

Article Morphology and Phylogeny Reveal Three New Species of *Cytospora* Associated with Tree Cankers in China

Shuo Wang ¹, Ning Jiang ² and Rong Ma ^{1,*}

- ¹ College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; 15352572797@163.com
- ² Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; n.jiang@caf.ac.cn
- * Correspondence: xjaumr@sina.com; Tel.: +86-136-9935-5593

Abstract: *Cytospora* (Cytosporaceae, Diaporthales) is a fungal genus that usually inhabits plants as endophytes, saprobes, as well as pathogens. Species of this genus are characterized by possessing allantoid hyaline conidia and ascospores. Samples with typical Cytospora canker symptoms on *Prunus davidiana*, *P. padus* and *Salix* sp. were collected in Tibet and Xinjiang, China. Species were identified using both morphological and molecular approaches of combined loci of internal transcribed spacer region rDNA (ITS), the partial actin (*act*) region, RNA polymerase II second largest subunit (*rpb2*), the translation elongation factor 1-alpha (*tef1*) gene and the partial be-ta-tubulin (*tub2*) gene. Six isolates in the present study formed three distinct clades from previously known species. *Cytospora hejingensis* sp. nov. from *Salix* sp., *C. jilongensis* sp. nov. from *P. davidiana* and *C. kunsensis* from *P. padus* were proposed herein. The current study improves the understanding of species concept in *Cytospora*.

Keywords: Diaporthales; plant disease; systematics; taxonomy

Citation: Wang, S.; Jiang, N.; Ma, R. Morphology and Phylogeny Reveal Three New Species of *Cytospora* Associated with Tree Cankers in China. *J. Fungi* **2024**, *10*, 139. https://doi.org/10.3390/ jof10020139

Academic Editor: Xiuguo Zhang

Received: 15 January 2024 Revised: 3 February 2024 Accepted: 7 February 2024 Published: 9 February 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Cytospora is a species-rich genus in family Cytosporaceae (order Diaporthales) and commonly inhabits plant tissues [1–4]. This genus was proposed in 1818 with four species, namely *C. betulina*, *C. epimyces*, *C. resinae* and *C. ribis* [5]. Another species *C. chrysosperma* was subsequently introduced [6] and later selected as the type species of this genus [7]. *Cytospora* can be different from the other diaporthalean genera by having allantoid hyaline conidia and ascospores [1,4,8–10].

Species of *Cytospora* were primarily identified and distinguished by their morphology and host [5–7]. However, recent studies employing molecular phylogeny revealed many cryptic species with similar morphology on the same host of known species of this genus [11–15]. For example, up to 28 *Cytospora* species were discovered from *Eucalyptus* spp. in South Africa with the help of DNA sequence evidence [2], eight from willow (*Salix* spp.) trees in China [16], six from *Castanea mollissima* in China [17], six from *Populus* hosts in China [18] and six from apple trees in Iran [19]. The taxonomy of *Cytospora* is currently more dependent on combined evidence of DNA sequence data, morphological features and ecology than species morphology and host associations [1,20].

Several species of *Cytospora* are reported to cause plant diseases including canker, wilt and dieback [21–24]. For example, *C. carpobroti* causes *Carpobrotus edulis* wilt disease in South Africa [21]; *C. oleicola* and *C. olivarum* are pathogenic to olives in the USA [22]; *C. parasitica* results in apple cankers in China [23]; and *Cytospora pistaciae* causes dieback and canker disease of pistachios in Italy [24]. There are still many cryptic species of *Cytospora* pathogenic to plants waiting for description.

In the present study, Cytospora canker symptoms were found from different tree hosts named *Prunus davidiana*, *P. padus* and *Salix* sp. in Tibet and Xinjiang, China. The aims of the

present study were to identify the casual agents of the lesions, to introduce and describe new *Cytospora* species using both molecular and morphological approaches, and to discuss the species differences based on newly collected specimens.

2. Materials and Methods

2.1. Specimens and Strains

Investigations to collect fungal specimens were conducted in Tibet and Xinjiang during 2021 and 2022. During the surveys, dead and dying twigs and branches of tree hosts were checked manually, and then twigs and branches with obvious fungal fruiting bodies were recorded and collected. Samples were packed in paper bags and posted back for isolation.

Ascomata on branches of *Prunus padus* and *Salix* sp., and conidiomata on branches of *P. davidiana* were sectioned using sterile blades, and mucoid spore masses were removed and placed onto the surface of potato dextrose agar (PDA; potato, 200 g; glucose, 20 g; agar, 20 g; distilled water, to complete 1000 mL) media using sterile insect needles. Then, plates were incubated at 25 °C in darkness until spores germinated. Pieces of mycelium were cut and removed and placed onto a new PDA plate under a stereomicroscope to obtain the pure strains. Specimens and isolates were preserved in the China Forestry Culture Collection Center (CFCC; http://cfcc.caf.ac.cn/ (accessed on 2 January 2024)).

2.2. Morphological Observations

The *Cytospora* species observations were based on ascomata and conidiomata naturally formed on twigs and branches of *Prunus davidiana*, *P. padus* and *Salix* sp. The sexual and asexual fruiting bodies were sectioned using sterile blades and photographed using the Leica stereomicroscope (M205) (Leica Microsystems, Wetzlar, Germany). The asci, ascospores, conidiophores, conidiogenous cells and conidia were measured and photographed by a Nikon Eclipse 80i microscope (Nikon Corporation, Tokyo, Japan). The colony characteristics were observed and recorded on PDA plates at 25 °C in darkness.

2.3. DNA Extraction and Amplification

The total genomic DNA of *Cytospora* species were obtained from colonies growing on PDA plates by using the CTAB method [25]. The internal transcribed spacer region rDNA (ITS), the partial actin (*act*) region, RNA polymerase II second largest subunit (*rpb2*), the translation elongation factor 1-alpha (*tef1*) gene and the partial be-ta-tubulin (*tub2*) gene were amplified using primer pairs ITS1/ITS4, ACT512F/ACT783R, fRPB2-5f/fRPB2-7cR, 983F/2218R, Bt2a/Bt2b, respectively [26–30]. These regions were amplified as follows: an initial denaturation step of 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 50 s at 52 °C (ITS), 54°C (*tef1* and *tub2*), 55 °C (*rpb2*) or 58 °C (*act*), and 1 min at 72 °C, and a final elongation step of 7 min at 72 °C. The polymerase chain reaction products were sequenced using an ABI PRISM 3730XL DNA Analyser with a BigDye Terminator Kit v.3.1 (Invitrogen, Waltham, MA, USA) at the Shanghai Invitrogen Biological Technology Company Limited (Beijing, China).

