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Abstract: Suillus bovinus is a wild edible ectomycorrhizal fungus with important economic and
ecological value, which often forms an ectomycorrhiza with pine trees. We know little about the
mechanisms associated with the metabolism and symbiosis of S. bovinus and its effects on the
nutritional value. In this study, the whole-genome sequencing of S. bovinus was performed using
Illumina, HiFi, and Hi-C technologies, and the sequencing data were subjected to genome assembly,
gene prediction, and functional annotation to obtain a high-quality chromosome-level genome of S.
bovinus. The final assembly of the S. bovinus genome includes 12 chromosomes, with a total length of
43.03 Mb, a GC content of 46.58%, and a contig N50 size of 3.78 Mb. A total of 11,199 coding protein
sequences were predicted from genome annotation. The S. bovinus genome contains a large number
of small secreted proteins (SSPs) and genes that encode enzymes related to carbohydrates, as well
as genes related to terpenoids, auxin, and lipochitooligosaccharides. These genes may contribute to
symbiotic processes. The whole-genome sequencing and genetic information provide a theoretical
basis for a deeper understanding of the mechanism of the mycorrhizal symbiosis of S. bovinus and
can serve as a reference for comparative genomics of ectomycorrhizal fungi.

Keywords: Suillus bovinus; ectomycorrhizal fungi; carbohydrate-active enzymes; secondary metabolism;
small secreted proteins

1. Introduction

Suillus bovinus is a delicious edible ectomycorrhizal (ECM) fungus that belongs to Bo-
letales, Suillaceae, Suillus [1]. This fungus often forms mycorrhiza with pinaceae plants and
affects the colonization of these plants [2,3]. S. bovinus has a small-to-medium basidiomata,
an orange-brown pileus, a light yellow context that does not change when wounded, and
a light yellow subcylindrical stipe (Figure 1). The fruiting body of S. bovinus is valued as
a tasty food and contains rich protein, vitamins, and a variety of essential amino acids
and other nutrients. It also contains anticancer substances, with antitumor, antioxidant,
and anti-inflammatory effects, thus providing both medicinal and edible benefits [4,5].
However, with unique growth and development characteristics, the domestication and
artificial cultivation of this fungus remain challenging [6,7]. Thus, there is growing in-
terest in understanding the mycorrhizal formation process of S. bovinus, as well as the
underlying molecular mechanisms to facilitate strategies for the effective cultivation of this
ECM fungus.

High-quality reference genomes can serve as crucial resources for mushroom breeding,
population genetics, and comparative genomic studies [8]. The analysis of genomic data
can provide insight into the genetic characteristics of S. bovinus and the genetic mechanisms
of the symbiosis with the host, enabling researchers to develop improved strategies for
the conservation, reproduction, and sustainable utilization of the fungus. Lofgren et al. [9]
identified dynamic genome evolution in host specialist ectomycorrhizal fungi by comparing
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genomes of Suillus species, including S. bovinus, but the details of its genome were not
determined, and annotation analysis was not performed. Thus, to further study the
genome of S. bovinus, we conducted whole-genome sequencing and assembled it to the
chromosome level.
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Figure 1. Fruiting bodies of Suillus bovinus.

The main objectives of this study were as follows: (1) to construct a high-quality
reference genome of S. bovinus and describe its basic characteristics in detail, which lays a
foundation for the subsequent functional genome research; (2) to understand the genetic
composition and potential functions of genes of S. bovinus through annotation analysis
using different functional databases (KOG, GO, and KEGG); (3) to clarify the evolutionary
relationships of S. bovinus and its genetic basis using the phylogenetic analysis of S. bovinus
and 14 other fungal species and the comparative genomic analysis of important functional
genes; (4) to explore the functional genes in the S. bovinus genome involved in symbiosis
and obtain insight into the mechanism of ECM mycorrhiza formation.

Here, we report a high-quality genome of S. bovinus at the chromosome level by
combining PacBio HiFi sequencing and Illumina sequencing with Hi-C assisted assembly.
This assembly provides important theoretical information for the biological study of edible
mushrooms and also provides guidance to explore the mechanism of the symbiosis of ECM
fungi. The results of this work should help to further develop the economic and ecological
values of S. bovinus.

2. Materials and Methods
2.1. S. bovinus Strains and DNA Preparation

S. bovinus SB11 was isolated from a fresh fruiting body collected in Yunnan province,
China, and maintained at the Research Institute of Tropical Forestry, Chinese Academy of
Forestry. Pure cultures of the strains were grown on a modified Melin–Norkrans (MMN)
agar medium (glucose, 10 g; malt extract, 5.0 g; vitamin B1, 0.1 mg; CaCl•2H2O, 0.05 g;
NaCl, 0.025 g; (NH4)2HPO4, 0.25 g; MgSO4•7H2O, 0.15 g; KH2PO4, 0.5 g; FeCl3 (1.0%
solution), 1.2 mL; agar, 15 g; distilled water to 1000 mL; pH 6.0) at 24 ◦C in darkness.

For high-quality genomic DNA extraction from strain SB11, vegetative mycelia of
S. bovinus were cultured in a liquid MMN medium for 14 days at 24 ◦C, with stirring at
150 rpm in darkness. The mycelia were collected through centrifugation, washed with 0.1 M
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PBS, and frozen in liquid nitrogen before DNA isolation and sequencing. The genomic
DNA of S. bovinus was extracted using the cetyltrimethylammonium bromide (CTAB)
method [10] and quantified with a Qubit® 2.0 Fluorometer (Thermo Scientific, Carlsbad,
CA, USA), and DNA quality was assessed by agarose gel electrophoresis.

