-1) promoted apoptosis and inflammatory responses
in atherosclerotic macrophages by upregulating m6A methylation levels and METTL3
expression on circ_0029589.

4.3. Vascular Smooth Muscle Cell (VSMC)

During AS progression, contractile VSMCs undergo phenotypic transformation into
proliferative synthetic cells that generate an extracellular matrix, form fibrous caps, and
stabilize plaques [75]. Accumulating evidence suggests that m6A can affect the pathophysi-
ological function of VSMCs.

The “writers” of m6A methylation are involved in VSMC proliferation and migration.
Lin et al. [76] showed that hypoxia can affect METTL3 expression and further affect m6A
modification of related factors such as VEGF and TGF-β, thereby inducing adipose-derived
stem cells (ADSCs) to differentiate into VSMCs. Chen et al. [77] found that overexpressed
METTL14 increased m6A methylation by promoting the transformation of VSMCs to
osteoblasts, and played an important role in the pathological mechanism of vascular
calcification. Furthermore, in the study by Zhu et al. [78], the expression of WTAP in VSMCs
altered cell proliferation and migration. Total notoginseng saponins regulate p16 m6A
methylation by promoting WTAP expression, thereby inhibiting intimal thickening.

The “erasers” of m6A demethylases have been reported to promote VSMC proliferation
and migration. For example, Ma et al. [79] demonstrated that both FTO overexpression
and Ang II-induced FTO expression promoted VSMC proliferation and migration. FTO
promotes the expression of Kruppel-like factor 5 (KLF5) mRNA by reducing the m6A
methylation of KLF5 mRNA, thereby upregulating the expression of downstream glycogen
synthase kinase 3 (GSK3). Similarly, Huo et al. [80] also showed that FTO promoted
Ang II-induced VSMC proliferation and inflammatory response by demethylating the
m6A methylation of nuclear receptor subfamily 4 group A member 3 (NR4A3) mRNA. In
addition, Deng et al. [81] established a rat carotid artery balloon injury model to confirm
the role of the FTO in neointima formation.

Different m6A “readers” function differently in VSMC proliferation and migration.
Yuan et al. [82] found that YTHDC2-mediated m6A modification stabilizes circYTHDC2,
which promotes VSMC proliferation and migration by negatively regulating the expression
of ten-eleven translocation 2 (TET2). However, Zhang et al. [83] showed that IGF2BP2
increased the stability of smooth muscle 22α (SM22α) mRNA by acting as a “reader” for
m6A-modified SM22α, inhibited the proliferation and migration of VSMC, and inhibited
intimal hyperplasia.

5. The Role of m6A Methylation in AS and AD

m6A methylation not only causes the most common atherosclerotic diseases (such as
coronary heart disease (CHD) and ischemic stroke (IS) through AS. Moreover, m6A also
plays an important role in the injury and repair of CHD and IS. In Table 1, we reviewed the
progress of m6A methylation regulator-guided epigenetic modification in AS and AD.
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Table 1. m6A methylation regulator-guided epigenetic modification in AS and AD.

Atherosclerotic
Process

m6A
Regulators

Expression Target Gene Main Function Reference

AS METTL3 ↑ LRP6 and DVL1

Enhances translation of LRP6
and DVL1, modulates Wnt
signaling, and thus exerts

angiogenic effects

[84]

METTL3 ↑ PGC-1α mRNA
Promotes mitochondrial

dysfunction and
ox-LDL-induced inflammation

[73]

METTL3 ↓ JAK2/STAT3

Alleviates ox-LDL-induced
endothelial cell dysfunction,

prevents in vivo angiogenesis of
developing embryos, and

hinders progression in AS mice
models

[85]

METTL3 ↑ NLRP1 and KLF4

Up-regulates NLRP1,
down-regulates KLF4,

hypermethylates m6A, and
triggers atherosclerotic response

[86]