2.4. Molecular Phylogeny

Sequences obtained in the present study were preliminarily identified by the BLAST search to confirm their classification. The referenced sequences of *Cytospora* were collected from recent publications (Table 1) and downloaded [1,24,25]. Strain CBS 160.32 (species *Diaporthe vaccinii*) was selected as the outgroup taxon. The five individual loci ITS, *act*, *rpb2*, *tef1* and *tub2* were aligned using MAFFT v. 6.0 and manually adjusted using MEGA v. 6.0 [31,32]. Then, five loci were combined and analyzed based on maximum likelihood (ML) and Bayes methods in the CIPRES Science Gateway platform [33]. The GTR substitution model was employed and 1000 non-parametric bootstrap replicates were set for ML phylogenic analysis. Four simultaneous Markov Chain runs for 1,000,000 generations were set during Bayesian analysis. The resulting trees were visualized in FigTree v. 1.4.0 and edited using Adobe Illustrator 2020.

C	a . 1	GenBank Accession Numbers					
Species	Strain	ITS	act	rpb2	tef1	tub2	
Cytospora ailanthicola	CFCC 89970	MH933618	MH933526	MH933592	MH933494	MH933565	
Cytospora albodisca	CFCC 53161	MW418406	MW422899	MW422909	MW422921	MW422933	
Cytospora albodisca	CFCC 54373	MW418407	MW422900	MW422910	MW422922	MW422934	
Cytospora alba	CFCC 55462 ^T	NR182387	OK303457	OK303516	OK303577	OK303644	
Cytospora alba	CFCC 55463	MZ/02596	OK303458	OK303517	OK303578	OK303645	
Cytospora ampulliformis	MFLUCC 16-05831 MELUCC 16-0620	KY417726	KY417692	KY417794 KY417705			
Cytospora amuodali	CBS 144233 ^T	MG971853	MG972002	K141/793	MG971659		
Cutospora atrocirrhata	CFCC 89615	KR045618	KF498673	KU710946	KP310858	KR045659	
Cytospora atrocirrhata	CFCC 89616	KR045619	KF498674	KU710947	KP310859	KR045660	
Čytospora beilinensis	CFCC 50493 ^T	MH933619	MH933527		MH933495	MH933561	
Cytospora beilinensis	CFCC 50494	MH933620	MH933528		MH933496	MH933562	
Cytospora berberidis	CFCC 89927 ^T	KR045620	KU710990	KU710948	KU710913	KR045661	
Cytospora berberidis	CFCC 89933	KR045621	KU710991	KU710949	KU710914	KR045662	
Cytospora bungeana	CFCC 50495*	MH933621 MH933622	MH933529 MH933530	MH933593 MH933594	MH933497 MH933498	MH933564	
Cytospora californica	CBS 144234 ^T	MG971935	MG972083	10111755574	MG971645	WII 1955504	
Cytospora carbonacea	CFCC 89947	KR045622	KP310842	KU710950	KP310855	KP310825	
Cytospora carpobroti	CMW48981 ^T	MH382812			MH411212	MH411207	
Cytospora celtidicola	CFCC 50497 ^T	MH933623	MH933531	MH933595	MH933499	MH933566	
Cytospora celtidicola	CFCC 50498	MH933624	MH933532	MH933596	MH933500	MH933567	
Cytospora centrivillosa	MFLUCC 16-1206 ^T	MF190122		MF377600			
Cytospora centrivillosa	MFLUCC 17-1660	MF190123		MF377601	1/20100/0		
Cytospora ceratosperma	CFCC 89624	KR045645		KU710976	KP310860	KR045686	
Cytospora ceratosperma	CFCC 89625	KK045646		KU/109//	KP310861	KK045687	
ceratospermonsis	CFCC 89626 ^T	KR045647	KU711011	KU710978	KU710934	KR045688	
Cytospora			KI 1711010	1/11/21/00/20	KI IE1000E	KD045(00	
ceratospermopsis	CFCC 89627	KR045648	KU711012	KU710979	KU710935	KR045689	
Cytospora chrysosperma	CFCC 89629	KF765673		KF765705			
Cytospora chrysosperma	CFCC 89981	MH933625	MH933533	MH933597	MH933501	MH933568	
