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Abstract: In 2016, infestation of an exotic polyphagous pest, the rugose spiraling whitefly (RSW),
Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), was documented on coconut for the
first time in India. Instantaneously, RSW has garnered wide attention owing to its damage severity
and rapid spread across the coconut-growing regions of the country. Hence, an attempt was made
to devise a sustainable integrated pest management (IPM) module using biological control agents
as a mainstay component. The present study documented the identification and characterization
of a potential entomopathogenic fungal isolate for the management of RSW. An entomopathogenic
fungus isolated from nymphal cadavers of RSW was identified as Simplicillium lanosoniveum based
on morphological and phylogenetic analyses. A gradient of five conidial concentrations (1 × 104,
1 × 105, 1 × 106, 1 × 107 and 1 × 108 conidia/mL) of the S. lanosoniveum were tested against eggs,
first instars, second to third instars and pupae of RSW. Results revealed that S. lanosoniveum is highly
virulent to all developmental stages of RSW by causing mortality rates of 95.20%, 87.33%, 85.38%
and 72.85%, in eggs, initial, middle and later instar nymphs of RSW, respectively, at the highest
tested concentration (1 × 108 conidia/mL) at seven days after exposure. The LC50 and LT50 values
of S. lanosoniveum were 4.72 × 104, 4.94 × 104, 5.11 × 105, 5.92 × 105 conidia/mL and 4.27, 4.86,
4.56, 5.89 days against eggs, initial, middle and later instar nymphs of RSW, respectively. Further,
preliminary field trials with S. lanosoniveum strain at 1 × 108 conidia/mL exhibited a significant
reduction in the egg and nymphal population by 57.8% and 56.3%, respectively. This report thus
demonstrated that the newly isolated S. lanosoniveum is an effective pathogen at suppressing all the
developmental stages of RSW. This is the first record of S. lanosoniveum infecting RSW, and it has a
great potential to be developed as a mycoinsecticide.

Keywords: plantation; environmental safety; whitefly; invasive pest; mycoinsecticide; entomopatho-
genic fungi

1. Introduction

Rugose Spiraling Whitefly (RSW), Aleurodicus rugioperculatus Martin (Hemiptera: Aley-
rodidae) is an introduced pest, whose infestation on coconut was reported for the first
time from Pollachi, Tamil Nadu (10.6609◦ N, 77.0048◦ E) and Palakkad, Kerala (10.7867◦ N,
76.6548◦ E) state in India [1]. RSW infestation on coconut was first described from Be-
lize [2], and Central America is believed to be the centre of origin for the pest. RSW
is a highly polyphagaous pest with more than 118 hosts belonging to 43 diverse plant
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families. Among the hosts, palms constitute 22%, followed by Bursera simaruba (16%),
Calophyllum spp., (10%), avocado (9%), black olive (4%), and mango varieties (3%) [3].
RSW has already been identified as a serious threat to the cultivation of coconut palms and
other Arecaceae species in Florida [4,5]. Initially, 17 plant species (belonging to 11 families)
were recorded as preferred hosts for RSW after the pest reached South Kerala [6]. Subse-
quently, the incidence of RSW was reported in the states of Kerala, Karnataka, Andhra
Pradesh, Assam, Goa, West Bengal, Maharashtra and Gujarat on several crops such as
coconut, banana, sapota, corn, oil palm, mango, cashew and many other ornamental
plants [7,8]. The availability of a wide range of host plants, combined with congenial
climatic conditions, favored their successful establishment in the areas of invasion. Both the
nymphs and adults of RSW directly suck the phloem sap of the leaf and secrete honey dew
which encourages the growth of sooty mould on the leaf surface that eventually reduces
the photosynthesis in the affected palms. Currently, RSW has become a regular pest of
coconut, warranting effective integrated pest management (IPM) strategies.

Among the various biocontrol agents, entomopathogenic fungi (EPF) have been found
to be successfully developed as mycopesticides in managing piercing—sucking groups of
insects including whiteflies. Whiteflies are known to be infected by more than 20 species of
entomopathogenic fungi, of which some of the widely studied fungi are Beauveria bassiana
(Vuillemin), Akanthomyces lecanii (Zimm.) and Cordyceps fumosorosea (Wize) [9–12]. EPFs
are considered as potent alternatives for whitefly management because of their unique
ability to invade the host insects directly by penetrating through the integument without
the concern of resistance development [13].

