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Abstract: Peach (Prunus persica L.) is one of the most important and oldest stone fruits grown in
China. Even though P. persica is one of the most commonly grown stone fruits in China, little is known
about the biodiversity of microfungi associated with peach branch diseases. In the present study,
samples were collected from a wide range of peach growing areas in China, and fungal pathogens
associated with peach branch diseases were isolated. In total, 85 isolates were obtained and further
classified into nine genera and 10 species. Most of the isolates belonged to Botryosphaeriaceae (46),
including Botryosphaeria, Diplodia, Neofusicoccum, Phaeobotryon, and Lasiodiplodia species; Ascochyta,
Didymella, and Nothophoma species representing Didymellaceae were also identified. Herein, we
introduce Ascochyta prunus and Lasiodiplodia pruni as novel species. In addition, we report the first
records of Nothophoma pruni, Neofusicoccum occulatum, and Phaeobotryon rhois on peach worldwide,
and Didymella glomerata, Nothophoma quercina, and Phaeoacremonium scolyti are the first records from
China. This research is the first comprehensive investigation to explore the microfungi associated
with peach branch disease in China. Future studies are necessary to understand the pathogenicity
and disease epidemiology of these identified species.

Keywords: diversity; peach diseases; morphology; phylogenetic analyses; new species; new records

1. Introduction

Peach (Prunus persica L.) belongs to the family Rosaceae and is an important stone fruit
that contains vitamins, flavonols, sugars, and catechins [1]. Peaches are rich in dietary
fibres that provide health benefits [2]. They are consumed as fresh fruits and in processed
foods such as jam and beverages. Prunus species were first domesticated and cultivated
in northwestern China [3] and originated in China as long ago as 3300–2500 BC accord-
ing to archaeological evidence [4]. According to the Food and Agricultural Organization
2019-United Nations (FAOSTAT), China is the top peach-producing country, with a produc-
tion of 15.8 million tons in 2019, which accounted for 57% of the global production.

In China, the genetic diversity of peach is high, comprising more than 396 peach
cultivars [5]. Peach cultivation areas in China are mainly located from the subtropical
southern to the northern region and range from warm to cold and dry [6]. Peach trees
are perennial plants that can grow up to 21 feet. Although the lifespan of peach plants
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is eight to ten years in orchards, it can reach 25 years [7]. Therefore, it is necessary to
understand the biotic and abiotic factors affecting the vigour and yield of peach trees.
Among various peach pests and diseases, fungal species are the dominant causative agents
of diseases [8], such as brown rot caused by Monilinia fructicola [9]; gummosis caused
by Botryosphaeria dothidea [10]; peach scab caused by Venturia carpophila [11]; peach leaf
curl caused by Taphrina deformans [12]; and Phytophthora root and crown rot caused by
Phytophthora spp. [13]. Worldwide, peach branch diseases including gummosis trunk,
trunk canker, twig canker, twig spots, and shoot blight have been commonly observed,
particularly in regions where stress factors are prevalent [14,15]. To date, there has been no
comprehensive study on microfungi associated with peach branch diseases in China.

Even though peach fruits are among the most common stone fruits grown in China,
few studies have been conducted to determine the diversity of microfungi associated with
different peach cultivation regions in China. On this basis, the present study aimed to
collect peach disease samples from a wide range of growing areas in China and to isolate
and identify common fungal pathogens causing peach disease.

2. Materials and Methods
2.1. Sample Collection and Fungal Isolation

Diseased trunk, branch, and twig samples were collected from 20 peach orchards in
2020 and 2022 in Beijing, Hebei Province, Gansu Province, Liaoning Province, Guizhou
Province, Sichuan Province, Yunnan Province, and Anhui Province in China. The disease
samples were mainly collected from plants with typical dieback symptoms, such as gum-
mosis, canker, twig canker spots, and shoot blight (Figure 1). The samples were cut into
0.5 × 0.5 cm pieces, surface sterilized for 1 min in 75% ethanol, rinsed for 2 min in distilled
water, and blotted dry on sterilized filter paper. Then, the samples were transferred onto
potato dextrose agar (PDA; 200 g potato, 20 g dextrose, and 20 g agar per L) plates and
incubated at 25 ◦C to obtain pure cultures. Pure cultures were obtained via both single-tip
isolation and single-spore isolation. The purified isolates were preserved on PDA slants at
4 ◦C [16].
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Figure 1. Disease symptoms on twigs, branches, and trunks of Prunus persica L. in the field.
(A): Gummosis trunk; (B): trunk canker; (C,D): twig canker; (E): twig spots; and (F): shoot blight.

2.2. Morphological and Cultural Characterization

The isolates were incubated on PDA at 25 ◦C or on malt extract agar (MEA; 30 g malt
extract, 5 g mycological peptone, and 15 g agar/L), on oatmeal agar (OA; 40 g oatmeal and
5 g agar/L) under near-ultraviolet (UV) light (12 h light/12 h dark) when it was necessary,
or on pine needle agar (PNA) [17] to induce sporulation. Colony diameters were mea-
sured after 5–7 days of incubation, and the culture characteristics were determined after
14 days [18]. Colony colours were recorded based on the colour charts of Rayner [19]. The
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micromorphological structures of mature conidiomata, conidia, and conidiogenous cells
were studied on PDA, OA, and MEA [20,21]. Observations were conducted with an Axio-
Cam 506 colour Imager Z2 photographic microscope (Carl Zeiss Microscopy, Oberkochen,
Germany). Morphological features such as conidial length, width, and size were measured
(at least 30/40 per isolate) with a ZEN Pro 2012 (Carl Zeiss Microscopy). The structure
of the mature pycnidial wall was observed using microtome sections of 6–10 µm in thick-
ness, which were prepared with a Leica CM 1950 freezing microtome (Leica Biosystems,
Nussloch, Germany) and mounted in lactic acid [20–22]. All pure cultures obtained in
this study were deposited in the culture collection of the Institute of Plant Protection,
Beijing Academy of Agriculture and Forestry Sciences (JZB), China. All herbarium material
including holotypes of novel species were deposited in the herbarium of the Institute of
Plant Protection, Beijing Academy of Agriculture and Forestry Sciences (JZBH), China, as
dry cultures.

2.3. DNA Extraction, PCR Amplification, and Sequencing

Fresh mycelia were scraped from the strains on PDA plates that were grown for
seven days at 25 ◦C and collected in 1.5 mL centrifuge tubes. Genomic DNA was ex-
tracted using a TIANcombi DNA Lyse&Det PCR Kit (TIANGEN Biotech Co., Ltd., Beijing,
China). Polymerase chain reaction (PCR) was carried out using selected genes and primers
(Tables 1 and 2). The 25 µL volume of each PCR mixture included 12.5 µL of 2× Taq PCR
MasterMix (Beijing Bomede Gene Technology Co., Ltd., Beijing, China), 10.5 µL of ddH2O,
0.5 µL each of forward and reverse primer (Sangon Biotech, Shanghai, China), and 1 µL
of DNA template. The thermal cycler conditions were as follows: initial denaturation
for 3 min at 95 ◦C; 34 cycles of denaturation for 30 s at 95 ◦C, annealing for 30 s at 58 ◦C
(the internal transcribed spacer region [ITS]), 56 ◦C (β-tubulin [tub2]; actin [act]), 54 ◦C
(RNA polymerase II second largest subunit [rpb2]; partial translation elongation factor
1-alpha[tef1]), or 52 ◦C (28S large subunit of nuclear ribosomal RNA [LSU]); elongation at
72 ◦C; and a final extension for 10 min at 72 ◦C. The PCR products were assessed using
agarose gel electrophoresis after staining with ethidium bromide and sequenced at Beijing
Qingke Biotechnology Co., Ltd. (Beijing, China).

2.4. Phylogenetic Analyses

For all the isolates obtained in this study, sequence quality was assured by checking
the chromatograms using BioEdit 7.0.9.0. All sequences were subjected to BLAST searches
in the National Center for Biotechnology Information (NCBI) database using the Basic Local
Alignment Search Tool (BLASTn) v. 2.15.0 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for
preliminary identification of isolates. Based on the BLAST results, we identified our isolates
as belonging to nine genera, Ascochyta, Didymella, Nothophoma, Botryosphaeria, Diplodia,
Neofusicoccum, Phaeobotryon, Lasiodiplodia, and Phaeoacremonium. Reference sequences for
phylogenetic analyses were retrieved from GenBank (https://www.ncbi.nlm.nih.gov/
genbank/), following the recently updated taxonomic literature (Supplementary Table S1).
The sequence dataset of each genus was aligned with MAFFT v. 7 (https://mafft.cbrc.jp/
alignment/server/). BioEdit 7.0.9.0 was used to improve the alignment manually when
necessary, such as trimming.