2.2. Library Construction, Sequencing, and Assembly

After confirmation by electrophoresis, DNA samples were fragmented to the required
size using Covaris g-TUBE (Covaris, Inc., Woburn, MA, USA) to construct PacBio-SMRT-
Bell, Illumina short reads, and Hi-C libraries. The short reads from the Illumina and Hi-C
libraries were controlled for quality [11] and then sequenced on the Illumina NovaSeq-6000
platform (Illumina Inc., San Diego, CA, USA). The SMRT-Bell library was constructed for
long-read sequencing, and sequencing was performed on the PacBio Sequel II platform
(Pacific Biosciences of California, Menlo Park, CA, USA) using the circular consensus
sequencing (CCS) model with the parameter “min-passes = 3, min-rq = 0.99”. The output
bam file was converted to fastq format, generating 8.16 Gb PacBio HiFi reads. Using the
effective HiFi reads of SB11 after quality control, Hifiasm software (https://github.com/
chhylp123/hifiasm, accessed on 6 January 2024) was used to carry out genome assembly.

Approximately 5088 Mb of Hi-C clean reads were generated from the Hi-C library
and mapped to the SB11 preliminary assembly using Juicer v1.6.2 with default param-
eters [12]. The data were filtered using a Perl script from LACHESIS (https://github.
com/shendurelab/LACHESIS/, accessed on 6 January 2024) [13]. The uniquely mapped
data were retained and then linked into pseudochromosomes using ALLHiC software
(https://github.com/tangerzhang/ALLHiC, accessed on 6 January 2024) to achieve the
chromosome-level assembly of S. bovinus [14]. We applied 3D-DNA v180922 to order and
orient the clustered contigs [15]. Then, Juicer was used to filter and cluster the sequences,
and Juicebox v1.11.08 [12] was applied to manually adjust chromosome construction
(Figure S1). Finally, we assessed genome completeness using BUSCO v4.1.2 [16].

2.3. Genome Component Prediction

Genome component prediction was performed to predict coding genes, repetitive
sequences, and noncoding RNA.

We used the GeneMarkS (http://topaz.gatech.edu/, accessed on 6 January 2024) [17]
program to retrieve the related coding genes. Protein-coding sequence prediction was per-
formed using a combination of de novo prediction and similarity to homologous proteins
in other S. bovinus genomes. Augustus v3.3.3 [18] was used for the de novo prediction
of protein-coding genes, and S. bovinus genomic information was used for the homology
prediction of protein-coding genes. We used RepeatMask software v4.1.0 [19] to predict
interspersed repeat (IR) sequences and TRF (Tandem Repeats Finder, v4.07b) [20] to identify
tandem repeat (TR) sequences in DNA sequences. Based on the characteristics of non-
coding RNA, tRNA was predicted by tRNAscan-SE v2.0.7 [21], and rRNA was predicted
by rRNAmmer v 1.2 [22]. Similar prediction principles were used for sRNA, snRNA,
and miRNA. The sequences of ribosomal RNAs and other ncRNA were identified with
Rfam v9.1 software based on the Rfam database, and then its cmsearch program (default
parameters) was used to determine the final sRNA, snRNA, and miRNA [23,24].

2.4. Genome Annotation

We used several databases to predict gene functions: Non-Redundant Protein Database
(NR) [25], Kyoto Encyclopedia of Genes and Genomes (KEGG) [26], Gene Ontology
(GO) [27], Clusters of Orthologous Groups (COG) [28,29], and Swiss-Prot (http://www.
ebi.ac.uk/uniprot/, accessed on 6 January 2024) [30]. A whole-genome BLAST search
(E-value ≤ 1 × 10−5) was performed against the above databases. For the comparison
results of each sequence, the comparison result with the highest score was selected (default
identity ≥ 40%, coverage ≥ 40%), and that result was annotated to obtain the relevant
biological function annotation information.

https://github.com/chhylp123/hifiasm
https://github.com/chhylp123/hifiasm
https://github.com/shendurelab/LACHESIS/
https://github.com/shendurelab/LACHESIS/
https://github.com/tangerzhang/ALLHiC
http://topaz.gatech.edu/
http://www.ebi.ac.uk/uniprot/
http://www.ebi.ac.uk/uniprot/


J. Fungi 2024, 10, 211 4 of 22

2.5. Gene Family and Phylogenetic Analyses

Gene families of 14 other fungi and S. bovinus were constructed using several software
programs. All genes were first aligned pairwise with BLAST v2.2.26, and then redundancy
was removed with Solar v0.9.6. Then, based on the alignment results, Hcluster sg v0.5.0 [31]
was used to cluster gene families. Core and specific genes were analyzed using Cluster
Database at High Identity with Tolerance (CD-HIT) v4.8.1 software for the rapid clustering
of similar proteins, with a threshold of 50% pairwise identity and 0.7 length difference
cutoff in amino acid [32].

A total of eight ectomycorrhizal mushrooms and six saprophytic mushrooms were
selected to construct a genome-wide phylogenetic tree (Table S1). Core-pan analysis was
used to identify the single copy core gene of the samples, and MUSCLE v5.1 software was
used to compare the protein multiple sequences and convert them into CDS. Next, a phylo-
genetic tree was constructed using Treebest v1.9.2 software using the maximum likelihood
method, with a bootstrap setting of 1000 with homologous genes [33]. The phylogenetic
tree was constructed using Mega v6.06 for drawing adjustments and editing [34]. Tuber
melanosporum was an outgroup in the evolutionary tree.

The target and reference genomes were compared using MUMmer v3.23 [35] software,
and large-scale covariance relationships between genomes were identified. Next, an inter-
region comparison was performed using LASTZ v1.03.54 [31,36] to confirm the local
positional alignment relationships.