Severe infestation of RSW in palm oil resulted in a reduction of 20–25% bunch yield
at Andhra Pradesh [14]. Likewise, RSW has become a serious predicament for coconut
growers, hence efforts were made to identify the indigenous potential biological control
associated with the invasive pest. The fungal strain was identified and characterized based
on morphological descriptions coupled with molecular analysis. To the best of our knowl-
edge, this is the first report of the occurrence of entomopathogenic fungi, S. lanosoniveum
(Cordycipitaceae: Hypocreales) on RSW. Furthermore, the efficacy of the indigenous fun-
gal strain was investigated under laboratory and field bioassays in order to develop a
biopesticide for the management of this emerging pest.

2. Materials and Methods
2.1. Insect Cultures

RSW adults were collected from infested coconut gardens of the research farm belong-
ing to ICAR—Central Plantation Crops Research Institute (ICAR—CPCRI), Kasaragod,
Kerala, India (12◦30′ N latitude, 75◦00′ E longitude and 10.7 m). RSW culture was reared
on coconut seedlings raised in pots placed in the greenhouse with natural photoperiodic
conditions. Different developmental stages of RSW such as eggs, first instar, second instar,
third instar and fourth instar nymphs (pupae) were collected from the reared culture and
were used for bioassay studies.

2.2. Fungal Isolation

RSW nymphal cadavers (n = 4) fully covered with fungal mycelia under natural
growth conditions were collected from a coconut garden at ICAR—CPCRI, Kasaragod
(12◦30′ N latitude, 75◦00′ E longitude and 10.7 m). Sterile needles were used to isolate
mycelia or conidia from the cuticles of nymphal cadavers transferred to a Petri plate
containing Potato Dextrose Agar (PDA) medium and cultured at 26 ± 1 ◦C and 60% RH for
7–10 days in a biochemical incubator (BOD). In order to isolate the pure culture, the hyphal
tip from a small fungal colony was transferred to PDA slants and incubated at 26 ± 1 ◦C
and 60% RH. The morpho-taxonomic characteristics of the fungus were identified based
on conidia—forming mycelia and conidial structure [15,16].
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2.3. Identification of the Fungus
2.3.1. Morphological Identification

Morphological identification of the fungal isolate was recorded on PDA medium incu-
bated at 26 ± 1 ◦C and 60% RH for seven to ten days. The micro—morphological features
were recorded under a compound microscope (Nikon Eclipse 80i) attached with a digital
camera. The identification of the fungus was further confirmed with the help of Fungal
Identification Services, Agharkar Research Institute (ARI), Pune, Maharashtra, India.

2.3.2. Genetic Identification

Total genomic DNA was extracted from five-day old single spore cultures of fungus
grown in 100 mL Potato Dextrose broth. After vacuum filtration, the mycelia were washed
with sterilized distilled water and powdered using liquid nitrogen with the help of a mortar
and pestle. The DNA was extracted from powdered preparations using DNeasy Plant Mini
Kit (Qiagen, Valencia, CA, USA) following the standard manufacturer’s instructions. The
fungal ITS region was amplified using the primers: ITS4 (5′-TCCTCCGCTTATTGATATGC-
3′) and ITS6 (5′-GGAAGTAAAAGTCGTAACAAGG-3′) [17]. Two more nuclear genes viz.,
elongation factor-1 alpha (TEF1-α) and RNA polymerase II largest subunit 1 (RPB1) of the
ribosomal RNA gene were used in addition to confirm the identification the species level.
The DNA was amplified using specific primers of the TEF1-α (983F 5′ GCYCCYGGHCAY-
CGTGAYTTYAT 3′ 2218R 5′ ATGACACCRACRGCRACRGTYTG and RPB1 (CRPB1 5′

CCWGGYTTYATCAAGAARGT 3′ and CRPB1 A 5′ CAYCCWGGYTTYATCAAGAA 3′

RPB1Cr 5′ CCNGCDATNTCRTTRTCCATRTA 3′ [18]. The resultant PCR products were ex-
cised and purified using a Qiagen Gel Extraction Kit (Qiagen India) following the standard
protocol and were sequenced at Agrigenome, Cochin, India. The generated sequences were
submitted to NCBI GenBank (Accession numbers: ITS = MK463992, TEF1-α = MW893683
and RPB1 = MW836952) and used for multi gene phylogenetic analysis. The sequences
were used as query to perform BLAST search (http://blast.ncbi.nlm.nih.gov/ (accessed on
8 April 2021), and the sequence similarity studies were performed using ClustalX (1.81).
The phylogenetic tree of S. lanosoniveum was constructed following maximum likelihood
(ML) method using MEGA X software [19].