Cytospora chrysosperma	CFCC 89982	KP281261	KP310835		KP310848	KP310818	
Cytospora cinnamomea	CECC 531/8 ²	MN854450	MIK673024	MNI850751	MN1850758	MN861120	
Cytospora corulina	CFCC 54684 ^T	MW839861	MW815937	MW815951	MW815886	MW883969	
Cutospora corulina	CFCC 54685	MW839862	MW815938	MW815952	MW815887	MW883970	
Cytospora cotini	MFLUCC 14-1050 ^T	KX430142		KX430144			
Cytospora	CF 20197027	MK673072	MK673042	MK673012	MK 672958	MK 672988	
cotoneastricola	CI 2017/02/	1011(07:507.2	1111075042	WIR075012	111(0/2)00	1011(07/2700	
cotoneastricola	CF 20197028	MK673073	MK673043	MK673013	MK672959	MK672989	
Cytospora curvata	MFLUCC 15-0865 ^T	KY417728	KY417694				
Cytospora curvispora	CFCC 54000 ^T	MW839851	MW815931	MW815945	MW815880	MW883963	
Cytospora curvispora	CFCC 54001	MW839853	MW815932	MW815946	MW815881	MW883964	
Cytospora davidiana	CXY 1350 ^T	KM034870					
Cytospora diopuiensis	CFCC 55479	OQ344753	OQ410625	OQ398735	OQ398762	OQ398791	
Cytospora dioputensis	CFCC 55527	OQ344754	OQ410626	OQ398736	OQ398763	OQ398792	
Cytospora discotoma	CFCC 5313/*	NIVI418404	NIVI 422897	MM/422907	MW/422919	MW/422931	
Cytospora donetzica	MFLUCC 15-0864	KY417729	KY417695	KY417797	10100422920	10100 422952	
Cytospora donetzica	MFLUCC 16-0574 ^T	KY417731	KY417697	KY417799			
Cytospora donglingensis	CFCC 53159 ^T	MW418412	MW422903	MW422915	MW422927	MW422939	
Cytospora donglingensis	CFCC 53160	MW418414	MW422905	MW422917	MW422929	MW422941	
Cytospora elaeagni	CFCC 89632	KR045626	KU710995	KU710955	KU710918	KR045667	
Cytospora elaeagni	CFCC 89633	KF765677	KU710996	KU710956	KU710919	KR045668	
Cytospora elaeagnicola	CFCC 52882*	MK732341 MK722342	MK732344 MK722245	MK732347 MK722248			
Cytospora erumnens	CFCC 50022	MH933627	MH933534	WIK7 52546	MH933502	MH933569	
Cutospora erumpens	CFCC 53163	MK673059	MK673029	MK673000	MK672948	MK672975	
Cytospora eucalypti	CBS 144241	MG971907	MG972056		MG971617		
Cytospora euonymicola	CFCC 50499 ^T	MH933628	MH933535	MH933598	MH933503	MH933570	
Cytospora euonymicola	CFCC 50500	MH933629	MH933536	MH933599	MH933504	MH933571	
Cytospora euonymina	CFCC 899931	MH933630	MH933537	MH933600	MH933505	MH933590	
Cytospora euonymina	CFCC 89999	MH933631	MH933538	MH933601	MH933506	MH933591	
Cytospora fraxinigena	MFLU 17-0880*	INK154859 VM024852				VM024801	
Cutospora fugax	CXY 1381	KM034853				KM034890	
Cytospora fusispora	NFCCI 4372	MN227694					
Cytospora galegicola	MFLUCC 18-1199 ^T	MK912128	MN685810	MN685820			
Cytospora gigalocus	CFCC 89620 ^T	KR045628	KU710997	KU710957	KU710920	KR045669	
Cytospora gigalocus	CFCC 89621	KR045629	KU710998	KU710958	KU710921	KR045670	
Cytospora gigaspora	CFCC 50014	KR045630	KU710999	KU710959	KU710922	KR045671	
Cytospora gigaspora	CFCC 89634*	KF/65671 MT177025	KU/11000	KU710960 MT422212	KU710923 MT454017	KK045672	
Cytospora gravati	CBS 144227T	MC971700	MC971040	IVI1432212	MC971514		
Cutospora haidianensis	CFCC 54056	MT360041	MT363978	MT363987	MT363997	MT364007	
Cytospora haidianensis	CFCC 54057 ^T	MT360042	MT363979	MT363988	MT363998	MT364008	
Cytospora hejingensis	CFCC 59571 ^T	PP060455	PP059657	PP059663	PP059667	PP059673	