For the phylogenetic analysis of Didymellaceae species (Ascochyta, Didymella, and
Nothophoma), gene regions were concatenated for the analyses in the order, ITS, LSU
rpb2, and tub2 [23]. For Botryosphaeriaceae species (Botryosphaeria, Diplodia, Lasiodiplodia, and
Neofusicoccum), gene regions were concatenated for the analyses in the order, ITS, tef1, and
tub2, and for Phaeobotryon species, the combination of ITS, LSU, and tef1 was used [24]. For
Phaeoacremonium species, the act and tub2 concatenated dataset was used [25]. Phyloge-
netic analyses were conducted using the maximum likelihood (ML) method implemented
in RAxML [26,27], the maximum parsimony (MP) method in PAUP v. 4.0b10 [28], and
Bayesian posterior probability analysis (BYPP) in MrBayes v.3.2.7a [29].

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://mafft.cbrc.jp/alignment/server/
https://mafft.cbrc.jp/alignment/server/
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The ML analyses were performed with RAxML–HPC2 on XSEDE (8.2.12) [27,28] on the
CIPRES Science Gateway platform [30] with 1000 nonparametric bootstrapping replicates, and the
GTR + GAMMA was the nucleotide evolution model. Bayesian inference (BI) was performed in
MrBayes v.3.2.7a [29] on the XSEDE tool. The evolution model was tested by using jModelTest2 on
XSEDE in the CIPRES Gateway. MrBayes analyses were run for 1,000,000 generations, sampling
the trees at every 100th generation. From the 10,000 trees obtained, the first 2000 representing
the burn-in phase were discarded. The remaining 8000 trees were used to calculate posterior
probabilities in the majority rule consensus tree.

In PAUP, tree stability was evaluated by 1000 bootstrap replications. Branches of zero
length were collapsed, and all multiple most parsimonious trees were saved. Parameters,
including tree–length (TL), consistency index (CI), retention index (RI), relative consistency
index (RC), and homoplasy index (HI) were calculated. Differences between the trees inferred
under different optimality criteria were evaluated using Kishino–Hasegawa tests (KHT).
Phylogenetic trees were visualized in FigTree v1.4. The names of the isolates from the present
study are marked in red in the trees. ML and MP bootstrap support values greater than 50%
(BT) and Bayesian posterior probabilities (PPs) greater than 0.70 are given at the nodes.

Table 1. Gene regions and related primers used for molecular analysis.

Genes Primers Sequence (5′–3′) References

ITS ITS5
ITS4

GGAAGTAAAAGTCGTAACAAGG
TCCTCCGCTTATTGATATGC

De Hoog and Gerrits van den Ende (1998) [31]
White et al. (1990) [32]

LSU LROR
LR5

ACCCGCTGAACTTAAGC
TCCTGAGGGAAACTTCG

Vilgalys and Hester (1990) [33]
Rehner and Samuels (1994) [34]

rpb2 RPB2-5F
RPB2-7cR

GAYGAYMGWGATCAYTTYGG
CCCATRGCTTGYTTRCCCAT

Sung et al. (2007) [35]
Liu et al. (1999) [36]

tef1
EF1-688F

EF1-1251R
CGGTCACTTGATCTACAAGTGC

CCTCGAACTCACCAGTACCG Alves et al. (2008) [37]

EF1-728F
EF1-986R

CATCGAGAAGTTCGAGAAGG
TACTTGAAGGAACCCTTACC Carbone and Kohn (1999) [38]

tub2

Bt2a
Bt2b

GGTAACCAAATCGGTGCTGCTTTC
ACCCTCAGTGTAGTGACCCTTGGC Glass and Donaldson (1995) [39]

T1 AACATGCGTGAGATTGTAAGT O’Donnell and Cigelnik (1997) [40]
Btub2Fd
Btub4Rd

GTBCACCTYCARACCGGYCARTG
CCRGAYTGRCCRAARACRAAGTTGTC Woudenberg et al. (2009) [41]

act ACT-512F
ACT-783R

ATGTGCAAGGCCGGTTTCGC
TACGAGTCCTTCTGGCCCAT Carbone and Kohn (1999) [38]

Table 2. Selected genes and primers for PCR amplification of each genus.

Family Genera ITS LSU rpb2 tef1 act tub2

Didymellaceae
Ascochyta ITS4/ITS5 LR0R/LR5 RPB2-5F2/

RPB2-7cR - - Btub2Fd/
Btub4Rd

Didymella ITS4/ITS5 LR0R/LR5 RPB2-5F2/
RPB2-7cR - - Btub2Fd/

Btub4Rd

Nothophoma ITS4/ITS5 LR0R/LR5 RPB2-5F2/
RPB2-7cR - - Btub2Fd/

Btub4Rd

Botryosphaeriaceae

Botryosphaeria ITS4/ITS5 - - EF1-728F/
EF1-986R - Bt2a/Bt2b

Diplodia ITS4/ITS5 - - EF1-728F/
EF1-986R - Bt2a/Bt2b

Neofusicoccum ITS4/ITS5 - - EF1-728F/
EF1-986R Bt2a/Bt2b

Phaeobotryon ITS4/ITS5 LROR/LR5 - EF1-728F/
EF1-986R - -

Lasiodiplodia ITS4/ITS5 - - EF1-688F/
EF1-1251R - T1/Bt2b

Togniniaceae Phaeoacremonium - - - - ACT-512F/
ACT-783R

Bt2a
/Bt2b
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3. Results

In the present study, a total of 85 isolates were obtained. These isolates were fur-
ther identified as belonging to three families and nine genera: Ascochyta (eight isolates),
Didymella (six isolates), Nothophoma (22 isolates), Botryosphaeria (33 isolates), Diplodia (four
isolates), Neofusicoccum (three isolates), Phaeobotryon (three isolates), Lasiodiplodia (three
isolates), and Phaeoacremonium (three isolates). For all identified taxa, updated phylogenetic
trees, species descriptions, and illustrations are given. All identified taxa are listed based
on the current outline of fungi [23].

Phylogenetic Analysis and Morphological Characterization

Dothideomycetes O.E. Erikss. & Winka.
For the currently accepted treatment of Dothideomycetes, we followed Hongsanan et al. [24].
Didymellaceae Gruyter, Aveskamp & Verkley, Mycological Research 113 (4): 516 (2009).
Didymellaceae is a species-rich family that exhibits a global distribution pattern [42].

Furthermore, forty-four genera and more than 5400 species are accepted in Didymellaceae [23].
In the present study, we isolated and identified species belonging to three Didymellaceae
genera, namely, Ascochyta (eight isolates), Didymella (six isolates), and Nothophoma (22 isolates).

Ascochyta Lib., Plantae Cryptogamicae quas in Arduenna collegit M.A. Libert Fasc.
1: 8 (1830).

Ascochyta is a prominent genus that encompasses not only pathogens but also sapro-
phytic and endophytic fungi that exist on a wide range of substrates [43–47]. The combined
dataset of LSU, ITS, rpb2, and tub2 ingroup isolates from 15 species consisted of 2276 characters
(891 for LSU, 490 for ITS, 596 for rpb2, and 299 for tub2), including alignment gaps. Based
on the results of jModel test for BI, TrN + I was determined to be the best model for
the LSU dataset, TIM2ef + I was determined to be the best model for the ITS dataset,
TIM3 + I + G was determined to be the best model for the rpb2 dataset, and TIM3 + G was
determined to be the best model for the tub2 dataset. Didymella aeria (CGMCC 3.18353)
and Didymella sinensis (CGMCC 3.18348) were used as outgroup taxa. The best-scoring ML
tree with a final likelihood value of −5834.327678 is shown in Figure 2. The matrix had
281 distinct alignment patterns, with 12.84% undetermined characters or gaps. The param-
eters for the model of the combined dataset were as follows: estimated base frequencies,
A = 0.239085, C = 0.240356, G = 0.275806, T = 0.244754; substitution rates, AC = 1.072413,
AG = 4.489167, AT = 1.459809, CG = 0.739866, CT = 13.212760, and GT = 1.000000; and
gamma distribution shape parameter α = 0.020000. According to the results of the multilo-
cus phylogenetic analysis, eight isolates from P. persica in this study were clustered into an
independent branch with 92% bootstrap support and 1.0 BYPP (Figure 2).