METTL3 ↑ miR-375-3p/PDK1 Makes AS plaques more
vulnerable [87]

METTL3 ↑ EGFR
Promotes EGFR degradation

and alleviates endothelial
atherogenic progression

[88]

METTL14 ↑ FOXO1

Increases FOXO1 m6A
methylation, aggravates

endothelial inflammation and
AS

[89]

METTL14 ↓ miR-19a Inhibits the proliferation and
invasion of ASVEC [90]

METTL14 ↑ LncRNA ZFAS1 Plays a vital role in AS [91]
METTL14 ↓ p65 mRNA Relieves the development of AS [92]

METTL14 ↓ NF-κB/IL-6
Reduces the inflammation

response of macrophages and
the development of AS plaques

[72]

FTO ↑ Not known Modulates neointima formation
in vivo [81]

FTO ↓ NR4A3
Alleviates AngII-induced
VSMC proliferation and
inflammatory response

[80]

ALKBH5 ↓ HIF1α Inhibits the expression of MIAT
induced by ox-LDL [42]

CHD METTL3 ↑ TFEB Promotes cardiomyocyte
apoptosis [8]

WTAP ↑ ATF4

Promotes endoplasmic
reticulum stress and apoptosis,

aggravates myocardial I/R
injury

[93]

FTO ↑ SERCA2A
MYH6/7 RYR2 Reverses ischemic damage [94]

FTO ↑ MHRT Inhibits cardiomyocyte
apoptosis [95]

ALKBH5 ↓ TFEB Promotes cardiomyocyte
apoptosis [8]

ALKBH5 ↑ WNT5A Regulates angiogenesis after
ischemia [96]
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Table 1. Cont.

Atherosclerotic
Process

m6A
Regulators

Expression Target Gene Main Function Reference

IS METTL3 ↑ miR-335 Promotes formation of SG and
reduces damage of IS [97]

YTHDC1 ↑ Not known Protects rats from brain damage [98]

↑, high expression; ↓, low expression; AS, atherosclerosis; METTL3, methyltransferase-like 3; LRP6, lipoprotein
receptor-related protein 6; DVL1, dishevelled 1; ox-LDL, oxidized low-density lipoprotein; NLRP1, NOD-like
receptor protein 1; KLF4, Kruppel-like factor 4; EGFR, epidermal growth factor receptor; FOXO1, forkhead box
protein O1; ASVEC, atherosclerotic vascular endothelial cell; LncRNA, long non-coding RNA; ZFAS1, Zinc finger
NFX type 1 antisense RNA 1; FTO, fat mass and obesity-related protein; NR4A3, nuclear receptor subfamily
4 group A member 3; ALKBH5, alkylation repair homologous protein 5; HIF1α, hypoxia-inducible factor 1α;
CHD, coronary artery heart disease; MIAT, myocardial infarction-associated transcript; TFEB, transcription factor
EB; WTAP, Wilms tumor 1-associated protein; ATF4, activated transcription factor 4; SERCA2A, sarcoplasmic
reticulum Ca2+-ATPase; MYH6/7, myosin heavy chain 6/7; RYR2, ryanodine receptor 2; MHRT, myosin heavy
chain-related RNA transcript; WNT5A, WNT family member 5A; IS, ischemic stroke; SG, stress granule; YTHDC1,
YTH Domain Containing 1.

5.1. AS

AS is the main cause of CHD and IS [99]. Quiles Jiménez et al. [6] used mass spec-
trometry to analyze m6A methylation levels in tissue from non-atherosclerotic arterial and
carotid atherosclerotic patients, which showed the changes in the expression levels of m6A
writers, erasers, and readers in atherosclerotic tissue. The findings of Wu et al. [42] showed
that m6A methylation levels were significantly reduced in peripheral blood leukocytes of
atherosclerotic patients and mice. The bioinformatic analysis indicated that differentially
methylated genes were involved in the pathogenesis of AS. These findings suggest that
m6A methylation is involved in the occurrence and progression of AS.