Table 1. Strains and their GenBank accession numbers used in this study.

Table 1. Cont.

		GenBank Accession Numbers					
Species	Strain -	ITS	act	rpb2	tef1	tub2	
Cutosvora heiingensis	C3479	PP060456	PP059658	PP059664	PP059668	PP059674	
Cytospora hippophaës	CFCC 89639	KR045632	KU711001	KU710961	KU710924	KR045673	
Cytospora hippophaës	CFCC 89640	KF765682	KF765730	KU710962	KP310865	KR045674	
Cytospora japonica	CFCC 89956	KR045624	KU710993	KU710953	KU710916	KR045665	
Cytospora japonica	CFCC 89960	KR045625	KU710994	KU710954	KU710917	KR045666	
Cytospora jilongensis	CFCC 59569 ^T	PP060457	PP059659		PP059669	PP059675	
Cytospora jilongensis	XZ083	PP060458	PP059660		PP059670	PP059676	
Cytospora joaquinensis	CBS 144235	MG971895	MG972044		MG971605		
Cytospora junipericola	MFLU 17-08821	MF190125	1 (10000500	1.41000400	MF377580		
Cytospora juniperina	CFCC 50501*	MH933632	MH933539	MH933602	MH933507	NIL 1022E72	
Cytospora juniperina	CFCC 50502	MH933033	MH955540	NIH933603	NIH933308	MH933372	
Cytospora kanischabelli	CAT 1565	KIVI054007					
kuanchengensis	CFCC 52464 ^T	MK432616	MK442940	MK578076			
kuanchengensis	CFCC 52465	MK432617	MK442941	MK578077			
Cytospora kunsensis	CFCC 59570 ⁴	PP060459	PP059661	PP059665	PP059671	PP059677	
Cytospora kunsensis	C3488	PP060460	PP059662	PP059666	PP059672	PP059678	
Cytospora leucosperma	CFCC 89622	KR045616	KU710988	KU710944 KU710045	KU/10911 KU710012	KR045657	
Cytospora leucosperma	CFCC 89894	KK045617 MC071005	KU710989 MC072054	KU710945	KU/10912 MC071615	KR045658	
Cutospora longistiolata	CDS 144230 ⁻ MELLICC 16 0628	WIG971903 VV417724	WIG972034	INA VV417802	NIG971013	INA NA	
Cytospora lumnitzaricola	MELLICC 17 0500T	N 1417754 MC 075778	NH252457	N1417002 MH252461	INA NA	INA NA	
Cytospora tumnitzericota	CECC 50028	MU022641	MH0225497	MH022606	INA MU022512	INA MH022577	
Cytospora mali	CFCC 50028	MH033647	MH033540	MH033607	MH033517	MH933578	
Cutospora	CICC 30029	10111755042	1011 1755547	10111753007	101117555514	IVII 1755570	
mali-spectabilis	CFCC 53181 ^T	MK673066	MK673036	MK673006	MK672953	MK672982	
Cytospora melnikii	CFCC 89984	MH933644	MH933551	MH933609	MH933515	MH933580	
Cytospora myrtagena	CFCC 52454	MK432614	MK442938	MK578074			
Cytospora myrtagena	CFCC 52455	MK432615	MK442939	MK578075			
Cytospora nivea	MFLUCC 15-0860	KY417737	KY417703	KY417805			
Cytospora nivea	CFCC 89641	KF765683	KU711006	KU710967	KU710929	KR045679	
Cytospora notastroma	NE_TFR5	JX438632			JX438543		
Cytospora notastroma	NE_TFR8	JX438633			JX438542		
Cytospora ochracea	CFCC 53164 ^T	MK673060	MK673030	MK673001	MK672949	MK672976	
Cytospora oleicola	CBS 144248 ^T	MG971944	MG972098		MG971660		
Cytospora olivacea	CFCC 53174	MK673058	MK673028	MK672999		MK672974	
Cytospora olivacea	CFCC 53175	MK673062	MK673032	MK673003		MK672978	
Cytospora palm	CXY 1276	JN402990			KJ781296		
Cytospora palm	CXY 1280 ¹	JN411939			KJ781297		
Cytospora	CFCC 55453 ^T	MZ702594	OK303456	OK303515	OK303576	OK303643	
Cutospora	-						
paracinnamomea	CFCC 55455 ^T	MZ702598	OK303460	OK303519	OK303580	OK303647	
varakantschavelii	MFLUCC 15-0857 ^T	KY417738	KY417704	KY417806			
Cytospora parapistaciae	CBS 144506 ^T	MG971804	MG971954		MG971519		
Cytospora paraplurivora	FDS-439	OL640182	OL631586		OL631589		
Cytospora paraplurivora	FDS-564 ^T	OL640183	OL631587		OL631590		
Cytospora parasitica	CFCC 53173	MK673070	MK673040	MK673010	MK672957	MK672986	
Cytospora	MELUCC 15-0506 ^T	KV417741	KV417707	KV417809			
paratranslucens Cytospora	MITEUCC 15-0500	K1417741	K1417707	K1417009			
paratranslucens	MFLUCC 16-0627	KY417742	KY417708	KY417810			
Cytospora phialidica	MFLUCC 17-2498	MT177932		MT432209	MT454014		
Cytospora piceae	CFCC 52841 ^T	MH820398	MH820406	MH820395	MH820402	MH820387	
Cytospora piceae	CFCC 52842	MH820399	MH820407	MH820396	MH820403	MH820388	
Cytospora pingbianensis	MFLUCC 18-1204 ^T	MK912135	MN685817	MN685826			
Cytospora pistaciae	CBS 144238 ^T	MG971802	MG971952		MG971517		
Cytospora platycladi	CFCC 50504 ^T	MH933645	MH933552	MH933610	MH933516	MH933581	
Cytospora platycladi	CFCC 50505	MH933646	MH933553	MH933611	MH933517	MH933582	
Cytospora platycladicola	CFCC 50038 ^T	KT222840	MH933555	MH933613	MH933519	MH933584	
Cytospora platycladicola	CFCC 50039	KR045642	KU711008	KU710973	KU710931	KR045683	
Cytospora plurivora	CBS 144239 ¹	MG971861	MG972010		MG971572		
Cytospora populi	CFCC 55472 ¹	MZ702609	OK303471	OK303530	OK303591	OK303658	
Cytospora populi	CFCC 55473	MZ702610	OK303472	OK303531	OK303592	OK303659	
Cytospora populicola	СБS 144240	MG9/1891	MG972040	1/1 1/21 00 / 0	MG9/1601	KD045404	
Cytospora populina	CFCC 89644 ¹	KF765686	KU/11007	KU710969	KU/10930	KK045681	
Cytospora populinopsis	CFCC 50032 ¹	MH933648	MH933556	MH933614 MH932615	MH933520	MH933585	
Cytospora populinopsis	CFCC 50033	MH933649	MH933557	MH933615	MH933521	MH933586	
predappioensis	MFLUCC 17-2458 ^T	MG873484					
Cytospora	MFLU 17-0327	MH253451	MH253449	MH253450			
Cutospora prunicola	MELT 17-0005T	MC742350	MC742353	MC742352			
Cutospora pruni-mumo	CECC 53170	MK673057	MK673077	11107 12002	MK672947	MK672973	
Cutospora pruni-mume	CFCC 53180 ^T	MK673067	MK673037	MK673007	MK672954	MK672983	
Cutospora nruinonsis	CFCC 50034 ^T	KP281259	KP310836	KU710970	KP310849	KP310819	
Cytospora pruinopsis	CFCC 53153	MN854451	MN850763	MN850752	MN850759	MN861121	
Syreepera pranopono	0.00000			111 (000702			