Ascochyta prunus Y. Zhou, W. Zhang & J.Y. Yan, sp. nov., (Figure 3).
MycoBank number: MB851694.
Etymology—The name refers to the host genus, Prunus.
Holotype—JZBH380109.
Associated with twig canker and branch canker in Prunus persica. Sexual morph: not

observed. Asexual morph: Conidiomata pycnidial, solitary or aggregated; (sub) globose
or flask-shaped; glabrous; semi-immersed in or superficial on the agar; ostiolate, 104–225
(−30) × 95–185 (−20) µm. Ostiole single. The pycnidial wall is pseudoparenchymatous and
composed of oblong to isodiametric cells, 2–4 layers, and 6–11 µm thick, with 2–3 layers
pigmented. Conidiogenous cells 4–8 × 3–6 µm (av. = 6.1 × 4.9 µm, n = 30), phialidic, hyaline,
smooth, (sub) globose, ampulliform to lageniform, without pigmented layers. Conidia
3.9–6.5 × 2.2–3.5 µm (av. = 5.5 × 2.9 µm, n = 50), greatly variable in shape and size, oblong,
ovoid, or broad ellipsoidal, smooth and thin-walled, aseptate.
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Figure 2. Maximum likelihood (ML) phylogram reconstructed from the combined sequences of LSU,
ITS, rpb2, and tub2 of Ascochyta species. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/PP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Didymella sinensis (CGMCC 3.18348) and Didymella aeria (CGMCC 3.18353).
The novel species proposed are indicated in red font, and the type specimens are indicated in bold.
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Figure 3. Ascochyta prunus (JZB380109, Ex-type) (A,B) Colony on OA (front and reverse)
(C,D) Colony on MEA (front and reverse) (E,F) Colony on PDA (front and reverse) (G) Pycni-
dia forming on OA. (H) Pycnidium. (I) Section through the pycnidium. (J) Section of the pycni-
dial wall. (K–M) Conidiogenous cells. (N) Conidia. Scale bars: (H) = 100 µm; (I) = 50 µm; and
(J–N) = 5 µm.
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Culture characteristics—Colonies on OA were 80–81 mm in diameter after 7 days,
margin regular, covered by floccose aerial mycelia, dense, white; reverse black. Colonies
grown on MEA had an 84–85 mm diameter after 7 days; margin regular, aerial mycelia
sparse, flattened, light grey to white, with some radial line near the centre, reverse con-
colourous. Colonies on PDA were similar to those on OA but somewhat slower growing,
with a 74–76 mm diameter after 7 days, covered by floccose aerial mycelia that were whiter
and denser than those on OA, reverse olivaceous (Figure 3).

Material examined—Changping and Miyun Districts, Beijing municipality, China,
from twig canker and branch canker of Prunus persica, May 2020 and May 2021. Y Zhou. W
Zhang, (holotype JZBH380109 as dry culture, paratype JZBH380110-JZBH380116 as dry
cultures); ex type living cultures JZB380109, ex paratype JZB380110-JZB380116.

Notes—In the phylogenetic analysis of the present study, eight isolates from Prunus
developed a distinct lineage from other known Ascochyta species with 100% ML, 99%
MP bootstrap, and 1.00 BYPP values. Phylogenetically, our isolates showed close affinity
to A. pisi, but they can be distinguished by their conidial length, whereas our isolates
developed smaller conidia (3.9–6.5 µm) than A. pisi (7–16 µm, CBS 122785; 10–16 µm, CBS
122751) [21,48]. The nucleotide differences between JZB380109 and A. pisi (CBS 126.54) are
LSU: 1.13% (1/880 bp), ITS: 2.46% (12/487 bp), rpb2: 13.88% (126/886 bp), and tub2: 4.50%
(15/333 bp). Based on molecular phylogeny and morphology, herein we introduce isolates
from this study as Ascochyta pruni, a new species from China.

Didymella Sacc., Michelia 2 (6): 57 (1880).
Didymella was established by Saccardo in 1880, with the description of Didymella

exigua [42]. These species are plant pathogens and saprobes on a wide range of hosts [42].
In the present study, six isolates were identified as belonging to Didymella. The combined
dataset of LSU, ITS, rpb2, and tub2 with 13 species as ingroup consisted of 2239 charac-
ters (854 for LSU, 488 for ITS, 597 for rpb2, and 300 for tub2, including alignment gaps).
TrN + I was determined to be the best model for the LSU dataset, TIM2ef + I was deter-
mined to be the best model for the ITS dataset, TrN + G was determined to be the best
model for the rpb2 dataset, and TrN + I was determined to be the best model for the tub2
dataset. Ascochyta boeremae (CBS 373.84) and Ascochyta fabae (CBS 524.77) were used as
outgroup taxa.

The best-scoring ML tree with a final likelihood value of −5647.047275 is shown in
Figure 4. The matrix had 242 distinct alignment patterns, with 1.88% undetermined
characters or gaps. The parameters for the model of the combined dataset were as
follows: estimated base frequencies: A = 0.236386, C = 0.243959, G = 0.279575, and
T = 0.240080; substitution rates: AC = 1.269086, AG = 4.594322, AT = 1.024640, CG = 0.692657,
CT = 14.061872, and GT = 1.000000; and gamma distribution shape parameter α = 0.020000.
According to the results of the phylogenetic analyses of this study, our strains were clustered
together with Didymella glomerata, with 98% ML and 1.00 BYPP values (Figure 4).

Didymella glomerata (Corda) Qian Chen & L. Cai, Stud. Mycol. 82: 176 (2015)
(Figure 5).

MycoBank number: MB814105;
≡ Phoma glomerata (Corda) Wollenw. & Hochapfel, Z. Parasitenk. 8: 592. 1936.
≡ Peyronellaea glomerata (Corda) Goid. ex Togliani, Ann. Sperim. Agrar. III 6: 93. 1952.
Associated with twig canker in Prunus persica. Sexual morph: not observed. Asexual

morph: Conidiomata pycnidial, solitary or aggregated, globose or subglobose,
100–240 × 80–220 µm diameter, glabrous, semi-immersed in or superficial on the agar,
papillate, with 1 ostiole. Pycnidial wall, pseudoparenchymatous and composed of iso-
diametric cells, 3–7 layers, outer layers pigmented. Conidiogenous cells 5–10 × 5–9 µm
(av. = 8.7 × 7.6 µm, n = 30), phialidic, hyaline, smooth, mostly ampulliform, some-
times (sub) globose. Conidia 5–8 × 2.5–3.5 µm (av. = 7.1 × 3.6 µm, n = 50), greatly
variable in shape and size, oblong, ovoid or obovate, smooth- and thin-walled, aseptate,
partially guttulate.
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Figure 4. Maximum likelihood (ML) phylogram reconstructed from the combined sequences of LSU,
ITS, rpb2, and tub2 of Didymella isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/PP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Ascochyta fabae (CBS 524.77) and Ascochyta boeremae (CBS 373.84). Isolates from
this study are marked in red, and the type specimens are indicated in bold.
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Figure 5. Didymella glomerata (JZB380117) (A,B) Colony on OA (front and reverse) (C,D) Colony
on MEA (front and reverse) (E,F) Colony on PDA (front and reverse) (G) Pycnidia forming on OA.
(H) Pycnidium. (I) Section through the pycnidium. (J) Section of the pycnidial wall. (K,L) Conidio-
genous cells. (M) Conidia. Scale bars: (H,I)= 50 µm; (J) = 10 µm; and (K–M) = 5 µm.
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Culture characteristics—Colonies on OA, 55–57 mm in diameter after 7 days, margin
regular, smoky grey to grey olivaceous, white near the margin, covered by fluffy, dense,
white to grey aerial mycelia; reverse concolourous and white near the margin. Colonies on
MEA, 68–69 mm in diameter after 7 days, margin regular, covered by floccose, white and
greenish olivaceous aerial mycelia, reverse concolourous, white near the margin. Colonies
on PDA, 76–79 mm in diameter after 7 days, similar to those on MEA but somewhat faster
growing and sparser, reverse concolourous, white margin narrower than those on OA
and MEA.

Material examined—Changping and Miyun Districts, Beijing municipality, China, from
the twig canker of Prunus persica, Aug. 2021. Y Zhou.; Living cultures JZB380117–JZB380122.

Notes—Six isolates from twig spot and gummosis trunk of peach (Prunus persica L.) in
this study were phylogenetically related to Didymella glomerata (Figure 4). Didymella glomer-
ata, known to cause diseases in dicots and conifers, is generally found in the rhizosphere
flora but has recently been identified as a cause of stem canker in peach trees, damping off
and root necrosis in fennel, and stem rot in coriander [49–52]. This is the first report of this
fungus on Prunus persica in China.