METTL3-dependent m6A methylation was recently shown to play an important role
in AS. For example, Yao et al. [84] demonstrated that METTL3 promotes the translation
of low-density lipoprotein receptor-related protein 6 (LRP6) and dishevelled 1 (DVL1)
in human umbilical vein endothelial cells (HUVEC) under hypoxic stress in a YTHDF1-
dependent manner, thereby exerting an angiogenesis effect. Zhang et al. [73] demonstrated
that METTL3 plays a role in ox-LDL-induced monocyte inflammation, in which METTL3
and YTHDF2 synergistically modify PGC-1α mRNA, mediate its degradation, and reduce
PGC-1α protein levels, thereby enhancing the inflammatory response. This study provides
new insights into the role of METTL3-dependent m6A methylation of PGC-1α mRNA in
the inflammatory response of monocytes. In addition, Dong et al. [85] explored the role
and molecular mechanism of m6A-METTL3 in AS progression from an in vivo perspective
using an AS mouse model and an in vivo chick embryo chorioallantoic membrane assay.
The results indicated that METTL3 knockout prevented AS progression through IGF2BP1
inhibition of the JAK2/STAT3 pathway. Furthermore, Chien et al. [86] showed that METTL3
up-regulated NOD-like receptor protein 1 (NLRP1) and down-regulated Kruppel-like
factor 4 (KLF4) in an m6A-dependent manner. METTL3 exerts pro-inflammatory effects in
HUVEC or mouse aortic endothelial cells exposed to pro-atherosclerotic oscillatory stress
or TNF-α stimulation, thereby promoting inflammatory cell adhesion and AS pathogenesis.
In a recent study, Chen et al. [87] found that silencing METTL3 alleviated AS progression
in mice. Silencing METTL3 suppressed m6A levels and decreased the binding of DGCR8
to pri-miR-375, further limiting the expression of miR-375-3p. miR-375-3p targets PDK1
transcription. Ultimately silencing METTL3 plays a role in stabilizing AS plaques. However,
Li et al. [88] reported a protective role of METTL3 in AS. The authors found that METTL3
promotes m6A-dependent degradation of epidermal growth factor receptor (EGFR) mRNA,
a molecule associated with vascular endothelial cell (EC) dysfunction, thereby attenuating
the progression of endothelial atherosclerosis.

Similarly, METTL14 also plays a pivotal role in the process of AS. Jian et al. [89] con-
structed a model of EC inflammation induced by TNF-α. With an increase in the expression
of METTL14 in endothelial cells stimulated with TNF-α, METTL14 increases the m6A
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methylation of FOXO1, promoting its expression, which triggers endothelial inflamma-
tory responses and the development of AS. Subsequent in vivo experiments showed that
METTL14 knockout could inhibit AS plaque development in an m6A-dependent manner
in METTL14 knockout mice. Furthermore, Zhang et al. [90] pointed out that METTL14 pro-
moted the production of mature miR-19a by increasing the expression of m6A in miR-19a,
thereby accelerating the invasion and proliferation of cardiovascular ECs. Chen et al. [100]
showed that the m6A methylation of Zinc finger NFX type 1 (ZNFX1) antisense RNA 1
(ZFAS1) was significantly higher in AS patients than in controls, and that m6A methylation
in ZFAS1 was regulated by METTl14. Tang et al. [91] found that METTl14 affects the ex-
pression of downstream ADAM10/RAB22A by affecting the m6A methylation of LncRNA
ZFAS1, thereby participating in cholesterol metabolism and vascular inflammation, and
ultimately regulating the occurrence and development of AS. Liu et al. [92] demonstrated
that silencing METTL14 attenuates the development of AS through the m6A methyla-
tion of p65 mRNA by establishing an in vitro atherosclerotic cell model and an in vivo
high-fat diet mouse model. Zheng et al. [72] showed that Mettl14 plays a crucial role in
macrophage inflammation in AS through the NF-κB/IL-6 signaling pathway. METTL14
knockout significantly reduced the macrophage inflammatory response and atherosclerotic
plaque formation.