Species	Strain -	GenBank Accession Numbers					
		ITS	act	rpb2	tef1	tub2	
Cytospora pruinosa	CFCC 50036	KP310800	KP310832		KP310845	KP310815	
Cytospora pruinosa	CFCC 50037	MH933650	MH933558		MH933522	MH933589	
Cytospora pubescentis	MFLUCC 18-12011	MK912130	MN685812	MN685821			
Cytospora punicae	CBS 144244	MG971943	MG972091		MG9/1654		
Cytospora quercicola	MFLU 17-0881	MF190128	VD210042	VI 1710072	VD2109E4	VD210926	
Cytospora ribis	CFCC 50026	KF201207 KP281268	KP310844	KU/109/2	KP310857	KP310827	
Cutospora rosae	MFLU 17-0885	MF190131	KI 510044		KI 510057	KI 510027	
Cutospora rosicola	CF 20197024 ^T	MK673079	MK673049	MK673019	MK672965	MK672995	
Cytospora rosigena	MFLUCC 18-0921 ^T	MN879872					
Cytospora rostrata	CFCC 89909	KR045643	KU711009	KU710974	KU710932	KR045684	
Cytospora rostrata	CFCC 89910	KR045644	KU711010	KU710975	KU710933		
Cytospora rusanovii	MFLUCC 15-0853	KY417743	KY417709	KY417811			
Cytospora rusanovii	MFLUCC 15-0854 ^T	KY417744	KY417710	KY417812			
Cytospora salicacearum	MFLUCC 15-0509	KY417746	KY417712	KY417814			
Cytospora salicacearum	MFLUCC 15-0861	KY417745	KY417711	KY417813			
Cytospora salicicola	MFLUCC 14-10521	KU982636	KU982637	10/115015			
Cytospora salicicola	MFLUCC 15-0866	KY417749	KY417715	KY417817			
Cytospora salicina	MFLUCC 15-0862 MFLUCC 16-0637	K 1417750 KV/17751	K1417716 KV/17717	K 141/818 KV/17819			
Cytospora schulzari	CECC 50042	KR045650	KU711014	K1417019 K11710081	K11710037	KR045601	
Cutospora sibiraeae	CECC 50045 ^T	KR045651	KU711014	KU710982	KU710938	KR045692	
Cutospora sibiraeae	CFCC 50046	KR045652	KU711016	KU710983	KU710939	KR045693	
Cytospora sophorae	CFCC 50047	KR045653	KU711017	KU710984	KU710940	KR045694	
Cytospora sophorae	CFCC 89598	KR045654	KU711018	KU710985	KU710941	KR045695	
Cytospora sophoricola	CFCC 89596	KR045656	KU711020	KU710987	KU710943	KR045697	
Cytospora sophoricola	CFCC 89595 ^T	KR045655	KU711019	KU710986	KU710942	KR045696	
Cytospora sophoriopsis	CFCC 55469	MZ702583	OK303445	OK303504	OK303565	OK303632	
Cytospora sophoriopsis	CFCC 89600	KR045623	KU710992	KU710951	KU710915	KP310817	
Cytospora sorbi	MFLUCC 16-0631 ¹	KY417752	KY417718	KY417820			
Cytospora sorbicola	MFLUCC 16-0584 ¹	KY417755	KY417721	KY417823			
Cytospora sorbicola	MFLUCC 16-0633	KY417758 MV (72052	KY417724 MV (72022	KY417826	MIZ (72042	MIZ (720/9	
Cytospora spiragag	CF 20197660 CFCC 50049 ^T	MC707859	MC708196	MC708100	WIK072945	MIK072900	
Cutospora spiraeae	CFCC 50050	MG707860	MG708197	MG708200			
Cytospora spiraeicola	CFCC 53138 ^T	MN854448	110/00177	MN850749	MN850756	MN861118	
Cytospora spiraeicola	CFCC 53139	MN854449		MN850750	MN850757	MN861119	
Cytospora tamaricicola	CFCC 50507	MH933651	MH933559	MH933616	MH933525	MH933587	
Cytospora tamaricicola	CFCC 50508 ^T	MH933652	MH933560	MH933617	MH933523	MH933588	
Cytospora tanaitica	MFLUCC 14-1057 ^T	KT459411	KT459413				
Cytospora thailandica	MFLUCC 17-0262 ^T	MG975776	MH253459	MH253463			
Cytospora thailandica	MFLUCC 17-0263 ^T	MG975777	MH253460	MH253464			
Cytospora tibetensis	CF 20197026	MK673076	MK673046	MK673016	MK672962	MK672992	
Cytospora tibetensis	CF 2019/029	MK6/30/7	MK6/304/	MK673017	MK6/2963	MK672993	
Cytospora translucano	CYV 1251	KA220204 KM024874				VM024805	
Cutospora translucens	CXY 1359	KM034871				KM034894	
Cutospora ulmi	MFLUCC 15-0863 ^T	KY417759				10001071	
Cutospora verrucosa	CFCC 53157 ^T	MW418408		MW422911	MW422923	MW422935	
Cytospora verrucosa	CFCC 53158	MW418410	MW422901	MW422913	MW422925	MW422937	
Čytospora vinacea	CBS 141585 ^T	KX256256			KX256277	KX256235	
Cytospora viridistroma	CBS 202.36 ^T	MN172408			MN271853		
Cytospora viticola	Cyt2	KX256238			KX256259	KX256217	
Cytospora viticola	CBS 141586 ^T	KX256239			KX256260	KX256218	
Cytospora xinjiangensis	CFCC 53182	MK673064	MK673034	MK673004	MK672951	MK672980	
Cytospora xinjiangensis	CFCC 531831	MK673065	MK673035	MK673005	MK672952	MK672981	
Cytospora xinglongensis	CFCC 52458	MK432622	MK442946	MK5/8082			
Cytospora xingiongensis	CFCC 52459 MELLICC 17 0251 ^T	MC975775	MH252459	IVINO/8083 MH252442			
Cutospora zhaitangancie	CECC 56227T	00344750	00410623	00308733	00308760	00308780	
Cutospora zhaitanoensis	CFCC 57537	00344751	00410624	00398734	00398761	00398790	
Diaporthe vaccinii	CBS 160.32	KC343228	JQ807297	0,2070101	KC343954	KC344196	
r			,~				

Table 1. Cont.

Note. Ex-type strains are marked with T and isolates from the present study are in bold.

3. Results

3.1. Phylogeny

In the phylogenetic analysis, the combined dataset of ITS, *act*, *rpb2*, *tef1* and *tub2* consisted of 202 strains. The final alignment comprised 2561 characters including 588 characters in ITS, 211 characters in *act*, 617 characters in *rpb2*, 536 characters in *tef1* and 609 characters *tub2*. The final ML optimization likelihood value of the best RAxML tree was -48,006.19, and the matrix had 1534 distinct alignment patterns, with 29.35% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.242905, C = 0.286434,

G = 0.242250 and T = 0.228411; substitution rates AC = 1.374316, AG = 3.693698, AT = 1.471034, CG = 0.981185, CT = 6.248472 and GT = 1.0; and gamma distribution shape parameter α = 0.321644. The topology of our phylogenetic tree is nearly identical to previous publications. The topology of isolates from the present study in the RAxML and Bayesian analyses were congruent. Isolates CFCC 59571 and C3479 formed a distinct clade to CFCC 89984 (*C. melnikii*), MFLUCC 15-0509 and MFLUCC 15-0861 (*C. salicacearum*) with high support values (BS = 100, BPP = 1). Isolates CFCC 59570 and C3488 formed a clade close to CFCC 50014 and CFCC 89634 (*C. gigaspora*) with full support values (BS = 100, BPP = 1). Isolates CFCC 53160 (*C. sorbina*), CF 20197026 and CFCC 89960 (*C. japonica*), CFCC 53164 (*C. ochracea*), CF 20197660 (*C. sorbina*), CF 20197026 and CFC 20197029 (*C. tibetensis*), and CFCC 53179 and CFCC 53180 (*C. pruni-mume*) supported by high values (BS = 100, BPP = 1). Hence, six isolates from the present study formed three new clades distinct from previously known species named *Cytospora hejingensi* sp. nov., *C. jilongensis* sp. nov. and *C. kunsensis* sp. nov. (Figure 1).

Figure 1. Cont.