Nothophoma Qian Chen & L. Cai, Stud. Mycol. 82: 212 (2015).
This genus was described by Chen et al. [21] and typified with Nothophoma infossa.

There are 23 accepted species in this genus (Index Fungorum 2023). For the taxonomic
treatments of this genus, we followed Keirnan et al. [53]. The combined dataset of
LSU, ITS, rpb2, and tub2 ingroup isolates from seven species consisted of 2228 characters
(848 for LSU, 485 for ITS, 596 for rpb2, and 299 for tub2, including alignment gaps). TrN
was determined to be the best model for the LSU dataset, K80 was determined to be the
best model for the ITS dataset, TIM3 + G was the best model for rpb2, and TrN + G was
the best model for tub2. Didymella protuberans (CBS 391.93) and Didymella protuberans (CBS
381.96) were used as outgroup taxa.

The best-scoring ML tree with a final likelihood value of −4754.240240 is given in
Figure 6. The matrix had 180 distinct alignment patterns, with 6.46% undetermined
characters or gaps. The parameters for the model of the combined dataset were as follows:
estimated base frequencies, A = 0.237873, C = 0.242414, G = 0.279069, and T = 0.240643;
substitution rates, AC = 1.232725 and AG = 3.271098; AT = 1.025485; CG = 0.670080;
CT = 11.394298; and GT = 1.000000; and gamma distribution shape parameter α = 0.020000
(Figure 6).

Nothophoma pruni Chethana, J.Y. Yan, X.H. Li & K.D. Hyde, Mycosphere 10 (1):
520 (2019) Figure 7.

MycoBank number: MB828518.
Associated with twig spot and gummosis trunk of Prunus persica. Sexual morph: not

observed. Asexual morph: Conidiomata pycnidial, solitary or aggregated on agar, globose to
irregularly shaped, black, and ostiolate, measuring 63–240 × 60–230 µm, single and conspic-
uous. Pycnidial wall pale brown, pseudoparenchymatous, composed of isodiametric cells,
3–6 layers, 1–2 outer layers slightly pigmented. Conidiogenous cells are phialidic, hyaline,
doliiform to ampulliform, and variable in size. Conidia 4–7 × 3–4.7 µm (av. = 5.9 × 3.8 µm,
n = 50), variable in shape and size, cylindrical to obovoid or oblong, thin-walled, smooth,
aseptate, hyaline.

Culture characteristics—Colonies on OA 57–60 mm in diameter after 7 days with
regular margins. Aerial mycelium white, floccose to woolly. Immersed mycelium grey–
green olivaceous to deep olivaceous near the colony centre and grey near the margin;
reverse concolourous. Colonies on MEA 36–41 mm in diameter after 7 days, margin regular.
Aerial mycelia covering the whole colony, compact, white to pale grey; reverse concentric
circles of different colours, orange to yellow. Colonies on PDA, 60–66 mm in diameter after
7 days, aerial mycelium sparse, white to grey–green; reverse deep brown, grey near the
margin.

Material examined—Pinggu, Changping, and Haidian districts, Beijing municipality,
China, from twig spot and gummosis trunk of Prunus persica. Mar and Jul 2021. Y Zhou,
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DL Ma, Y Li.; living cultures JZB380123, JZB380125-JZB380132, and JZB380135. Apr 2021.
Y Zhou, DL Ma, Y Li; living culture JZB380124.

Notes—In the present study, 11 isolates from twig spots and gummosis trunks of
peach were phylogenetically closely related to Nothophoma pruni (Figure 6). Nothophoma
pruni has been reported as saprobic on diseased leaves of Prunus avium [54]. This is the first
report of this fungus on the host Prunus persica worldwide.

Nothophoma quercina Qian Chen & L. Cai. in Qian Chen and L. Cai, Stud. Mycology
82: 213 (2015) Figure 8.
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Figure 6. Maximum likelihood (ML) phylogram reconstructed from the combined sequences of LSU,
ITS, rpb2, and tub2 of Nothophoma isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/PP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Didymella protuberans (CBS 391.93) and Didymella protuberans (CBS 381.96).
Isolates from this study are marked in red, and the type specimens are indicated in bold.
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ogy 82: 213 (2015) Figure 8. 

MycoBank number: MB814086. 
Associated with shoot blight and gummosis in Prunus persica. Sexual morph: not 

observed. Asexual morph: Conidiomata pycnidial, solitary or aggregated on agar, globose, 
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Figure 7. Nothophoma pruni (JZB380123) (A,B) Colony on OA (front and reverse) (C,D) Colony
on MEA (front and reverse) (E,F) Colony on PDA (front and reverse) (G) Pycnidia forming on OA.
(H) Pycnidium. (I) Section through the pycnidium. (J–K) Section of the pycnidial wall. (L) Conidia.
Scale bars: (H) = 100 µm; (I–K) = 50 µm; and (L) = 5 µm.
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Figure 8. Nothophoma quercina (JZB380133) (A,B) Colony on OA (front and reverse) (C,D) Colony 
on MEA (front and reverse) (E,F) Colony on PDA (front and reverse) (G) Pycnidia forming on OA. Figure 8. Nothophoma quercina (JZB380133) (A,B) Colony on OA (front and reverse)

(C,D) Colony on MEA (front and reverse) (E,F) Colony on PDA (front and reverse) (G) Pycnidia
forming on OA. (H) Pycnidium. (I) Section through the pycnidium. (J) Section of the pycnidial wall.
(K–N) Conidiogenous cells. (O) Conidia. Scale bars: (H) = 100 µm; (I–N) = 50 µm; and (O) = 5 µm.
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MycoBank number: MB814086.
Associated with shoot blight and gummosis in Prunus persica. Sexual morph: not

observed. Asexual morph: Conidiomata pycnidial, solitary or aggregated on agar, globose,
or peroblate to suboblate, measuring 130–320 × 120–270 µm with a single, conspicuous,
nonpapillate ostiole. Pycnidial wall pale brown, pseudoparenchymatous, composed of
isodiametric cells, 3–5 layers, and 1–2 outer layers that are slightly pigmented. Conidiogenous
cells, 6–10 × 4–8 µm (av. = 8.3 × 6.3 µm, n = 30), phialidic, hyaline, smooth, doliiform to
ampulliform, variable in size. Conidia 4–6 × 3–5 µm (av. = 5.0 × 3.9 µm, n = 50), variable
in shape and size, subglobose to oval or obtuse, thin-walled, smooth, aseptate, initially
hyaline, light brown when mature.

Culture characteristics—Colonies on OA were 61–69 mm in diameter after 7 days
with regular margins. Aerial mycelium white, floccose to woolly. Immersed mycelium
grey–green olivaceous to light olivaceous near the colony centre and white near the margin;
reverse concolourous. Colonies on MEA were 55–75 mm in diameter after 7 days, margins
regular. Aerial mycelia covering the whole colony were compact, white to pale grey, with
some radially furrowed zones; reverse concentric circles of different colours, orange to
yellow and light yellow near the margin. Colonies on PDA were 65–68 mm in diameter
after 7 days, margins regular, covered by floccose, white and greenish olivaceous aerial
mycelia, reverse concolourous, light green near the margin.

Material examined—Pinggu and Haidian districts, Beijing municipality, China, from
shoot blight and gummosis trunk of Prunus persica. May, Jul 2020 and Mar, Jul 2021.
Y. Zhou, DL. Ma, and Y. Li, living cultures JZB380133, JZB380134, and JZB380136-JZB380144.

Notes—In this study, 11 isolates obtained from shoot blight and gummosis trunk
of peach (Prunus persica) were phylogenetically closely related to Nothophoma quercina
(Figure 6). Morphologically, our isolates share the same characteristics as given in the
type species description [21]. Nothophoma quercina has been reported as the main pathogen
causing branch blight [55,56]. This is the first report of this fungus infecting the host Prunus
persica in China.

Dothidiomycetes families incertae sedis.
For taxonomic treatments, we followed Hongsanan et al. [24].
Botryosphaeriaceae Theiss. & Syd. Annales Mycologici 16 (1–2): 16 (1918).
Botryosphaeriaceae includes diverse pathogenic members that are classified as plant

opportunistic fungal pathogens [57,58]. Species of Botryosphaeriaceae cause gummosis
and shoot blight disease in peach [59–63]. These species are also important pathogens
of grapevines and are associated with a variety of diseases [64]. Additionally, more than
20 species of Botryosphaeriaceae have been reported to cause Botryosphaeria dieback [65]. For
taxonomic treatments, we followed Hongsanan et al. [24] and Wu et al. [66].