2.4. Virulence Bioassays
2.4.1. Conidial Preparation

The fungal culture was inoculated in Potato Dextrose Broth (PDB) and incubated at
26 ± 1 ◦C and 60% RH on a shaker for 14 days. The mycelia mat along with conidia was
thoroughly mixed in a mixer grinder, and the suspension was filtered through three layers
of muslin cloth, in order to get a hyphal—free conidial suspension. Conidial suspensions
were prepared in sterile distilled water containing 0.01% Tween 80 and the concentration
of the suspension was adjusted to different conidial concentrations using Neubauer’s
improved haemocytometer under a Nikon eclipse 80i compound microscope. Five different
spore concentrations ranging from 1 × 104 to 1 × 108 conidial concentration/mL were
tested against different developmental stages of RSW.

2.4.2. Experimental Design

Coconut leaf bits containing 35–40 different developmental stages of RSW were col-
lected from the greenhouse culture. Thirty leaf bits (10 cm each) were gently dipped in
freshly prepared respective conidial suspensions for 20 s and placed separately on a Petri
plate (14 × 2.5 cm) over sterilized wet tissue paper. Sterile distilled water containing 0.01%
Tween 80 alone was used as the control. The experiment had five replications for each con-
centration, and the whole bioassay was repeated twice. Prior to conidial spray, the number
of various developmental stages of RSW on each coconut leaf bit was counted to maintain
a uniform population across the treatments. The mortality data were recorded by counting
dead cadavers and developmental stages with fungal infection at 24 h intervals up to
seven days, and the data was subjected to Abbott’s formula [20] for calculating corrected

http://blast.ncbi.nlm.nih.gov/


J. Fungi 2021, 7, 964 4 of 13

mortality. For time mortality studies, the higher concentration at 1 × 108 spores/mL were
used to determine LT50 of S. lanosoniveum against RSW developmental stages.

2.5. Field Virulence of S. lanosoniveum

Two field trials using S. lanosoniveum carried out during November 2019 and January
2020, respectively, in the RSW infested coconut gardens of ICAR—CPCRI, Kasaragod,
Kerala (average temperature 22–33 ◦C, 60–73% RH during December 2019 and average
temperature 20.6–32.4 ◦C, 59–71% RH during January 2020, respectively). The conidial sus-
pension of the fungal culture (1× 108 conidia/mL) was prepared in sterile aqueous solution
containing 0.01% Tween 80. The spore suspension of 500 mL was sprayed thoroughly on
the dwarf cultivars of each coconut tree (variety; Chowghat Orange Dwarf (COD), n = 20)
which were naturally infested with different developmental stages of RSW through hand-
held sprayer. Prior to fungal spray, the numbers of developmental stages of RSW per leaflet
(5 leaflets per palm) were counted under a Nikon Stereozoom microscope (SMZ 800 N).
Twenty dwarf palms sprayed with sterile aqueous solution containing 0.01% Tween 80
were maintained as control. Mortality data ware recorded from the treated and control
plants after 14 days of spray. The experiment was replicated thrice and field bioassays were
conducted twice at different time intervals. Developmental stages with S. lanosoniveum
fungal infection recorded using a Nikon Stereozoom microscope (SMZ 800 N) and the
percent mortality was calculated.

2.6. Statistical Analysis

Conidial concentration, time and their interactive effects on mortality per cent data
were analyzed using PROC GLM (SAS version 9.3, SAS institute, 2011). Mortality data
of different developmental stages of A. rugioperculatus were corrected using Abbott’s
formula [20]. The treatment difference was evaluated using least significant difference
(LSD) at p < 0.05. The dose and time dependent mortality studies to kill 50% of the
population (LC50 and LT50) were calculated by probit analysis [21] using R software based
on binomial GLM function [22,23]. Field efficacy data were assessed by Student’s t-test
with a significance of difference at p < 0.01 [24].