2.6. Comparative Analysis of Carbohydrate-Active Enzymes

The S. bovinus genome sequence was analyzed to determine the presence of
carbohydrate-active enzymes (CAZymes). Genes encoding CAZymes [37] in the S. bovi-
nus genome were annotated using the Carbohydrate-Active Enzymes (CAZy) database
and the dbCAN2 annotation tool (http://bcb.unl.edu/dbCAN2/, accessed on 6 January
2024) [38] through the HMMER method, with parameters set as E-value < 1 × 10−15 and
coverage > 0.35.

2.7. Secondary Metabolite Gene Clusters in S. bovinus

Secondary metabolite gene clusters (SMs) were identified using AntiSMASH fun-
gal 7.1.0 (https://fungismash.secondarymetabolites.org/#!/start/, accessed on 6 January
2024) [39], a web-based analysis platform, using the default parameter settings.

2.8. Secreted Protein Predictive Analysis

The secreted proteins (SPs) were predicted using SignalP v5.0 [40] and TMHMM
v2.0c [41] tools to identify signal peptides and transmembrane structures. Screening for
secretory proteins with less than 300 amino acids as small secretory proteins (SSPs) was
conducted [9].

3. Results and Discussion
3.1. Subsection Genome Sequencing and Assembly

The genome of S. bovinus was sequenced using the Illumina NovaSeq 6000 (Illumina
Inc., San Diego, CA, USA) and PacBio Sequel II platforms(Pacific Biosciences of California,
Menlo Park, CA, USA). Approximately 8.16 Gb of PacBio HiFi raw data were obtained.
Illumina and Hi-C libraries were sequenced on the Illumina NovaSeq-6000 platform, pro-
ducing 2.15 Gb and 5.09 Gb of raw data, respectively (Table S2). Genome assembly was
performed using Hifiasm software (https://github.com/chhylp123/hifiasm, accessed on 6
January 2024), and then the ALLHiC software(https://github.com/tangerzhang/ALLHiC,
accessed on 6 January 2024) was employed for genome sequence clustering, sorting, and
orientation with the application of the HTC-hicker contig direction correction. In the final
assembly, the S. bovinus genome was organized into 12 chromosomes, with a total length of
43.03 Mb and a contig N50 size of 3.78 Mb.

http://bcb.unl.edu/dbCAN2/
https://fungismash.secondarymetabolites.org/#!/start/
https://github.com/chhylp123/hifiasm
https://github.com/tangerzhang/ALLHiC
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The chromosome-anchoring rate of contigs longer than 100 bp was 93.92% (Table 1;
Figure S1). The genome integrity of S. bovinus was evaluated using BUSCO 3.0.2. Of the
290 BUSCO groups, 278 complete BUSCOs (94.5%) were identified, including 274 complete
single-copy BUSCOs and 4 complete duplicate BUSCOs (Table S3). These results indicated
that the S. bovinus genome assembly had relatively high continuity and integrity, sufficient
for the next steps of analysis and annotation. Overall, the genomic metrics and mount rates
were favorable.

Table 1. Whole-genome assembly features of S. bovinus.

Sample_ID S. bovinus SB11 * S. bovinus UH-Sbo-P2 **

Sequencing technology PacBio CCS, Illumina, Hi-C PacBio
Genome size (Mb) 43.03 47.50

Contigs Num 18 622
Contigs N50_Length (bp) 3,780,628 320,421

GC (%) 46.58 46.9
pseudo chromosome 12 -

Number of coding genes 11,199 13,537
chromosome anchoring rate for

contigs (%) 93.92 -

Assembly level Chromosomes Contig
Note: * this study, ** Lofgren et al., 2021 [9], - not detected.

A comparison of the S. bovinus SB11 strain with the sequenced S. bovinus UH-Sbo-
P2 strain showed good continuity of the S. bovinus SB11 genome in N50 length, much
better than the N50 length of 0.32 Mb of the S. bovinus UH-Sbo-P2 strain. However, the
SB11 genome was smaller than the UH-Sbo-P2 genome. The genomic synteny analysis of
SB11 and UH-Sbo-P2 strains was performed using MUMmer v3.23 and LASTZ v1.03.54
software. The results showed that SB11 and UH-Sbo-P2 had a large number of homologous
genes with high collinearity (73.05%), but gene rearrangements such as gene loss and
translocation were also detected (Figure 2). This may be due to partial gene loss in the
SB11 strain under the selective pressure of different environments such as host, climate, or
geographical location, or may reflect differences in the number of repeat sequences, leading
to differences in genome size. In addition, differences in sequence data might arise from the
use of different sequencing instruments and sequencing methods, so the basis of identified
differences should be further analyzed.
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3.2. Genome Information at Chromosome Level

The analysis of the HiC data was performed to identify contigs sequences and these
sequences were mounted to the chromosome level using ALLHiC software (https://github.
com/tangerzhang/ALLHiC, accessed on 6 January 2024). The 12 chromosomes of the

https://github.com/tangerzhang/ALLHiC
https://github.com/tangerzhang/ALLHiC
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assembled S. bovinus genome were further analyzed, and the detailed sequence distribution
of each chromosome is shown in Table 2. The results showed that the 12 chromosomes
were of different sizes, with an average length of 3,585,466 bp. Chromosome 9 had the
longest sequence length of 4,909,462 bp, followed by chromosome 11 with 4,752,148 bp,
and chromosome 5 had the shortest length of 2,235,747 bp. In total, 11,999 coding genes
were annotated. Chromosome 9 had the most coding genes with 1399 genes, followed by
chromosome 10 with 1345 genes, and chromosome 5 had the fewest genes with 550 genes.

Table 2. Summary of Hi-C-assisted assembly chromosome lengths of S. bovinus.