Botryosphaeria Ces. & De Not., Comment. Soc. Crittog. Ital. 1 (4): 211 (1863) [MB#635].
For the taxonomic treatment of this genus, we followed Zhang et al. [67]. The combined

dataset of ITS, tef1, and tub2 ingroup isolates from nine species consisted of 1436 characters
(611 for ITS, 362 for tef1, and 463 for tub2, including alignment gaps). TrN + G was
determined to be the best model for the ITS dataset, TPM2uf + I was the best model for the
tef1 dataset, and TIM3 + G was the best model for the tub2 dataset. Diplodia corticola (CBS
112546) and Diplodia corticola (CBS 112549) were used as outgroup taxa.

The best-scoring ML tree with a final likelihood value of −3605.559999 is shown
in Figure 9. The matrix had 327 distinct alignment patterns, 16.87% of which were un-
determined characters or gaps. The parameters for the model of the combined dataset
were as follows: estimated base frequencies, A = 0.216286, C = 0.301284, G = 0.257502, and
T = 0.224928; substitution rates, AC = 1.420115, AG = 2.115530, AT = 1.012019,
CG = 1.284585, CT = 3.876955, and GT = 1.000000; and gamma distribution shape pa-
rameter α = 0.319888 (Figure 9).
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Figure 9. Maximum likelihood (ML) phylogram reconstructed from the combined ITS, tef1, and tub2
sequences of Botryosphaeria isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/BPP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Diplodia corticola (CBS 112546) and Diplodia corticola (CBS 112549). Isolates
from this study are marked in red. and the type specimens are indicated in bold.
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Botryosphaeria dothidea (Moug.) Ces. & De Not., Comm. Soc. crittog. Ital. 1(fasc. 4):
212 (1863) (Figure 10).
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Figure 10. Botryosphaeria dothidea (JZB310251). (A,B) Colony on PDA (front and reverse); (C,D): Appearance
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MycoBank number: MB183247;
Basionym: Sphaeria dothidea Moug., In: Fries, Syst. Mycol. (Lundae) 2(2): 423. 1823.
= Botryosphaeria berengeriana De Not., Sfer. Ital. 82. 1863 [1864].
= Fusicoccum aesculi Corda, In: Sturm, Deutschl. Fl., Abth. 3, 2: 111. 1829.
= Sphaeria coronillae Desm., Annls Sci. Nat., Bot., sér. 2 13: 188. 1840.
≡ Macrophoma coronillae (Desm.) Höhn., Ber. Deutsch. Bot. Ges. 28:479. 1910.
≡ Macrophomopsis coronillae (Desm.) Petr., Annls mycol. 22(1/2): 108. 1924.
≡ Dothiorella coronillae (Desm.) Petr., Sydowia 16(1–6): 188. 1963.
≡ Fusicoccum coronillae (Desm.) Vanev. & Aa, In: van der Aa & Vanev, A Revision of

the Species Described in Phyllosticta (Utrecht): 192. 2002.
= Phyllosticta divergens Sacc., Malpighia 5: 274. 1891.
Associated with Prunus persica branch canker. Sexual morph: not observed. Asexual

morph: Conidiomata pycnidial, solitary, globose to ovoid, dark brown to black, embedded
in needle tissue, semi-immersed to superficial, with a central ostiole. Conidiogenous cells
holoblastic, discrete, hyaline, cylindrical to lageniform, phialidic with periclinal thickening,
11–18 × 2–4 µm (av. = 16.1 × 3.1 µm, n = 30). Paraphyses not observed. Conidia hyaline,
thin-walled, smooth with granular contents, aseptate, narrowly or irregularly fusoid, base
subtruncate to bluntly rounded, apex subobtuse, 18–28 × 4–7 µm (av. = 23.9 × 5.8 µm,
n = 50; L/W = 4.1).

Culture characteristics—Colonies on PDA had fluffy aerial mycelia with irregular
margins, with appressed moderately dense mycelial mats that were initially white and then
smoky grey to dark olivaceous, covering the dish after 5 days at 25 ◦C in the dark.

Material examined—Pinggu, Changping, and Haidian districts, Beijing municipality,
China, from branch canker of Prunus persica, May 2020, May 2021, and July 2021. Y Zhou
& Z.Z Zhi; living cultures JZB310240-JZB310243, JZB310245-JZB310258, and JZB310267-
JZB310276; Hebei Province, Qianghuangdao City, Changli County, from branch canker
of Prunus persica, September 2021. Y Zhou, living cultures JZB310261, JZB310262, and
JZB310263; Guizhou Province, Guiyang City, Kaiyang County, from branch canker of
Prunus persica, Apr. 2021. Y Zhou & Y Li, living cultures JZB310244, JZB310254, JZB310255,
JZB310264, JZB310265, and JZB310266; and Sichuan Province, Mianyang City, from gum-
mosis trunk of Prunus persica, September 2021. Y Zhou & JH Jiang, living cultures
JZB310259, JZB310260.
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Note—In the phylogenetic analysis of the present study, 15 isolates from branch canker
and gummosis trunk of peach from four provinces in China were clustered together with
Botryosphaeria dothidea (Figure 9). Further, these isolates were morphologically similar
to those given in the type species description. Botryosphaeria dothidea is an opportunistic
pathogen with a wide host range [68]. It has been reported to cause shoot blight [63], and it
is also related to gummosis-causing agents [62].

Diplodia Fr., Ann. Sci. Nat., Bot. Sér. 2, 1: 302 (1834).
For the taxonomic treatment of this genus, we followed Zhang et al. [67]. The combined

dataset of ITS, tef1, and tub2 ingroup isolates of 13 species consisted of 1261 characters
(540 for ITS, 300 for tef1, and 421 for tub2, including alignment gaps). TPM3 + I + G was
determined to be the best model for ITS, TrN + G was determined to be the best model
for tef1, and TrN + I + G was the best model for the tub2 dataset. Lasiodiplodia theobromae
(CBS 164.96) was used as the outgroup taxon.

The best-scoring ML tree with a final likelihood value of −3415.055016 is given in
Figure 11. The matrix had 270 distinct alignment patterns, with 7.54% undetermined
characters or gaps. The parameters for the model of the combined dataset were as
follows: estimated base frequencies, A = 0.200294, C = 0.314841, G = 0.255463, and
T = 0.229402; substitution rates, AC = 0.879909, AG = 2.534595, AT = 1.049732, CG = 1.056783,
CT = 5.084602, and GT = 1.000000; and gamma distribution shape parameter α = 0.104584
(Figure 11).
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Figure 11. Maximum likelihood (ML) phylogram reconstructed from the combined ITS, tef1, and
tub2 sequences of Diplodia isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/BPP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Lasiodiplodia theobromae (CBS 164.96). Isolates from this study are marked in
red, and the type specimens are indicated in bold.
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Diplodia seriata De Not., Mém. R. Accad. Sci. Torino, Ser. 2 7: 26 (1845) Figure 12.
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Figure 12. Diplodia seriata (JZB310241) (A,B) Colony on PDA (front and reverse); (C) Appearance
of conidiomata on PDA; (D,E) Conidiogenous cells; (F,G) Conidia; Scale bars: (D–F) = 10 µm and
(G) = 5 µm.

MycoBank number: MB180468.
Associated with twig spots on Prunus persica. Sexual morph: not observed. Asexual

morph: Conidiomata pycnidial, solitary, globose to ovoid, dark brown to black, embed-
ded, semi-immersed to superficial. Conidiogenous cells hyaline, smooth, thin-walled, and
discrete, producing a single conidia at the tip, proliferating internally and giving rise to
periclinal thickening or proliferating concurrently, forming 2–3 annellations, 8–15 × 3–6 µm
(av. = 11.7 × 4.6 µm, n = 30). Conidia hyaline, thin-walled, smooth, aseptate, ovoid, apex
subobtuse, becoming brown when mature, 19–28 × 9–12 µm (av. = 23.2 × 10.4 µm, n = 50;
L/W = 2.2).

Culture characteristics—Colonies on PDA had fluffy aerial mycelia with irregular
margins, appressed moderately dense mycelial mats and smoky grey to dark olivaceous,
covering the dish after 5 days at 25 ◦C in the dark.

Material examined—Pinggu district, Beijing municipality, China, from twig spots on
Prunus persica, April 2020. Y Zhou (living culture JZB310240-JZB31043).

Notes—In the present study, we examined the morphology and phylogeny of samples
of peach twig spots from China and identified these isolates as Diplodia seriata (Figure 11).
Diplodia seriata (syn. B. obtusa) has been reported in many countries and is recognized as an
important pathogen of stone, pome, and soft fruit trees, causing cankers, leaf spots, and
black fruit rot [69–72].