3. Results
3.1. Fungal Identification
3.1.1. Morphological Identification

Based on the morphological characters, the fungus isolated from the field collected
nymphal cadavers of A. rugioperculatus was identified as Simplicillium lanosoniveum (Cordy-
cipitaceae: Hypocreales). The fungal colonies were characterized on PDA medium as white,
velvety with radial cracks and primrose yellow on the reverse side (Figure 1). Conidia was
(2–4 × 1–2 µm), oval ellipsoidal, hyaline, smooth walled, adhering in globose to ellipsoidal
head at the apex of phialides (Figure 1).

3.1.2. Genetic Identification

The sequences of Simplicillium isolate generated in the present study have been de-
posited in GenBank with accession numbers: ITS = MK463992, TEF1-α = MW836952 and
RPB1 = MW893683. BLAST analysis of generated sequences exhibited 99% sequence sim-
ilarity with Simplicillium lanosoniveum (DQ522406 and DQ522357). A phylogenetic tree
of Simplicillium at species level was generated using maximum-likelihood (ML) analysis
based on a combined data set of ITS, TEF1-α and RPB1. Multigene phylogenetic analysis
showed that Simplicillium isolate (MK463992, MW836952 and MW893683) of the present
study have a close phylogenetic affinity to Simplicillium lanosoniveum with strong bootstrap
support (98–100%, Figure 2).
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Figure 1. Morphological characters of Simplicillium lanosoniveum. (A,B) Simplicillium lanosoniveum
cultured on PDA medium at 26 ◦C for 10 days (A) the front side (B) the reverse side (C,D) Conidio-
phores with conidiogenous cells (E) Conidia—cylindrical, oval-ellipsoidal (2–4 × 1–2.0 µm); scale
bar (D,E); 50 µm.
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Figure 2. Phylogenetic tree based on maximum-likelihood analysis of combined ITS, b-tubulin and
EF-1a sequences data. The sequence MW893683 (*) is the sequence generated in the present study
and it branched with the retrieved sequences of S. lanosoniveum. Metarhizium anisopliae (MK532369.1)
represented the outgroup.

3.2. Virulence Bioassay

The pathogenicity of S. lanosoniveum was evaluated against different developmental
stages of RSW. The fungal bioassay treatment resulted in the highest pathogenicity to the
eggs, initial (first), middle (second—third) and later (fourth) instar nymphs of RSW with
corrected mortality rates of 95.20%, 87.33%, 85.38% and 72.85%, respectively following the
seventh day after treatment (DAT) at 1 × 108 conidial concentrations/mL (Figure 3).
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Figure 3. Pathogenecity of S. lanosoniveum tested at 1 × 108 conidia/mL against different develop-
mental stages of RSW. Data are mean ± SEM of three tests.

Different conidial concentration ranging from 1 × 104 to 1 × 108 conidia/mL treated
against different developmental stages of RSW for evaluating its virulence are illustrated
in Figure 4. The highest egg mortality of 95.20% was observed at higher conidial con-
centrations tested, (1 × 108 conidia/mL) while low conidial concentration (1 × 104 coni-
dia/mL) exhibited mortality of 41.25% at 7 DAT (F = 40.46; df = 4,16; p < 0.0001) (Figure 4).
Expectedly, egg mortality was found to increase with the increase in spore concentra-
tions and exposure time (F = 52.61; df = 3,12; p < 0.0001). Likewise, first instars experi-
enced highest mortality (87.33%) at conidial concentrations of 108 conidia/mL (F = 8.18;
df = 4,16; p < 0.0001) whereas lowest per cent mortality (39.64%) was observed at a dose of
104 conidia/mL on 7 DAT (Figure 4). As observed in eggs, mortality in first instar nymphs
increased significantly with increase in conidial concentration in each dose tested and with
an increase in treatment period (F = 2.46; df = 12; p < 0.01). Similarly, on seven DAT, the
highest mortality of 85.38% was observed in second to third instar nymphs treated with
conidial concentrations of 108 conidia/mL and the lowest concentration of 104 conidia/mL
recorded lowest mortality of 35.38% (F = 17.90; df = 4,16; p < 0.0001) (Figure 4).