Sequence ID Sequence Length (bp) Number of Coding Genes

chromosome1 2,921,455 703
chromosome2 2,669,988 625
chromosome3 2,726,889 626
chromosome4 3,625,200 978
chromosome5 2,235,747 550
chromosome6 3,144,253 821
chromosome7 3,462,440 899
chromosome8 4,096,261 1162
chromosome9 4,909,462 1399
chromosome10 4,701,129 1345
chromosome11 4,752,148 1153
chromosome12 3,780,628 938

3.3. Genomic Component Analysis

The genome was annotated using a combination of de novo and homology-based
approaches. A total of 11,199 coding genes were obtained through an integrative prediction
of coding genes, with an average coding gene length of 1631 bp (Table 1). Based on the
assembled genome sequence and the prediction of coding genes, Circos v0.69-9 software
was used to construct a circular genome diagram of S. bovinus. Meanwhile, the noncoding
RNA and gene prediction were analyzed, and the results are shown in Figure S2.

3.3.1. Repeat Sequence Annotation

The repeat sequences of S. bovinus SB11 were subdivided into interspersed repeats
(IRs) and tandem repeats (TRs) (Table 3). A total of 4056 IRs, 1,242,627 bp in length, were
predicted, accounting for 2.8881% of the SB11 genome length. The scattered repeats included
short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs),
long terminal repeats (LTRs), DNA transposons, and rolling circles (RCs), accounting for
0.0033% (18), 0.1062% (470), 2.5465% (2796), 1.707% (625), and 0.0629% (129), respectively. TRs
represented 1.7932% of the assembled genome. The microsatellite DNA and minisatellite
DNA accounted for 0.0280% and 0.4563% of the assembled genome, respectively, in the TRs.

Table 3. Statistical analysis of repeat sequences in the S. bovinus genome.

Repeat Type Type Number (#) Total Length (bp) Repeat Size (bp) In Genome (%)

Interspersed repeats

LTR 2796 1,095,626 - 2.5465
DNA 625 73,438 - 0.1707
LINE 470 45,708 - 0.1062
SINE 18 1414 - 0.0033
RC 129 27,079 - 0.0629
Unknown 18 1605 - 0.0037

Tandem repeats
TR 4672 563,158 1~592 1.3089
Minisatellite DNA 2919 196,344 10~60 0.4563
Microsatellite DNA 208 12,040 2~6 0.0280

Note: -, not detected.
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3.3.2. Annotation of Noncoding RNA Genes

Noncoding RNAs (ncRNAs) perform a variety of biological functions. These RNAs are
not translated into proteins but function directly at the RNA level. For microorganisms, the
most commonly studied ncRNAs are sRNA, rRNA, and tRNA. Several noncoding RNAs
were predicted in the S. bovinus genome, as shown in Table 4. There were 138 tRNAs and 15
rRNAs predicted. Among the rRNA sequences, there were five 5s_rRNAs, five 18s_rRNAs,
and five 28s_rRNA.

Table 4. Statistical analysis of noncoding RNAs in the S. bovinus genome.

Type Number (#) Average Length
(bp)

Total Length
(bp)

Percentage of
Genome (%)

tRNA 138 81 11,257 0.0262
5s_rRNA 5 114 570 0.0013
5.8s_rRNA 0 0 0 0.0000
18s_rRNA 5 2210 11,051 0.0679
28s_rRNA 5 3520 17,598 0.0409
sRNA 0 0 0 0.0000
snRNA 0 0 0 0.0000
miRNA 0 0 0 0.0000

3.4. Gene Function Annotation

The predicted protein sequences of 11,199 coding genes were compared, and annotated
using data from six public databases (GO, KEGG, KOG, NR, Pfam, and Swiss-Prot). The
Nr database was used to match the most genes (10,793 genes, or 96.37%), followed by those
from KEGG (7290 genes, or 65.10%), GO (6545 genes, or 58.44%), Pfam (6545 genes, or
58.44%), Swiss-Prot (2140 genes, or 19.11%), and KOG (1640 genes, or 14.64%) (Table S4).

3.4.1. KOG Annotations

The analysis of the S. bovinus SB11 genome with the KOG database allowed for the
annotation of 1640 genes and classification into 24 categories (Figure 3). The top five were
“Posttranslational modification, protein turnover, chaperones” (188, 11.46%), “translation,
ribosomal structure and biogenesis” (176, 10.73%), “general function prediction only” (166,
10.12%), “energy production and conversion” (143, 8.72%), and “amino acid transport
and metabolism” (123, 7.5%). These findings suggest rich and diverse protein and energy
metabolic functions in S. bovinus, allowing for the effective absorption and transformation
of nutrients in the substrate. In addition, the analysis revealed 68 genes with “unknown
functions” that require further study.

3.4.2. GO Annotations

In the S. bovinus genome, a total of 6545 genes were annotated to the GO database,
distributed among the three functional categories of molecular function, cellular compo-
nents, and biological processes. In biological processes, 3482 genes participate in the “cell
process”, followed by the “metabolic process” (3362), “localization” (943), and the “regu-
lation of biological processes” (782). In the function of cell components, 2280, 2280, 926,
and 654 genes were associated with “cell”, “cell part”, “organelle” and “macromolecular
complex”, respectively. Among the genes related to molecular function, 3938, 3226, 404, and
179 genes participated in “binding”, “catalytic activity”, “transport activity”, and “nucleic
acid binding transcription factor activity”, respectively (Figure 4). In the GO functional
annotation results, more genes were associated with molecular functions and related to
biological processes. The antioxidant capacity of edible macro-fungi has been receiving
more attention as a natural resource of bioactive compounds. It is worth noting that, in the
S. bovinus genome, we found 18 genes involved in “antioxidant activity”. This suggested
that S. bovinus may have some antioxidant capacity, which in turn regulates the production
of some antioxidant substances.
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3.4.3. KEGG Annotations