Figure 1. Phylogram of *Cytospora* resulting from a maximum likelihood analysis, based on a combined matrix of ITS, *act*, *rpb2*, *tef1* and *tub2*. Numbers above the branches indicate ML bootstraps (**left**, ML BS \geq 50%) and Bayesian posterior probabilities (**right**, BPP \geq 0.90). The tree is rooted with *Diaporthe vaccinii* (CBS 160.32). Isolates obtained from the present study are marked in blue.

3.2. Description of Cytospora hejingensis sp. nov. from Salix sp.

Cytospora hejingensis R. Ma & Ning Jiang, sp. nov.

Figure 2.

MycoBank: MB851771

Etymology: named after the collection site of the holotype, Hejing County.

Description: Associated with branch and twig canker disease of *Salix* sp. Sexual morph: Assostromata immersed in the bark, erumpent through the bark surface, scattered, (400–)650–900(–1250) µm diam., with 4–9 perithecia arranged irregularly. Conceptacle absent. Ectostromatic disc inconspicuous, usually surrounded by tightly aggregated ostiolar necks, (100–)150–250(–350) µm diam. Ostioles numerous, black, concentrated, arranged irregularly in a disc, (35–)50–65(–90) µm diam. Perithecia black, spherical, arranged circularly or irregularly, (120–)150–250(–300) µm diam. Asci free, clavate, (38–)45–70(–77) × (7–)8.5–10.5(–12.5) µm, 8-spored. Ascospores biseriate, allantoid, thin-walled, hyaline, aseptate, (6.5–)7–8(–9) × 2–2.5 µm. Asexual morph: undetermined.

Culture characteristics: colonies on PDA flat, spreading, with flocculent mycelium, initially white to grey, secreting a dark green to black pigment in culture medium after 10 days, reaching a 90 mm diameter after 15 days at 25 °C in the dark.

Materials examined: China, Xinjiang Uygur Autonomous Region, Bayingolin Mongol Autonomous Prefecture, Hejing County, Kunse Forest Park, on cankered twigs and branches of *Salix* sp., 24 July 2021, Rong Ma (XJAU 3488, holotype); ex-type culture CFCC 59571; *ibid*. (culture C3488).

Notes: *Cytospora hejingensis* from *Salix* sp. in China is phylogenetically close to *C. melnikii* from *Malus domestica* in Russia and *C. salicacearum* from *Salix alba* in Russia (Figure 1). *C. hejingensis* is only known in sexual morph, and the other two species in asexual morph. Hence, it is impossible to compare them in morphology. However, *C. hejingensis* differs from *C. melnikii* and *C. salicacearum* by sequence data (22/560 in ITS, 35/211 in *act*, 36/617 in *rpb2* and 27/306 in *tef1* from *C. melnikii*; 25/560 in ITS, 37/211 in *act* and 26/617 in *rpb2* from *C. salicacearum*) [34].

Figure 2. Morphology of *Cytospora hejingensis* from *Salix* sp. (**A**,**B**) Ascomata formed on branches. (**C**) Longitudinal section through the ascomata. (**D**) Transverse section of ascomata. (**E**) Asci. (**F**) Ascospores. Scale bars: (**B**) = 500 μ m; (**C**) = 200 μ m; (**D**) = 300 μ m; (**E**,**F**) = 10 μ m.

3.3. Description of Cytospora jilongensis sp. nov. from Prunus davidiana

Cytospora jilongensis R. Ma & Ning Jiang, sp. nov.

Figure 3.

MycoBank: MB851772

Etymology: named after the collection site of the holotype, Jilong County.

Description: Associated with branch canker disease of *Prunus davidiana*. Sexual morph: undetermined. Asexual morph: Pycnidial stromata ostiolated, semi-immersed in the host bark, scattered, pulvinate, with multiple locules. Conceptacle dark brown, circular surrounded stromata. Ectostromatic grey, circular to ovoid, $(100-)180-240(-370) \mu m$ diam., with one ostiole per disc. Ostioles dark, at the same level as the disc, $(30-)50-75(-95) \mu m$ diam. Locule numerous, arranged circularly or elliptically with independent walls, $(250-)400-500(-750) \mu m$ diam. Peridium comprising few layers of cells of textura angularis, brown to dark brown. Conidiophores hyaline, branched, thin-walled, filamentous. Conidiogenous cells enteroblastic polyphialidic, 7.5–18.5 × 1.5–2.5 μm . Conidia hyaline, allantoid, smooth, aseptate, thin-walled, (9.3–)10.2–11.6(-12.5) × 2.6–3.2 μm .

Culture characteristics: colonies on PDA flat, spreading, with moderate flocculent mycelium, initially white, becoming orange after 10 days, reaching a 90 mm diameter after 25 days at 25 $^{\circ}$ C in the dark.

Materials examined: China, Tibet Tibetan Autonomous Region, Shigatse City, Jilong County, Jilong Town, on cankered branches of *Prunus davidiana*, 12 August 2022, Jin Peng, Jiang Ning and Liu Min (CAF800087, holotype); ex-type culture CFCC 59569; *ibid*. (culture XZ083).

Notes: *Cytospora jilongensis* from *Prunus davidiana* is phylogenetically close to *C. japonica* from *P. cerasifera* and *P. persica*, *C. ochracea* from *Cotoneaster* sp., *C. sorbina* from *Sorbus tianschanica*, *C. tibetensis* from *Cotoneaster* sp. and *C. pruni-mume* from *Prunus mume* (Figure 1). However, *C. jilongensis* (10.2–11.6 × 2.6–3.2 µm) differs from *C. japonica* (6.5–8.5 × 1.5–2 µm), *C. ochracea* (8.5–9.0 × 1.5–2.5 µm), *C. sorbina* (4.5–5.5 × 1–1.5 µm), *C. tibetensis* (5.0–5.5 × 1.5–2 µm) and *C. pruni-mume* (5.5–6.5 × 1.5–2 µm) in conidial size and hosts [1,14].

Figure 3. Morphology of *Cytospora jilongensis* from *Prunus davidiana*. (A) Symptoms of canker disease on the host. (B,C) Conidiomata formed on branches. (D) Transverse section through the conidioma. (E) Longitudinal section through the conidioma. (F–H) Conidiophores and conidiogenous cells. (I,J) Conidia. Scale bars: (B) = 2 mm; (C,D) = 1 mm; (E) = 800 μ m; (F–J) = 10 μ m.