Neofusicoccum Crous, Slippers & A.J.L. Phillips, Stud. Mycol. 55: 247 (2006).
Neofusicoccum was introduced by Crous et al. [73] as a species that is morphologically

similar to but phylogenetically distinct from Botryosphaeria and thus could no longer
be included in that genus. For the taxonomic treatment of this genus, we followed
Zhang et al. [67]. The combined dataset of ITS, tef1, and tub2 included 24 ingroup iso-
lates from 11 species and consisted of 1406 characters 542 for ITS, 441 for tef1, and
423 for tub2, including alignment gaps. TIM1 + I was determined to be the best model for
the ITS dataset, HKY + G was determined to be the best model for the tef1 dataset, and
TrN + G was determined to be the best model for the tub2 dataset. Botryosphaeria dothidea
(CBS 115476) was used as the outgroup taxon.

The best-scoring ML tree with a final likelihood value of −2311.055412 is given in
Figure 13. The matrix had 101 distinct alignment patterns, with 8.20% undetermined
characters or gaps. The parameters for the model of the combined dataset were as
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follows: estimated base frequencies, A = 0.204892, C = 0.316100, G = 0.266872, and
T = 0.212136; substitution rates, AC = 0.804456, AG = 7.315164, AT = 3.072031, CG = 1.357888,
CT = 9.437879, and GT = 1.000000; and gamma distribution shape parameter α = 1.010866
(Figure 13).
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Figure 13. Maximum likelihood (ML) phylogram reconstructed from the combined ITS, tef1, and
tub2 sequences of Neofusicoccum isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/BPP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Botryosphaeria dothidea (CBS 115476). Isolates from this study are marked in
red, and the type specimens are indicated in bold.

Neofusicoccum occulatum Sakalidis & T. Burgess, Molecular Phylogenetics and Evolu-
tion 60 (3): 333–344 (2010) (Figure 14).

MycoBank number: MB518777.
Associated with twig canker on Prunus persica. Sexual morph: not observed. Asexual

morph: Conidiomata pycnidial, produced on PDA, solitary, globose to ovoid, dark brown
to black, 924–2566 µm. Conidiogenous cells discrete, hyaline, cylindrical to lageniform,
7–25 × 1.6–3.4 µm (av. = 12.8 × 2.5 µm, n = 30). Conidia, hyaline, smooth, fusiform to
ellipsoidal with an obtuse apex, thin-walled, septate, 14–21 × 6–10 µm (av. = 18 × 7 µm,
n = 50; L/W = 2.5).
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to be the best model for the ITS dataset, TrN + I for the LSU dataset, and HKY + G was 
determined to be the best model for the tef1 dataset. Barriopsis iraniana (CBS 124698) was 
used as the outgroup taxon. 

The best-scoring ML tree with a final likelihood value of −2724.623212 is given in 
Figure 15. The matrix had 144 distinct alignment patterns, 19.13% of which were unde-
termined characters or gaps. The parameters for the model of the combined dataset were 
as follows: estimated base frequencies, A = 0.225969, C = 0.265270, G = 0.277126, and T = 
0.231634; substitution rates, AC = 0.866717, AG = 2.192592, AT = 0.532373, CG = 0.670797, 
CT = 5.651745, and GT = 1.000000; and gamma distribution shape parameter α = 0.836999 
(Figure 15). 

 

Figure 14. Neofusicoccum occulatum (JZB3120010) (A,B) Colony on PDA (front and reverse);
(C,D) appearance of conidiomata on PDA; (E) conidia developing on conidiogenous cells; (F,G)
conidia; Scale bars: (E) = 20 µm; (F) = 5 µm; and (G) = 10 µm.

Culture characteristics—Colony on PDA superficial, grey, fluffy, reverse dark brown
to black, and colonies covering the 90 mm diameter Petri dish were incubated for 5 days in
the dark at 25 ◦C.

Material examined—Changping district, Beijing municipality, China, from the twig
canker of Prunus persica, Aug. 2021. Y Zhou (living cultures JZB3600010- JZB3600012).

Notes—In the phylogenetic analysis of the present study, three isolates obtained from
Prunus clustered together with the Neofusicoccum occulatum type species (CBS128008). Mor-
phologically, our isolates have similar characteristics to the Ne. occulatum type species [74],
thus we identified our isolates as Ne. occulatum. Neofusicoccum occulatum was reported as
the pathogen causing shoot blight in Platycladus orientalis [74]. In the present study, we
presented the morphology and phylogeny of peach twig canker samples from China and
identified these isolates as Neofusicoccum occulatum (Figures 13 and 14).

Phaeobotryon Theiss. & Syd., Annales Mycologici 13 (3–4): 664 (1915).
Phaeobotryon was introduced by Theiss. and Syd. to accommodate Dothidae cercidis

as Phaeobotryon cercidis and the species which are phylogenetically and morphologically
distinguished from the other genera in Botryosphaeriaceae [57,75]. For the taxonomic
treatment of this genus, we followed Zhang et al. [67]. The combined dataset of ITS, LSU,
and tef1 from 21 ingroup isolates of seven species consisted of 1272 characters (449 for
ITS, 558 for LSU, and 265 for tef1, including alignment gaps). TIM1ef + I was determined
to be the best model for the ITS dataset, TrN + I for the LSU dataset, and HKY + G was
determined to be the best model for the tef1 dataset. Barriopsis iraniana (CBS 124698) was
used as the outgroup taxon.

The best-scoring ML tree with a final likelihood value of −2724.623212 is given in
Figure 15. The matrix had 144 distinct alignment patterns, 19.13% of which were un-
determined characters or gaps. The parameters for the model of the combined dataset
were as follows: estimated base frequencies, A = 0.225969, C = 0.265270, G = 0.277126, and
T = 0.231634; substitution rates, AC = 0.866717, AG = 2.192592, AT = 0.532373,
CG = 0.670797, CT = 5.651745, and GT = 1.000000; and gamma distribution shape pa-
rameter α = 0.836999 (Figure 15).

Phaeobotryon rhois C.M. Tian, X.L. Fan & K.D. Hyde, Phytotaxa 205(2): 95 (2015)
(Figure 16).
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MycoBank number: MB 811599; Facesoffungi number: FoF 00596. 
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at 25 °C. 
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JZB3600007-JZB3600009. 
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(Figure 16). Phaeobotryon rhois is known to cause canker and dieback disease in Rhus 
typhina in China [76]. This is the first report of P. rhois being associated with twig canker 
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Figure 15. Maximum likelihood (ML) phylogram reconstructed from the combined sequences of ITS,
LSU, and tef1 of Phaeobotryon isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/BPP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Barriopsis iraniana CBS 124698. Isolates from this study are marked in red, and
the type specimens are indicated in bold.
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Figure 16. Phaeobotryon rhois (JZB3600007) (A,B) Colony on PDA (front and reverse); (C,D) Appear-
ance of conidiomata on PDA; (E) Germinating conidia; (F,G) Conidia developing on conidiogenous
cells; (H–J) Conidia; Scale bars: (E) = 20 µm; (F) = 10 µm; (G) = 20 µm; (H,I) = 5 µm; and (J) = 10 µm.



J. Fungi 2024, 10, 217 20 of 31

MycoBank number: MB 811599; Facesoffungi number: FoF 00596.
Associated with twig canker of Prunus persica Sexual morph: not observed. Asexual

morph: Conidiomata pycnidial, produced on PDA, solitary, globose to ovoid, dark brown
to black, 274.73–1155 µm. Conidiogenous cells discrete, hyaline, cylindrical to lageniform,
6–18 × 3–7 µm (av. = 13.3 × 4.3 µm, n = 30). Conidia ellipsoid to oblong or subcylindrical
or obovoid, smooth to verruculose, moderately thick-walled, guttulate, ends rounded,
initial hyaline, aseptate, becoming brown, 1-septate when mature, 18–29 × 10–16 µm
(av. = 25 × 13 µm, n = 50, L/W = 1.9).

Culture characteristics—The colonies were originally white and produced dark green
to black pigments after they had been incubated for 7–10 days. The texture was felty with
an appressed mycelial mat and fluffy aerial mycelia near the centre, with regular edges.
Colonies reached the 90 mm diameter of a Petri dish after 5 days in the dark at 25 ◦C.

Material examined—Pinggu district, Beijing municipality, China, from the twig canker
of Prunus persica, Aug. 2021. Y Zhou, DL Ma, and ZZ He, living cultures JZB3600007-
JZB3600009.

Notes—In the present study, we examined the morphology and phylogeny of peach
twig canker samples from China and identified these isolates as Phaeobotryon rhois
(Figure 16). Phaeobotryon rhois is known to cause canker and dieback disease in Rhus
typhina in China [76]. This is the first report of P. rhois being associated with twig canker
disease in peach.