To further analyze the metabolic pathways and functions of S. bovinus gene prod-
ucts and compounds in cells, the KEGG database was used. A total of 7290 genes were
annotated in the KEGG database, with distribution in six major metabolic pathways of
metabolism (12 branches, 1897), genetic information processing (4 branches, 718), envi-
ronmental information processing (2 branches, 242), cellular processes (5 branches, 507),
human diseases (12 branches, 735), and organic systems (10 branches, 522). The number
and function of genes in each category are shown in Figure 5. These results suggested the
presence of many metabolic genes in S. bovinus, with a wide variety of metabolic functions
and the potential to act in multiple material metabolic pathways.
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3.5. Gene Family and Phylogenetic Analysis

Gene family comparisons were performed to obtain insight into the mechanisms of
mycorrhizal symbiosis and the nutritional composition of mycorrhizal edibles. The genome
of S. bovinus and the genomes of 14 other edible fungi were selected for gene family analysis.
Using the whole-genome protein-coding gene sequence, the gene families were identified
by sequence clustering analysis, and the homologous genes of the 15 fungi were compared
to find the core genes, which should have important and conserved biological functions. A
total of 128,566 genes were identified, with 192 genes common to all fungi and 3011 protein
clusters specific to S. bovinus (Figure 6A). These genes may be related to the environmental
adaptation and the synthesis of metabolites in S. bovinus.

To further study the phylogenetic relationships of S. bovinus, a genome-wide phyloge-
netic tree was constructed based on the homologous genes in the 14 other fungi described
above. The phylogenetic tree was constructed with Treebest v1.9.2 software using the
maximum likelihood method, with a bootstrap setting of 1000 with homologous genes [33].
T. melanosporum was used as an outgroup of the evolutionary tree. The results showed
that S. bovinus was clustered into a clade with other species of Boletales, with S. brevipes
and S. luteus as its closest relatives (Figure 6B). Although relatively few species were used
to generate this phylogenetic tree, the evolutionary relationship is consistent with that of
phylogenetic trees constructed based on large-scale species [42].
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3.6. Carbohydrate Active Enzymes

Carbohydrate-active enzymes (CAZymes) are an important fungal gene family in
the fungal genome. CAZymes degrade carbohydrates, lignin, and hemicellulocellulose,
allowing fungi to absorb carbon source nutrients and adapt to the environment [43–45].
In general, there are five main categories of CAZymes: glycoside hydrolases (GHs), gly-
cosyltransferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and
auxiliary activity proteins (AAs). This group also contains carbohydrate-binding mod-
ules (CBMs). There is significant interest in the formation mechanism and host selection
of ectomycorrhiza. Comparative genomics has revealed differences in CAZymes in the
genomes of ectomycorrhizal fungi [10]. Using the annotation of the CAZy database and the
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dbCAN tool ( http://bcb.unl.edu/dbCAN2/, accessed on 6 January 2024), 247 genes were
annotated as CAZymes of S. bovinus, accounting for 2.22% of the total genes in the genome
(Figure 7A). These CAZyme genes belong to 85 subfamilies, including 110 GHs, 67 GTs,
45 AAs, 10 CE, 9 CBMs, and 6 PLs genes. These results indicated that the content of GHs
was the highest, followed by GTs, and the content of PLs was the least in the S. bovinus
genome (Figure 7A).
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We next comprehensively compared the distribution and quantity of CAZyme families
of S. bovinus with that of eight other ectomycorrhizal fungi and six saprophytic fungi,
especially those that degrade cellulose, hemicellulose, and lignin. There were dramatically
fewer genes in the CAZyme family of mycorrhizal fungi compared with that of saprophytic
fungi, with fewer GHs and AAs than those of saprophytic fungi (Figure 7B). In particular,
there were significantly fewer AA2, AA9, GH3, GH43, and CE16 in symbiotic fungi than
in saprophytic fungi (Table S5). These enzymes are mainly involved in the degradation
of lignin, cellulose, hemicellulose, and pectin, so they are important in the degradation
of plant cell wall components [46,47]. A limited number of CAZymes may correspond
to less damage to plant cell walls, which is conducive to the establishment of symbiotic
relationships between mycorrhizal fungi and host plants [42,48]. Therefore, the absence of
these genes may be consistent with a symbiotic nutritional lifestyle.

We further analyzed these protein families by clustering (Figure 7C), and proteins with
similar functions clustered together. There were significantly more CAZYs in saprophytic
fungi than in symbiotic fungi, mainly concentrated in GHs, namely GH45, CBM1, GH7,

http://bcb.unl.edu/dbCAN2/
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GH6, GH74, CBM67, and PL1 clusters, and most of these were in saprophytic fungi, with
few in symbiotic fungi (Figure 7C). These proteins are mainly involved in the degradation
of cellulase, hemicellulase, and pectinase. In addition, the annotation results showed
that GH36, GH65, GT34, and GT62 were only found in T. melanosporum but not in other
species, which might be because T. melanosporum is Ascomycetes, and the other species are
Basidiomycetes (Table S5).