In addition, demethylases also play an important role in AS. For example, Deng
et al. [81] established a rat carotid artery balloon injury model, which confirmed that FTO
could induce neointima formation. Huo et al. [80] used Ang II to construct vascular smooth
muscle cells (VSMC) and vascular inflammation models in vitro and in vivo, and confirmed
that the FTO/NR4A3 axis plays a key role in Ang II-induced VSMC proliferation and
inflammation. Wu et al. [42] found that ox-LDL-induced ALKBH1 promotes myocardial
infarction-associated transcript (MIAT) transcription by promoting the binding of hypoxia-
inducible factor 1α (HIF1α). In addition, ALKBH1 knockdown inhibited ox-LDL-induced
MIAT expression. All in all, the present findings suggest that the ALKBH1-m6A axis may
control atherosclerotic plaque progression by regulating MIAT expression.

5.2. AD
5.2.1. CHD

CHD, also known as ischemic cardiomyopathy, refers to the clinical syndrome of
long-term myocardial ischemia caused by coronary atherosclerosis, resulting in diffuse
myocardial fibrosis [101].

Mathiyalagan et al. [94] demonstrated for the first time that mRNA m6A methy-
lation was significantly higher in ischemic myocardium than in non-ischemic regions.
Song et al. [8] demonstrated that m6A RNA methylation is involved in the development of
myocardial hypoxia/reperfusion injury by regulating autophagy. Deng et al. [81] identified
differentially methylated m6A sites in mRNAs and lncRNAs between peripheral blood
mononuclear cells of the CHD group and control group. These studies suggest that m6A
RNA methylation plays a crucial role in CHD.

Song et al. [8] established a mice model of hypoxia-reperfusion and ischemia-reperfusion
and found that the m6A methylation levels in mice cardiomyocytes increased, and METTL3
is the main cause of abnormal modification of m6A methylation. Silencing METTL3 en-
hances autophagic flux and inhibits cardiomyocyte apoptosis in hypoxic/reoxygenated
cardiomyocytes. However, the overexpression of METTL3 or inhibition of m6A demethy-
lase ALKBH5 promoted cardiomyocyte apoptosis. This suggests that METTL3 is a negative
regulator of autophagy. Similarly, WTAP promotes endoplasmic reticulum (ER) stress and
apoptosis by increasing mRNA m6A levels of activated transcription factor 4 (ATF4), a
transcription factor that controls the expression of ER-related genes, and up-regulates its
expression, thereby aggravating myocardial I/R injury [93].

FTO-mediated m6A demethylation is also associated with myocardial I/R injury. FTO
can selectively demethylate sarcoplasmic reticulum Ca2+-ATPase (SERCA2A), myosin
heavy chain 6/7 (MYH6/7), ryanodine receptor 2 (RYR2), and other mRNAs that affect
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cardiac calcium homeostasis, myofibril synthesis, and contractile function. It increases
the transcription and translation of the above genes through an m6A-dependent pathway,
thereby reversing ischemic injury [94]. Myosin heavy chain-related RNA transcript (MHRT)
is a heart-specific lncRNA derived from the antisense strand of the MYH7 gene. Shen
et al. [95] demonstrated that overexpression of FTO inhibited apoptosis in I/R-treated
cardiomyocytes by reducing the m6A modification of MHRT.

In addition, overexpression of ALKBH5 can reverse the damaging effects of METTL3
on cardiomyocytes [8]. Another study explored the effect and mechanism of ALKBH5
on angiogenesis after ischemia. Zhao et al. [96] demonstrated that ALKBH5 negatively
regulates angiogenesis after ischemia by reducing the mA levels of WNT family member
5A (WNT5A) mRNA and by promoting its degradation in cardiac microvascular endothe-
lial cells.