Lasiodiplodia Ellis & Everh., Bot. Gaz. 21: 92 (1896).
Lasiodiplodia species are cosmopolitan and have an extensive host and geographical

range. They are pathogenic on economically important fruit crops [57]. For the taxonomic
treatment of this genus, we followed Zhang et al. [67] and Xia et al. [77]. The combined
ITS, tef1, and tub2 dataset of 79 ingroup strains from 43 species consisted of 1158 characters,
(415 for ITS, 332 for tef1, and 411 for tub2, including alignment gaps). TVM + I was
determined to be the best model for the ITS dataset, HKY + I + G was determined to be the
best model for the TEF dataset, and TrN + I was determined to be the best model for the
tub2 dataset. Diplodia seriata (CBS 112555) and Diplodia mutila (CMW 7060) were used as the
outgroup taxon.

The best-scoring ML tree with a final likelihood value of −5119.098465 is given in
Figure 17. The matrix had 357 distinct alignment patterns, 13.73% of which were unde-
termined characters or gaps. The parameters for the model of the combined dataset were
as follows: estimated base frequencies, A = 0.209134, C = 0.307908, G = 0.255624, and
T = 0.227335; substitution rates, AC = 1.006140, AG = 3.800814, AT = 1.344431, CG =
0.991903, CT = 5.144516, and GT = 1.000000; and gamma distribution shape parameter α =
0.798124 (Figure 17).

Lasiodiplodia pruni Y. Zhou, W. Zhang & J.Y. Yan, sp. nov., (Figure 18).
MycoBank number: MB 852445.
Etymology—The name refers to the host genus, Prunus.
Holotype-JZBH3130029.
Associated with gummosis trunk in Prunus persica. Sexual morph: not observed. Asex-

ual morph: Conidiomata pycnidial produced on PDA, superficial or rarely semi-immersed,
black, solitary, globose to subglobose with a central ostiole, with or without papilla. Conid-
iogenous cells 10–23 × 3–6.8 µm (av. = 17.7 × 6.6 µm, n =30) hyaline, smooth, cylindrical,
holoblastic, Conidia initially hyaline, thick-walled, had a wall 0.6–1.1 µm thick, ellipsoid to
ovoid with a rounded or slightly tapered apex, 12.8–16.4 × 6.4–9.2 µm (av. = 14.7 × 7.8 µm,
n = 50, L/W = 1.8), then turn brown with a median septum and longitudinal striations
when mature, 11.9–17.1 × 6.6–8.7 µm (av. 14.2 × 7.6 µm, n = 50, L/W = 1.87).
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Lasiodiplodia pruni Y. Zhou, W. Zhang & J.Y. Yan, sp. nov., (Figure 18). 
MycoBank number: MB 852445. 
Etymology—The name refers to the host genus, Prunus.  
Holotype-JZBH3130029. 
Associated with gummosis trunk in Prunus persica. Sexual morph: not observed. 

Asexual morph: Conidiomata pycnidial produced on PDA, superficial or rarely 
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Figure 17. Maximum likelihood (ML) phylogram reconstructed from the combined sequences of ITS,
tef1, and tub2 of Lasiodiplodia isolates. Bootstrap support values for ML and maximum parsimony
(MP) greater than 50% and Bayesian posterior probabilities greater than 0.70 are indicated above the
branches as ML BS/BPP/MP BS. The scale bar represents the expected number of changes per site.
The tree is rooted with Diplodia seriata (CBS 112555) and Diplodia mutila (CMW 7060). Isolates from
this study are marked in red, and the type specimens are indicated in bold.
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Figure 18. Lasiodiplodia pruni (JZB3130029, ex type) (A,B) Colony on PDA (front and reverse);
(C) Appearance of conidiomata on PDA; (D) Conidia developing on conidiogenous cells; (E,F) Young,
hyaline conidia; (G) Mature, brown, 1-septate conidia; Scale bars: (D) = 20 µm and (E–G) = 10 µm.

Culture characteristics—Colonies on PDA had fluffy aerial mycelia, with an appressed
mycelial mat that was sparse to moderately dense, a few cottony aerial mycelia reaching
the lid of the Petri dish, irregular margins, and smoky grey; additionally, colonies reached
the 90 mm diameter Petri dish after 3 days in the dark at 25 ◦C.

Materials examined—China, Anhui Province, Liuan City, gummosis trunk of peach
(Prunus persica L.). Sep. 2023, Y Zhou, (holotype JZBH3130029 as dry culture and JZBH3130030
and JZBH3130031 as dry cultures); ex-type living culture JZB3130029, living cultures
JZBH3130030 and JZB3130031.

Notes—In the phylogenetic analysis, three isolates from the present study developed a
particular sister relationship with L. acacia with 88% ML, 81% MP bootstrap, and 1.00 BYPP
values. Morphologically our isolates are different from L. acaciae, by conidial sizes where
our isolates develop smaller conidia (av. = 14.2 × 7.6 µm) than L. acaciae (CBS 136434)
(av. = 27.3 × 12.9 µm) [67]. The nucleotide differences between JZB3130029 and L. acaciae
(CBS 136434) were ITS: 0.47% (2/420 bp), tef1: 3.15% (14/444 bp), and tub2: 0% (0/447 bp).
Based on the phylogenetic analysis and morphology, we introduce our isolates as Lasiodiplo-
dia pruni, a novel species from China.

Togniniaceae Réblová, L. Mostert, W. Gams & Crous, Stud. Mycol. 50(2): 540 (2004).
Phaeoacremonium W. Gams, Crous & M.J. Wingf., Mycologia 88 (5): 789 (1996). [MB#27679].
Phaeoacremonium comprises common pathogens that cause stem and branch diseases in a

wide range of woody hosts [78]. In 2021, P. minimum was first reported as a pathogen causing
esca disease in China [79]. In this study, we followed Ye et al. [23] for taxonomic treatments.

The combined dataset of act and tub2 contained 25 ingroup isolates from 12 species
and consisted of 880 characters (259 for act and 621 for tub2, including alignment gaps).
HKY + G was determined to be the best model for the act dataset, and TPM2uf + G
was the best model for the tub2 dataset. Pleurostomophora richardsiae (CBS 270.33) was
used as the outgroup taxon. The best-scoring ML tree with a final likelihood value of
−4698.584463 is given in Figure 19. The matrix had 391 distinct alignment patterns,
with 6.55% undetermined characters or gaps. The parameters for the model of the com-
bined dataset were as follows: estimated base frequencies, A = 0.204162, C = 0.311249,
G = 0.238989, and T = 0.245600; substitution rates, AC = 1.158313, AG = 4.407917,
AT = 1.364022, CG = 0.995655, CT = 4.976526, and GT = 1.000000; and gamma distribution
shape parameter α = 0.505328 (Figure 19).
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Phaeoacremonium scolyti L. Mostert, Summerb. & Crous, J. Clin. Microbiol. 43 (4):
1763 (2005) (Figure 20).
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MycoBank number: MB357048.
Associated with gummosis trunk of Prunus persica. Sexual morph: not observed.

Asexual morph: Mycelia consist of branched septate hyphae. Conidiophores mostly short
and usually unbranched, subcylindrical to navicular. Type I phialides cylindrical and
occasionally swollen at 2.4–7.1 × 1.0–1.9 µm (av. 5.29 × 1.38 µm, n = 30). Type II phialides
predominant, elongate-ampulliform, attenuated or constricted at the base, or navicular
tapering towards the apex, 7–14 × 1.5–2.7 µm (av. 9.28 × 1.89 µm, n = 30); type III phialides
subcylindrical, subulate to elongate-ampulliform, 13–25 × 1.5–2.5 µm (av. 17.46 × 1.94 µm,
n = 30), tapering gradually to the apex. Conidia oblong-ellipsoidal or obovoid, occasionally
reniform or allantoid, 2.0–4.8 × 1.1–3.0 µm (av. 3.20 × 1.92 µm, n = 50, L/W=1.67).

Culture characteristics—colonies on PDA were flat, felty to woolly, with irregular
edges at a radius of 10–12 mm after 9 days at 25 ◦C; after 9 days, the cells became pinkish
white to hyaline/translucent.

Materials examined—China, Liaoning Province, Huludao City, gummosis trunk of
Prunus persica L., Sep. 2022, Y Zhou, living cultures JZB3190015-JZB3190017.

Notes—Three isolates obtained from gummosis trunk disease of peach (Prunus persica)
were phylogenetically closely related to P. scolyti. P. scolyti is also known as V. vinifera in
South Africa [80,81]. This fungus had the broadest host range and was found on the Prunus
species sampled [82].