Very few genes encoding GH7, GH53, GH115, GH154, CE1, and CBM35 were found
in the ectomycorrhizal fungi, but these genes were present in saprophytic fungi. GH6,
GH11, GH74, CE15, CBM1, and PL42 were mostly present in saprophytic fungi and missing
only in individual species but were largely absent in symbiotic fungi (Table S5). Previous
genomic analyses have revealed that multiple ectomycorrhizal fungal lineages lost most
of the genes encoding lignocellulose-degrading enzymes present in their saprotrophic
ancestors [42,48–50]. The loss of these genes might be associated with the evolution of sym-
biotic fungi, creating a more favorable environment for the establishment of mutualistic
relationships between fungi and host plants. Although the S. bovinus genome lacks the
enzymes involved in degrading the plant cell wall, such as the GH6 and GH7 families, the
GH5 family is present. This is similar to what is found in ectomycorrhizal fungi such as Lac-
caria bicolor and T. melanosporum (Figure 7C and Table S5) [51,52]. Previous studies showed
that the T. melanosporum genome retained the cellulolytic enzyme gene TmelCMC3 (GH5)
but lacked GH6 and GH7, and the GH5 gene was heavily upregulated during symbiosis
with Corylus avellana, suggesting that GH5 might be a key enzyme involved in cell wall
penetration [53]. These results indicate that S. bovinus may have some ability to decompose
and utilize lignocellulose as a nutrient source. However, hemicellulose-degrading enzymes
(GH10, GH11, GH74, GH93, and GH115) and pectin-degrading enzymes (GH78, GH93,
PL1, PL3, and PL4) were not identified in the S. bovinus genome. These enzymes play key
roles in the degradation of plant cell wall components [46,47]. Thus, our analysis revealed
that S. bovinus lost most of the genes that degrade plant cell wall polysaccharides (cellulose,
hemicellulose, and pectin), and this may be related to its adaptation to a symbiotic lifestyle.

When mycorrhizal fungi are in a symbiotic relationship with a host plant, most of
the carbohydrates required for mycorrhizal fungi growth come from the glucose provided
by the host plant, so the fungi do not need to degrade lignocellulose in the environment
to obtain nutrients [54]. Therefore, we investigated CAZymes encoding α-amylase (e.g.,
GH13, GH70, GH77, GH57, and GH119 families) and sucrose invertase (GH32) in S. bovinus.
GH70, GH77, GH57, and GH119 were not found in the S. bovinus genome, but nine GH13
genes were identified, suggesting that S. bovinus may be able to degrade starch. We also
found that S. bovinus, like most ectomycorrhizal fungi, lacks the sucrose invertase GH32
gene. This means that S. bovinus is unable to utilize sucrose directly from the plant, so it is
completely dependent on its partner for glucose [42].

3.7. Secondary Metabolisms

Fungi can produce abundant secondary metabolites, such as terpenes, steroids, steroids,
phenolic acids, and fatty acids [55]. Secondary metabolites in fungi are mainly regulated by
polyketide synthase (PKS), nonribosomal peptide synthetase (NRPS), hydrogenase, oxi-
dase, and transporters [56]. Terpenoids such as sesquiterpenes, diterpenes, triterpenes, and
terpenes act in the recognition and reaction between fungi and plants and are recognized
as key compounds in ectomycorrhiza, especially sesquiterpenoids [55,57].

Auxin and lipochitooligosaccharides may function as signaling molecules for symbio-
sis between ECM fungi and host plants [58–61]. In symbiosis with plants, ECM fungi can
secrete auxin into plant root cells to inhibit the growth of the primary root of the host plant
and induce the production of lateral roots [60]. ECM fungi can also be recognized and acti-
vated by host plants through secreted lipochitooligosaccharides and chitooligosaccharides,
which are found in ECM fungi, rhizobia, and arbuscular mycorrhizal fungi [49,61,62].
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3.7.1. Terpene Biosynthesis

The webtool antiSMASH v7.1.0 was used to predict the secondary metabolites of the
S. bovinus genome and 14 other fungi. Our results showed that S. bovinus has 31 gene
clusters potentially involved in the biosynthesis of secondary metabolites. This is higher
than most symbiotic fungi (average 20.89) and saprophytic fungi (average 27.50). However,
the diversity of gene clusters in S. bovinus was lower than that of other fungi. The 31 gene
clusters included only three types, with 16 terpenoid gene clusters, 12 NRPS-like gene
clusters, and 3 T1pks gene clusters (Table 5). This is consistent with the results of Lofgren
et al. [9] indicating that Suillus has a higher number of SM gene clusters and less SM gene
cluster diversity than other ECM fungi.

Table 5. Comparison of Secondary metabolisms of S. bovinus with those of other fungi.

Secondary Metabolisms Terpene NRPS Siderophore T1pks Indole Fungal-
RiPP Total

Suillus bovinus 16 12 0 3 0 0 31
Laccaria bicolor 8 4 1 1 1 0 15

Pisolithus tinctorius 12 7 0 1 0 1 21
Suillus brevipes 3 5 0 1 0 0 9
Suillus luteus 12 10 0 2 0 0 24

Tuber melanosporum 3 3 0 1 0 0 7
Paxillus involutus 7 7 0 3 0 0 17

Rhizopogon vinicolor 21 18 0 1 0 1 41
Lactarius deliciosus 18 2 2 1 0 0 23
Trametes versicolor 15 9 0 2 0 0 26
Pleurotus otreatus 18 8 1 1 0 0 29

Schizophyllum commune 5 10 0 1 0 1 17
Laetiporus sulphureus 16 7 0 6 1 0 31

Stereum hirsutum 18 19 1 3 0 0 43
Agaricus bisporus 10 6 1 1 2 0 19

Abbreviations: NRPS, nonribosomal peptides; PKS, polyketides.

Previous studies [58,61] showed that ECM fungi can release sesquiterpenes and ter-
pene derivatives to promote the formation of lateral roots in the host plant, e.g., the release
of sesquiterpenes by the Laccaria bicolor promotes the formation of poplar lateral roots.
A total of 16 gene clusters related to terpenoid biosynthesis were detected in the S. bov-
inus genome. We detected 19 S. bovinus genes in the “terpenoid backbone biosynthesis
(map00900)” pathway (Table 5). The MVA and MEP/DOXP pathways make up the main
part of map00900 (Figure S3). These results suggest that terpenoid backbone biosynthesis
in S. bovinus, like in most fungi, can only proceed through the MVA pathway [50,63,64].
The core enzymes involved in the MVA pathway are listed in Table 6.
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Table 6. Putative genes involved in terpenoid backbone biosynthesis.