Cytospora kunsensis R. Ma & Ning Jiang, sp. nov.

Figure 4.

MycoBank: MB851773

Etymology: named after the collection site of the holotype, Kunse Forest Park.

Description: Associated with branch and twig canker disease of *Prunus padus*. Sexual morph: Ascostromata immersed in the bark, erumpent through the bark surface, scattered, (750–)950–1100(–1350) μ m diam., with 5–11 perithecia arranged circularly. Conceptacle absent. Ectostromatic disc white, surrounded by tightly aggregated ostiolar necks, (100–)150–300(–350) μ m diam. Ostioles numerous, black, concentrated, arranged circularly in a disc, (40–)50–75(–90) μ m diam. Perithecia black, spherical, arranged circularly or irregularly, (180–)250–350(–420) μ m diam. Asci free, clavate, (38–)48–80(–86) × (7.5–)9–12(–13.5) μ m, eightspored. Ascospores biseriate, allantoid, thin-walled, hyaline, aseptate, (10–)12.5–17(–19.5) × 2–2.5 μ m. Asexual morph: undetermined.

Culture characteristics: colonies on PDA flat, spreading, with flocculent mycelium, white, with a dark grey color in the center, fast growing, reaching a 90 mm diameter after 7 days and forming abundant black ascomata after 25 days at 25 °C.

Materials examined: China, Xinjiang Uygur Autonomous Region, Bayingolin Mongol Autonomous Prefecture, Hejing County, Kunse Forest Park, on cankered twigs and branches of *Prunus padus*, 24 July 2021, Rong Ma (XJAU 3479, holotype); ex-type culture CFCC 59570; *ibid*. (culture C3479).

Notes: *Cytospora kunsensis* from *Prunus padus* is phylogenetically close to *C. gigaspora* from *Salix psammophila* (Figure 1). However, *C. kunsensis* can be distinguished from *C. gigaspora* by sequence data (19/548 in ITS, 32/211 in *act*, 56/617 in *rpb2*, 36/303 in *tef1* and 42/421 in *tub2*) [11].

Figure 4. Morphology of *Cytospora kunsensis* from *Prunus padus*. (**A**,**B**) Ascomata formed on branches. (**C**) Longitudinal section through the ascomata. (**D**) Transverse section of ascomata. (**E**) Asci. (**F**) Ascospores. Scale bars: (**B**) = 500 μ m; (**C**,**D**) = 300 μ m; (**E**,**F**) = 10 μ m.

^{3.4.} Description of Cytospora kunsensis sp. nov. from Prunus padus

4. Discussion

In the present study, samples of *Cytospora* with fruiting bodies were collected from Xinjiang and Tibet, and identified based on both morphological and phylogenetical approaches of combined ITS, *act*, *rpb2*, *tef1* and *tub2* loci. We proposed three new species, i.e., *Cytospora hejingensis* sp. nov. from *Salix* sp., *C. jilongensis* sp. nov. from *P. davidiana* and *C. kunsensis* from *P. padus*.

Of the new species introduced in the current study, two taxa (*C. jilongensis* and *C. kunsensis*) were isolated from the plant genus *Prunus*. Hence, a total of nine species of *Cytospora* were found in host genus *Prunus*, where the previous seven species are *C. cinnamomea*, *C. erumpens*, *C. japonica*, *C. leucostoma*, *C. olivacea*, *C. populinopsis* and *C. pruni-mume* [14]. *C. kunsensis* is distinguished from *C. populinopsis* in eight-spored asci, and these two species are only known in sexual morph [1]. The other seven species are known in asexual species with similar conidial morphology but different sequence data of ITS, *act*, *rpb2*, *tef1* and *tub2* loci. The example of *Cytospora* species from *Prunus* implies that DNA sequence data are necessary to separate species during pathogen identifications.

Another example is the *Cytospora* species from the host genus *Salix*. Until now, over 10 species of *Cytospora* were discovered from the host genus *Salix*, including one species *Cytospora hejingensis* introduced in the current study [35]. Most of them are confirmed to be pathogens associated with canker diseases [35]. The new species from the present study needs a pathogenicity test to evaluate its virulence to willow trees in the future.

In the traditional classification and identification of species in *Cytospora*, spore morphology and host information are the most important evidence to identify *Cytospora* species [5–7]. However, by using the molecular data, many cryptic species with the same hosts and similar spore morphology were recently revealed [1,14,15,35]. The molecular classification system for *Cytospora* based on morphology, phylogeny and host information is more scientific than that mainly based on morphology before.

Author Contributions: Conceptualization, S.W. and R.M.; methodology, N.J.; software, S.W.; validation, S.W., N.J. and R.M.; formal analysis, S.W., N.J. and R.M.; investigation, S.W., N.J. and R.M.; resources, S.W., N.J. and R.M.; data curation, S.W., N.J. and R.M.; writing—original draft preparation, S.W., N.J. and R.M.; writing—review and editing, S.W., N.J. and R.M.; visualization, S.W., N.J. and R.M.; supervision, S.W., N.J. and R.M.; project administration, R.M.; funding acquisition, R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China, grant number 31960316.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All sequence data are available in NCBI GenBank (Table 1).

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Fan, X.L.; Bezerra, J.D.P.; Tian, C.M.; Crous, P.W. Cytospora (Diaporthales) in China. Persoonia 2020, 45, 1–45. [CrossRef]
- Adams, G.C.; Wingfield, M.J.; Common, R.; Roux, J. Phylogenetic relationships and morphology of *Cytospora* species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from *Eucalyptus*. *Stud. Mycol.* 2005, 52, 1–144.
- Norphanphoun, C.; Raspé, O.; Jeewon, R.; Wen, T.C.; Hyde, K.D. Morphological and phylogenetic characterisation of novel Cytospora species associated with mangroves. *MycoKeys* 2018, *38*, 93–120. [CrossRef] [PubMed]
- Senanayake, I.C.; Crous, P.W.; Groenewald, J.Z.; Maharachchikumbura, S.S.; Jeewon, R.; Phillips, A.J.; Bhat, J.D.; Perera, R.H.; Li, Q.R.; Li, W.J.; et al. Families of Diaporthales based on morphological and phylogenetic evidence. *Stud. Mycol.* 2017, *86*, 217–296. [CrossRef] [PubMed]
- 5. Ehrenberg, C.G. Sylvae Mycologicae Berolinenses; Formis Theophili Bruschcke: Berlin, Germany, 1818.
- 6. Fries, E.M. Systema Mycologicum; Ex Officina Berlingiana: Lund, Sweden, 1823; Volume 2, pp. 275–620.
- 7. Donk, M.A. Nomina conservanda proposita 1. Proposals Fungi Deuteromycetes Regnum Veg. 1964, 34, 7–15.
- 8. Jiang, N.; Fan, X.L.; Crous, P.W.; Tian, C.M. Species of *Dendrostoma* (Erythrogloeaceae, Diaporthales) associated with chestnut and oak canker diseases in China. *MycoKeys* **2019**, *48*, 67–96. [CrossRef] [PubMed]