5.2.2. IS

The stenosis of the cerebral arterial lumen often occurs due to AS, resulting in ensuing
thrombosis and IS. Emerging evidence [9,102] suggests that m6A methylation is involved
in the injury and repair of IS.

Si et al. [97] established an oxygen–glucose deprivation/reperfusion model in primary
cortical neurons and PC12 cells by using a middle cerebral artery occlusion model in
rats to explore m6A methylation of potential mechanisms involved in stress granule (SG)
formation in the early stages of acute ischemic stroke. Both in vitro and in vivo results
showed that METTL3 protein, m6A levels, and miR-335 expression were significantly
decreased with prolonged reperfusion time. The finding suggests that METTL3-mediated
m6A methylation plays an important role in promoting SG formation and reducing IS
damage in the early stages of disease.

Similar to METTL3, YTHDC1 also plays a protective role in the pathological process of
IS. Zhang et al. [98] found that the knockout of YTHDC1 aggravated ischemic brain injury,
while the overexpression of YTHDC1 protected rats from brain injury; mechanistically,
YTHDC1 promotes PTEN mRNA degradation to increase Akt phosphorylation, thereby
promoting neuronal survival, especially after ischemia.

6. Potential Diagnostic Biomarkers and Therapeutic Targets of m6A for AS and AD

The above findings provide new information for understanding the molecular patho-
genesis of AS and exploring potential diagnostic biomarkers and therapeutic targets for
AS and AD.

6.1. Potential Diagnostic Biomarkers of m6A for AS and AD

The levels of m6A methylation in the tissue of AS patients are significantly lower
than that of non-AS patients and that of early AS patients. The expression levels of WTAP,
METTL3, YTHDF2, and FTO are significantly lower than those of non-AS patients [6].
In addition, m6A levels in peripheral blood leukocytes are negatively correlated with
carotid plaque size and thickness [42]. Thus, these biomarkers may potentially be used in
the future for the early diagnosis of AS. In addition, the m6A levels in peripheral blood
mononuclear cells of CHD patients are significantly lower than that of the control group,
and the expression levels of FTO, METTL14, and ALKBH5 in the CHD patients are also
lower than those of the control group [81]. Moreover, global m6A levels in ipsilateral cortical
tissue around cerebral infarction are significantly elevated after transient focal ischemia,
and FTO levels are significantly reduced after stroke [9]. Taken together, these findings
indicate that m6A may be a potential biomarker for the diagnosis of AD. In summary, m6A
levels in RNA may prove to be a valuable diagnostic biomarker for AS and AD. However,
the relationship between m6A and AS or AD, and its diagnostic specificity and sensitivity,
would need to be confirmed by clinical studies with easy access to specimens such as
peripheral blood.
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6.2. Potential Therapeutic Targets of m6A for AS and AD

Numerous studies have shown that methyltransferases are associated with aber-
rant m6A modification and lead to the development of AS and AD, which indicate that
m6A methylation may be the potential therapeutic target. METTL3 promotes ox-LDL-
triggered inflammation by interacting with STAT1 protein and mRNA in macrophages [68].
METTL14-mediated m6A modification of ZFAS1/RAB22A may play an important role in
AS [100], and METTL14 plays a crucial role in macrophage inflammation in AS through
the NF-κB/IL-6 signaling pathway [72]. In addition, experiments in vivo have shown that
silencing METTL3 can stabilize atherosclerotic plaques [87]. Moreover, METTL14 knockout
can inhibit the development of AS plaques [89], and silencing METTL14 can alleviate the
development of AS [92]. These indicated that METTL3 and METTL14 may be promising
therapeutic targets for the clinical treatment of AS. Likewise, ALKBH5 can negatively
regulate angiogenesis after ischemia [96]. Thus, targeting ALKBH5 may be a potential
therapeutic option for CHD. Additionally, a key link between METTL3-ALKBH5 and
autophagy provides a new direction for m6A methylation therapy in CHD [8]. Moreover,
in IS, METTL3-mediated m6A modification plays an important role in reducing damage
in the early stages of stroke [97]. Furthermore, YTHDC1 is a novel regulator of neuronal
survival [98]. However, further experimental and clinical evidence is needed to confirm
these potential therapeutic targets.