Pathway Map Gene Name and Definition EC No. KO
Term Gene ID

map00900 FDPS; farnesyl diphosphate synthase 2.5.1.1 2.5.1.10 K00787 A03864
GGPS1; geranylgeranyl diphosphate synthase,

type III 2.5.1.1 2.5.1.10 2.5.1.29 K00804 A07435; A07657;
A07658; A04007

ACAT; acetyl-CoA C-acetyltransferase 2.3.1.9 K00626 A05025; A00976
HMGCS; hydroxymethylglutaryl-CoA synthase 2.3.3.10 K01641 A08133; A02613

HMGCR; hydroxymethylglutaryl-CoA
reductase (NADPH) 1.1.1.34 K00021 A06620

mvaD; diphosphomevalonate decarboxylase 4.1.1.33 K01597 A08186
idi; isopentenyl-diphosphate Delta-isomerase 5.3.3.2 K01823 A10729

PCYOX1; prenylcysteine oxidase 1.8.3.5 1.8.3.6 K05906 A10469
ICMT; protein-S-isoprenylcysteine

O-methyltransferase 2.1.1.100 K00587 A01157

STE24; STE24 endopeptidase 3.4.24.84 K06013 A01427
RCE1; prenyl protein peptidase 3.4.22.- K08658 A07032

hexPS; hexaprenyl-diphosphate synthase 2.5.1.82 2.5.1.83 K05355 A05688
SRT1; ditrans, polycis-polyprenyl

diphosphate synthase 2.5.1.87 K11778 A07488

FNTA; protein
farnesyltransferase/geranylgeranyltransferase

type-1 subunit alpha
2.5.1.58 2.5.1.59 K05955 A02251

map00909 SQLE, ERG1; squalene monooxygenase 1.14.14.17 K00511 A10725; A02201;
A02834; A03189

FDFT1; farnesyl-diphosphate farnesyltransferase 2.5.1.21 K00801 A03300

map00130 ARO8; romatic amino acid aminotransferase
I/2-aminoadipate transaminase

2.6.1.57 2.6.1.39 2.6.1.27
2.6.1.5 K00838 A06073; A01015

wrbA; NAD(P)H dehydrogenase (quinone) 1.6.5.2 K03809 K03809; A06902;
A07640

COQ5; 2-methoxy-6-polyprenyl-1,4-
benzoquinol methylase 2.1.1.201 K06127 A07348

COQ2; 4-hydroxybenzoate polyprenyltransferase 2.5.1.39 K06125 A07585; A00920;
A01883; A02465

COQ6; ubiquinone biosynthesis
monooxygenase Coq6 1.14.13.- K06126 A02972

We also detected the “sesquiterpenoid and triterpenoid biosynthesis (map00909)”
pathway in S. bovinus, with five genes in this pathway (Table 6; Figure S4). This indicates
that S. bovinus may be similar to L. bicolor, which secretes sesquiterpenoids to stimulate
the growth of lateral roots of the host plant during symbiosis. These compounds might
act as symbiotic signals with the host plant [58]. Eleven genes were identified in the
“ubiquinone and other terpenoid quinone biosynthesis (map00130)” pathway (Table 6;
Figure S5), indicating that S. bovinus might be able to synthesize ubiquinone [65,66].

In order to determine the positions of the above genes related to terpene synthesis
on chromosomes, we used tbtools v1.9.2 software to locate the above genes. The results
showed that these genes were unevenly distributed on 10 chromosomes and clustered
together in tandem, and there were no terpene-related genes on Chr2 and Chr8 (Figure 8A).
Among them, the terpenoid backbone pathway genes (19 genes) were located on the 10
chromosomes. The sesquiterpene and triterpene genes (five genes) were mainly distributed
in the upper part of Chr9 (one gene), Chr11 (one gene), and Chr12 (three genes). Other
terpenoid and ubiquinone genes were mainly distributed on Chr5, Chr6, and Chr10, with
one gene each on Chr4, Chr11, and Chr12.
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3.7.2. Auxin Metabolism

Auxin synthesis is largely dependent on the tryptophan pathway [67]. In the S.
bovinus genome, we identified 44 genes related to tryptophan metabolism (map00380)
and associated with auxin metabolism (Figure 8B). The genes involved in the tryptophan
metabolism pathway were unevenly distributed on 11 chromosomes, with no tryptophan
metabolism-related genes on Chr2. ECM fungi such as L. bicolor and T. melanosporum can
produce a large amount of auxin IAA, thus causing morphological changes in symbiotic
plant roots [61]. This change was due to direct contact between ECM fungi and plant
roots or indirect diffusion signals from the fungi. L. bicolor can secrete auxin into root cells,
inhibiting the growth of the host taproot and inducing the formation of lateral roots of
poplar [60]. IAA was detected in the fermentation broth of S. bovinus, with significantly
higher IAA in the host plant than in the control plant during the symbiosis process [68].
These results suggest that S. bovinus is similar to other ectomycorrhizal fungi and can
synthesize and secrete auxin to achieve symbiosis with host plants.