- 9. Fan, X.; Du, Z.; Bezerra, J.D.; Tian, C. Taxonomic circumscription of melanconis-like fungi causing canker disease in China. *MycoKeys* **2018**, *42*, 89–124. [CrossRef]
- Jiang, N.; Fan, X.L.; Tian, C.M. Identification and pathogenicity of Cryphonectriaceae species associated with chestnut canker in China. *Plant Pathol.* 2019, 68, 1132–1145. [CrossRef]
- 11. Fan, X.L.; Hyde, K.D.; Yang, Q.; Liang, Y.M.; Ma, R.; Tian, C.M. *Cytospora* species associated with canker disease of three anti-desertification plants in northwestern China. *Phytotaxa* **2015**, 1974, 227–244. [CrossRef]
- 12. Yang, Q.; Fan, X.L.; Crous, P.W.; Liang, Y.M.; Tian, C.M. *Cytospora* from *Ulmus pumila* in Northern China. *Mycol. Prog.* 2015, 14, 74. [CrossRef]
- 13. Zhu, H.Y.; Pan, M.; Bonthond, G.; Tian, C.M.; Fan, X.L. Diaporthalean fungi associated with canker and dieback of trees from Mount Dongling in Beijing, China. *MycoKeys* **2019**, *59*, 67–94. [CrossRef] [PubMed]
- 14. Pan, M.; Zhu, H.; Bonthond, G.; Tian, C.M.; Fan, X.L. High diversity of *Cytospora* associated with canker and dieback of Rosaceae in China, with 10 new species described. *Front. Plant Sci.* **2020**, *11*, 690. [CrossRef]
- 15. Pan, M.; Zhu, H.; Tian, C.M.; Huang, M.; Fan, X.L. Assessment of *Cytospora* isolates from conifer cankers in China, with the descriptions of four new *Cytospora* species. *Front. Plant Sci.* **2021**, *12*, 636460. [CrossRef] [PubMed]
- Lin, L.; Pan, M.; Gao, H.; Tian, C.; Fan, X. The potential fungal pathogens of *Euonymus japonicus* in Beijing, China. J. Fungi 2023, 9, 271. [CrossRef] [PubMed]
- Jiang, N.; Yang, Q.; Fan, X.L.; Tian, C.M. Identification of six *Cytospora* species on Chinese chestnut in China. *MycoKeys* 2020, 62, 1–25. [CrossRef]
- 18. Lin, L.; Pan, M.; Bezerra, J.D.; Tian, C.; Fan, X. Re-evaluation of the fungal diversity and pathogenicity of *Cytospora* species from *Populus* in China. *Plant Dis.* **2023**, *107*, 83–96. [CrossRef] [PubMed]
- 19. Mehrabi, M.E.; Mohammadi, G.E.; Fotouhifar, K.B. Studies on *Cytospora* canker disease of apple trees in Semirom region of Iran. *J. Agric. Technol.* **2011**, *7*, 967–982.
- 20. Shang, Q.J.; Hyde, K.D.; Camporesi, E.; Maharachchikumbura, S.S.N.; Norphanphoun, C.; Brooks, S.; Liu, J.K. Additions to the genus *Cytospora* with sexual morph in Cytosporaceae. *Mycosphere* **2020**, *11*, 189–224. [CrossRef]
- Jami, F.; Marincowitz, S.; Crous, P.W.; Jacobsohn, A.; Wingfield, M.J. A new Cytospora species pathogenic on Carpobrotus edulis in its native habitat. Fungal Syst. Evol. 2018, 2, 37–43. [CrossRef]
- 22. Úrbez-Torres, J.R.; Lawrence, D.P.; Hand, F.P.; Trouillas, F.P. Olive twig and branch dieback in California caused by *Cytospora* oleicola and the newly described species *Cytospora* olivarum sp. nov. Plant Dis. **2020**, 104, 1908–1917. [CrossRef]
- Ma, R.; Liu, Y.M.; Yin, Y.X.; Tian, C.M. A canker disease of apple caused by *Cytospora parasitica* recorded in China. *For. Pathol.* 2018, 48, e12416. [CrossRef]
- Aiello, D.; Polizzi, G.; Gusella, G.; Fiorenza, A.; Guarnaccia, V. Characterization of *Eutypa lata* and *Cytospora pistaciae* causing die-back and canker of pistachio in Italy. *Phytopathol. Mediterr.* 2019, 58, 699–706.
- 25. Doyle, J.J. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15.
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322.
- 27. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* **1999**, *3*, 553–556. [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among Ascomycetes: Evidence from an RNA polymerse II subunit. *Mol. Biol. Evol.* 1999, 16, 1799–1808. [CrossRef] [PubMed]
- 29. Rehner, S.A. Primers for Elongation Factor 1-Alpha (EF1-Alpha). 2001. Available online: http://ocid.nacse.org/research/ deephyphae/EF1primer.pdf (accessed on 13 May 2023).
- 30. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microb.* **1995**, *61*, 1323–1330. [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 2013, 304, 772–780.
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 2013, 30, 2725–2729. [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop, GCE 2010, New Orleans, LA, USA, 14 November 2010; pp. 1–8.
- Norphanphoun, C.; Wen, T.C.; Hyde, K.D.; Doilom, M.; Daranagama, D.A.; Phookamsak, R.; Bulgakov, T.S. Revisiting the genus Cytospora and allied species. Mycosphere 2017, 8, 51–97. [CrossRef]
- Lin, L.; Pan, M.; Tian, C.; Fan, X. Fungal richness of *Cytospora* species associated with willow canker disease in China. *J. Fungi* 2022, *8*, 377. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.