4. Discussion

China is the world’s largest producer of peach. The peach orchards in China are
commonly affected by cankers, leaf spots, and fruit rot diseases. However, compared to
fruit rot and other fruit diseases, trunk disease is usually disregarded even though trunk
diseases directly affect the lifespan of the plant. In the present study, we focused on trunk,
branch, and twig-inhabiting fungi, and 85 isolates were obtained from diseased peach
trunks, branches, and twigs. The isolates were identified as 10 fungal species belonging
to nine genera using phenotypic characteristics and a multilocus phylogeny. Among
them, two species were identified as new, three species were reported on peach in China
for the first time, and four species were reported on peach for the first time worldwide.
Among these isolates, Didymellaceae and Botryosphaeriaceae were the most common taxa,
and Didymellaceae (42.4%) and Botryosphaeriaceae (54.1%) accounted for more than 90% of
the total isolates.

Didymellaceae is a species-rich family that features a diverse range of fungi that show-
case global distribution patterns. Additionally, many of these fungi are economically
important plant pathogens [42]. We isolated and identified species belonging to three
Didymellaceae genera, and Nothophoma was the most frequently isolated genus. Species
belonging to this genus are pathogens, endophytes, and saprobes on economically im-
portant crops and forest trees [54]. Nothophoma quercina (syn. Phoma fungicola) was the
main pathogen causing branch blight [55,56]. This fungus produces abundant pycnidia on
plant residues, which can subsequently become the primary source of infection. Under
favourable conditions, such as cloudy and cool weather (moisture above 70% and tempera-
ture between 20 and 25 ◦C), the fungus can immediately asexually reproduce and kill the
host [83]. Nothophoma pruni has been reported to be a saprobe on diseased leaves of Prunus
avium [54]. In this study, we first isolated Nothophoma pruni from twig spot and gummosis
trunk samples of peach from around the world. N. quercina was first isolated from shoot
blight and gummosis trunk samples of peach in China.

Ascochyta was introduced by Libert in 1830, with A. pisi described as a type species [84].
Some of the species have been reported as plant pathogens; Ascochyta syringae causes
Ascochyta blight of lilac (Syringa vulgaris) in America, Australia, and Europe [46], and
it has been isolated mostly from soil [47]. In the present study, A. prunus was isolated
from twig canker and branch canker samples of P. persica as a novel species. Ascochyta
prunus was distinguished by its conidial length compared to A. pisi (CBS 122785) and A. pisi
(CBS 122751).
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Didymella glomerata (former name Phoma glomerata) is a globally distributed soil fungus
that has been isolated from various plants (more than 100 host plant genera). Generally, it
is considered a secondary invasive or opportunistic pathogen [18]. Didymella glomerata is
associated with stem canker of peach, damping off, and root necrosis in fennel and stem rot
of coriander [49–52]. It has also been reported to be a mycoparasite of powdery mildew [85].
Didymella glomerata as P. glomerata has been recorded as an endophytic fungus from Korean
pine (Pinus koraiensis) leaves [86]. It has also been associated with the pea “Ascochyta blight
complex” in Australia [87]. In this study, we first isolated D. glomerata from twig spot and
gummosis trunk samples from peach worldwide.

Botryosphaeriaceae harbours a collection of fungi that exhibit considerable diversity in
terms of morphology; these fungi include endophytic, pathogenic, and saprobic variants
that primarily affect woody plants. The frequency with which these fungi are involved
with plant diseases is substantial. Most species of Botryosphaeria are considered latent plant
pathogens that cause dieback, cankers, gummosis, leaf spots, or fruit rot on many woody
plants, including pear, grape, mango, olive, eucalyptus, maple, oak, and almond [57].
These species are important pathogens of peach and are associated with a series of diseases,
including gummosis [59–61] and shoot blight [63]. Botryosphaeria dothidea is one of the most
common species of Botryosphaeriaceae and has been reported in hundreds of plant species
worldwide [57]. According to a previous study, B. dothidea causes perennial cankers in
peach tree trunks, branches, and shoots [57]. Gummosis is a common disease of peach that
was first observed in the 1970s in Fort Valley, GA, and the causal agent was first identified
as B. dothidea [59]. A subsequent report revealed that B. dothidea, B. rhodina, and B. obtusa
cause peach tree gummosis in Georgia [60]. Chen [61] first reported the occurrence of
B. dothidea causing gummosis of peach trees in China. Wang reported that Lasiodiplodia
theobromae or Diplodia seriata also cause peach tree gummosis in China [62]. In the present
study, we isolated B. dothidea from samples collected from four provinces in China, which
presented branch canker and gummosis trunk symptoms.

Diplodia is a common pathogen on a wide range of hosts. Diplodia seriata is associated
with olive plants in Tunisia [69] and Croatia [70], and in Uruguay, it was isolated from
grapevine [71], apple [72], and peach [88]. Diplodia mutila was reported as a new record for
olive in Uruguay. Previously, this species was isolated only from pear [89]. In the present
study, we isolated D. seriata from peach twig spot samples. Neofusicoccum occulatum was
reported as the pathogen causing shoot blight in Platycladus orientalis [74]. Ma et al. [90]
first reported that N. occulatum was associated with Dendrobium chrysanthum. Neofusicoccum
occulatum was reported as a new record on olives worldwide [89]. It was also described
in Australia to affect Eucalyptus and Wollemia nobilis [91] and subsequently found in blue-
berry [92]. In this study, we isolated N. occulatum from twig canker of peach. Phaeobotryon
was introduced by Theissen & Sydow [75]. Phaeobotryon rhois was previously reported as
a pathogen associated with cankers on Rhus typhinain in northwestern China [76]. Zhu
et al. reported this species from peach on Mount Dongling, Beijing, China [93]. In addi-
tion, Phaeobotryon rhois has been reported from various hosts including Dioscoreanipponica,
Platycladus orientalis, and Rhamnus davurica [94]. In this study, we extended its host range
to peach.

Lasiodiplodia is commonly associated with diseases of agricultural and forestry crops
and has a wide global distribution. This genus is typified by L. theobromae. In the present
study, we introduce a novel species closely related to L. acacia. Zhang et al. [67] reported
L. acacie, which was isolated for the first time from Acacia sp. Identification and char-
acterization of Lasiodiplodia species have become challenging recently. Previous stud-
ies have mentioned that morphology and phylogeny play an important role in species
delineation [37,77]. In addition, some studies have proposed that Lasiodiplodia species
might have host specificity as well [77]. However, pathogenicity assays are required to
understand the relationship of the novel species with the gummosis disease in peach.

Phaeoacremonium is associated with stunted growth and dieback in various woody
hosts. Damm et al. [82] isolated Phaeoacremonium species from necrotic woody tissue of
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Prunus spp. (plum, peach, nectarine, and apricot) from the growing areas of different
stone fruits in South Africa. In this study, we isolated P. scolyti from peach with gummosis
trunk disease.

Based on the results above, it is evident that peach trunk disease is a complex disease
that might be caused by different fungal species. These fungal taxa may have varying
impacts on peach. However, future studies are required to understand the infection mech-
anisms and co-infection of these species that lead to peach trunk disease in China. A
similar observation has been reported for grapevine woody pathogens. Kraus [95] re-
ported that grapevine wood is a highly complex habitat, with the simultaneous presence
of plant pathogens and beneficial, potentially protective fungi. Pathogenic fungi can
shift their biotrophic mode from pathogenic to saprotrophic and can become active again
under favourable conditions, thus serving as the primary source of inoculation within
a vineyard [96]. Therefore, it is important to conduct pathogenicity tests to discern the
roles of saprotrophs, endophytes, and pathogens and to investigate the interactions be-
tween different communities. Rather than focusing on a single peach branch disease,
our research included a comprehensive examination of the various fungi responsible for
causing the main symptoms of peach branch diseases throughout China in recent years.
More comprehensive field investigations and pathogenicity tests will be implemented in
the future.

Overall, early detection and development of management strategies for the correct
species identification are important in plant pathology [97]. The present study allowed us
to gain a better understanding of the fungal communities associated with peach branch
diseases and their roles in the ecosystem. Our results revealed that there was a high
diversity of fungi associated with peach branch diseases, with each disease type being
dominated by a specific set of fungal species. Additionally, our study revealed that some
fungi were present in multiple disease types, suggesting that they may play a role in the
progression of multiple diseases. These findings highlight the intricate and complex nature
of fungal communities associated with peach branch diseases and emphasize the need for
further investigation to fully understand the ecological roles and interactions of fungal
communities in peach orchard ecosystems.
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