3.7.3. Lipochitooligosaccharide Biosynthesis

In the S. bovinus genome, we found 29, 48, and 7 genes involved in starch and sucrose
metabolism, (ko00500), amino sugar and nucleotide sugar metabolism (ko00520), and
carbohydrate digestion and absorption (ko04973), respectively, and these genes were
unevenly distributed across the 12 chromosomes (Figure 8C). Among them, the genes
related to amino sugar and nucleotide sugar metabolism (map00520) were distributed on
all 12 chromosomes, with most distributed on Chr7, 9, 10, and 11. The genes related to
starch and sucrose metabolism (map00500) were unevenly distributed on 12 chromosomes,
and the highest distribution was on Chr5 with four related genes. The genes related to
carbohydrate digestion and absorption (map04973) were only distributed on Chr2, 4, 8, 10,
and 11, with the most on Chr2 and only one gene on each of chromosomes 4, 8, 10, and 11.

These metabolic processes are closely related to the biosynthesis of lipochitooligosac-
charides and may be involved in signaling as part of the symbiotic system formation of S.
bovinus. Lipid chitooligosaccharides secreted by the ECM fungus L. bicolor can partially
activate the generalized symbiotic signaling pathway, affecting the formation of lateral
roots of plants [61,69], and these metabolites might play similar roles in S. bovinus.

3.8. Secretory Protein Analysis

Secretory proteins (SPs) are important enzymes required for life activities. These pro-
teins are synthesized inside the cell and then secreted outside the cell across the cell mem-
brane under the guidance of a signal peptide. Secretory proteins smaller than 300 amino
acids are known as small secretory proteins (SSPs) [49], and SSPs play key roles in symbiosis
in some ECM fungi [70].

Differences in the number of SPs and SSPs between S. bovinus and 14 other fungi
were predicted by using a combination of bioinformatics software SignalP 5 and TMHMM
2.0c. Suillus contained fewer SPs and SSPs than other ECM fungi, but the difference was
not significant (Figure 9A,B), a finding that was consistent with those of Lofgren et al. [9].
There were also no significant differences in SPs and SSPs between the ECM fungi and
saprophytic fungi, though overall, there were fewer SPs in ECM fungi than in saprophytic
fungi (Figure 9C,D). Further analysis revealed that S. bovinus had fewer secreted proteins
than other fungi, with 347 SPs predicted, of which 101 were SSPs.

The GO annotation analysis of the SSPs of S. bovinus yielded a total of 30 annotated
SSPs and 64 GO terms, including 27 associated with biological processes, 26 molecular
functions, and 11 cellular components (Figure 10). The most abundant biological pro-
cesses were the “cell wall macromolecule catabolic process” (5), “DNA replication” (2),
and “polysaccharide catabolic process” (2). The most frequent molecular functions were
“DNA binding” (4), “structural constituent of cell wall” (3), and “cellulase activity” (2). The
most frequent terms for cellular component categories were “endoplasmic reticulum” (3),
“integral component of membrane” (2), and “extracellular region” (2). These SSPs might
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participate in S. bovinus symbiosis. SSPs are major effectors of pathogenic and symbiotic
fungal–host interactions [71], and signaling, nutrient transport, and nutrient metabolism-
related genes in ECM fungi can be significantly upregulated during the occurrence of
symbiosis [10]. MiSSP7 of L. bicolor is required for the establishment of symbiosis, and
MiSSP interacts with the JAZ6 to inhibit the plant defense response and promote the estab-
lishment and development of ectomycorrhizal roots [71,72]. In addition to MiSSP7, other
partially characterized SSPs include LbMiSSP7.6, LbMiSSP8, and PaMiSSP10b. Further
identification and characterization of SSPs is crucial for the study of mycorrhizal symbiosis
mechanisms [73–75]. S. bovinus, as an ECM fungus, needs to avoid rejection by the host’s
immune response, and signaling substances such as SSPs might be important for escap-
ing detection. Unfortunately, SSPs previously identified as acting in symbiosis were not
found in the S. bovinus genome. This suggests that S. bovinus has its own specific SSPs, the
characterization of which will be a focus of future work.
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4. Conclusions

In summary, this is the first report of a chromosomal-level assembly of S. bovinus.
Using sequencing and Hi-C data, we accurately anchored ~93.92% of the whole-genome
sequences into 12 chromosomes. Integrity and completeness analysis revealed the high
quality of this genome assembly. We hope that the genomic information and analysis can
provide a reference for the molecular study of the symbiosis mechanism of S. bovinus and
enable the study of the genetic evolutionary relationships of S. bovinus.

The genome of S. bovinus enables us to predict gene function and study the biosynthesis
of active compounds. The current work revealed the genetic basis for the degradation of
lignin, cellulose, and aromatic compounds in S. bovinus. The comparative genomic analysis
of the gene families, carbohydrate enzymes, and secondary metabolism will help guide
future work to investigate the symbiotic mechanism and saprotrophic capacity of S. bovinus.
It is crucial to annotate the genes involved in terpene, auxin, and lipochitooligosaccharide
biosynthesis to understand the mechanisms of valuable secondary metabolite production
and the diversity of major components. This work provides high-quality reference genomic
resources for resource utilization and research on mycorrhizal symbiosis mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof10030211/s1, Figure S1: Hi–C contact heatmap for S. bovinus;
Figure S2: The circular genome diagram of S. bovinus. Figure S3: Terpenoid biosynthesis pathway of
S. bovinus; Figure S4: Sesquiterpenoid and triterpenoid biosynthesis pathways of S. bovinus; Figure S5:
Ubiquinone and other terpenoid quinone biosynthesis pathways of S. bovinus. Table S1: Fungi and
the origin of their genomes used in the study title; Table S2: Statistics of the sequencing data of the S.
bovinus; Table S3: BUSCO assessment results of S. bovinus; Table S4: Summary of the annotations of S.
bovinus; Table S5: Distribution of CAZymes in S. bovinus and the other 14 fungi.
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