Based on the above therapeutic targets, exploratory research on the treatment of
AS with chemical drugs and botanical drugs are ongoing. In terms of chemical drugs,
Zhu et al. [58] showed that vitamin D3 inhibited HCMV-induced vascular endothelial cell
apoptosis by correcting m6A modification of mitochondrial calcium transporter mRNA,
which was regulated by METTL3 and YTHDF3. This study highlighted the significance of
vitamin D3 supplementation in HCMV-induced AS. For botanical drugs, several studies
have also shown that Chinese herbal medicine could significantly delay the onset and
progression of AS [71,103,104]. Hua Tuo Zai Zao Wan (HTZZW) was the most frequently
studied traditional Chinese medicine. In the study by Yu et al. [71], positive effects were
observed in AS mice treated with HTZZW. HTZZW exerts its effect through epigenetic
regulation, which can regulate the expression of METTL14 and METTL3 in macrophages,
thereby eliminating the m6A modification of NF-κB mRNA, and finally leading to the
inactivation of macrophages, which has the effect of preventing AS.

In conclusion, m6A modifications are potential therapeutic targets for AS and AD, and
drugs that affect m6A methylation are expected to be explored in AS and AD treatment in
the future.

7. Discussion and Perspectives

This review expounds on the impact of m6A methylation on the main risk factors for
AS, such as lipid metabolism disorders, hypertension, and hyperglycemia. We also describe
the m6A methylation mechanisms that may contribute to the development of AS, including
vascular endothelial cell injury, macrophage responses, inflammation, and the proliferation
and migration of smooth muscle cells. We then summarized the pathophysiological role
of m6A methylation in AS and AD, and discussed m6A methylation and its regulators as
diagnostic biomarkers and treatment targets.

In terms of mechanism, the study of m6A revealed a potential link between this epige-
netic modification and AS and AD. However, the mechanism of AS is very complex, and
the specific association between m6A methylation and AS remains to be elucidated. Studies
of m6A methylation in AS have mainly focused on METTL3 and METTL14 expression.
Future studies should also explore how other m6A regulators, such as erasers and readers,
regulate the expression of downstream proteins, and the interactions between m6A writers,
erasers, and readers. In addition, it is unclear whether m6A methylation crosstalk with
other epigenetics, such as non-coding RNA, DNA methylation, and histone modification,
occurs in the development of AS.
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In terms of clinical application, m6A methylation is dynamic and reversible, and has
important implications for the diagnosis, prevention, and treatment of AS and AD. For
diagnostic application, most studies on differential expression of m6A levels in AS and AD
were performed in animal, and most of them are from local tissues (such as artery, heart,
or brain), which is difficult to obtain clinically. In addition, a comprehensive study of the
relationship between m6A methylation from peripheral blood and the disease in human is
badly needed, which will help identify potential biomarkers for the diagnosis of AS and
AD. All in all, it is a beautiful blueprint to use a simple detection method to determine the
level of m6A or related proteins in peripheral blood to achieve the purpose of diagnosing
AS and AD. For therapeutic application, m6A inhibitors or agonists for the treatment of AS
are still at the stage of animal experiments, and more effective drugs and new therapeutic
strategies related to m6A remain to be discovered.

8. Conclusions

Studies on m6A methylation provide new insights into the pathophysiologic mech-
anisms of AS and AD, and m6A methylation will be a novel diagnostic biomarker and
therapeutic target for AS and AD in the near future.
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