In case of pupae, highest mortality of 72.85% was documented with the dose of
108 conidia/mL, whereas the lowest mortality of 24.76% was observed at the dose of
104 conidia/mL on 7 DAT (F = 14.96; df = 4,16; p < 0.0001). The mean mortality in pu-
pae ranged from 1.25% to 4.33% on 4 DAT when treated with conidial concentration of
104 conidia/mL (F = 18.65; df = 3,12; p < 0.0001) and 108 conidia/mL (F = 40.80; df = 3,12;
p < 0.0001), respectively (Figure 4). A similar trend of increase in mortality with increase in
conidial concentration of each dose tested and exposure time was also observed in pupae
(F = 7.34; df = 12; p < 0.0001). Overall, the mortality rate at various developmental stages of
RSW has significantly increased with an increase in the concentration of fungal conidia
and the duration of the time following the exposure to the fungal treatments. In general,
significant differences in the entomopathogenic pathogenicity of S. lanosoniveum against
RSW were observed between conidial concentration (F = 215.29, df = 4; p < 0.0001), time in-
terval (F = 803.91, df = 3, p < 0.0001) and stages of host insect (F = 145.64, df = 3; p < 0.0001).
Significant interactions were observed between treatment*stage of host insect (F = 12.98,
df =12, p < 0.0001), treatment*time (F = 6.55, df = 12, p < 0.0001), time*stage of host insect
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(F = 8.20, df = 9, p < 0.0001) and treatment*stage of host insect*time (F = 1.74, df = 36,
p < 0.0001).
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Figure 4. Mortality (% ± SE) of eggs (A), first instar nymphs (B), second and third instar nymphs (C), pupae (D) of
A. rugioperculatus treated with fungus, Simplicillium lanosoniveum. Bars with different uppercase letters on the top of error
bars indicate significant differences among the different days after treatment and with different lowercase letters indicate
significant differences for different treatments i.e., concentration of fungus, Simplicillium lanosoniveum. (p < 0.05, Tukey’s test).

3.3. Determination of the Lethal Concentration (LC50) and Lethal Time (LT50)

Significant differences in the LC50 and LT50 values of S. lanosoniveum against dif-
ferent life stages of A. rugioperculatus were documented based on the dose—and time
mortality response studies (Table 1). The median lethal concentration (LC50) values of
S. lanosoniveum against eggs, first instars, second to third instarsand pupae of RSW were
4.72 × 104, 4.94 × 104, 5.11 × 105, 5.92 × 105 conidia/mL respectively. The LT50 values of
S. lanosoniveum at the highest concentration (1 × 108 spores/mL) on the corresponding
developmental stages were 4.27, 4.86, 4.56, 5.89 days, respectively (Table 2).

Table 1. Lethal concentration value of S. lanosoniveum against different developmental stages of RSW.

Developmental
Stages of RSW n † X2 (DF) ‡ Slope LC50 *

LC50 Confidence Interval
LC90

LC90 Confidence Interval

Lower Upper Lower Upper

Egg 958 11.20 (3) 6.14 ± 0.49 4.723 × 104 a 3.799 × 103 4.313 × 105 7.706 × 107 a 6.864 × 106 9.560 × 109

First instar 387 03.55 (3) 4.56 ± 0.69 4.946 × 104 ab 4.270 × 104 5.434 × 105 10.122 × 107 a 8.345 × 106 15.99 × 109

Second-third instar 247 09.89 (3) 5.03 ± 0.55 5.109 × 105 ab 4.653 × 104 6.350 × 106 9.536 × 108 a 7.571 × 106 15.221 × 1010

Fourth instar/pupae 204 00.26 (3) 4.07 ± 0.76 5.920 × 105 b 5.232 × 105 6.700 × 106 11.383 × 108 a 9.099 × 107 19.937 × 1010

†—Number of insect used for bioassay study; ‡—Degree of freedom. *—LC50 of one treatment is significantly different if the both lower
and upper fiducial limit does not include LC50 value of other treatments; the LC50 values are expressed as concentration of conidia mL−1.
Different letters in the superscript denotes significant difference between treatments.
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Table 2. Time—dose toxicity of S. lanosoniveum against different developmental stages of A. rugioperculatus at the concentra-
tion of 1 × 108 conidia per mL.

Developmental
Stages of RSW n † X2 (DF) ‡ Slope LT50 *

LT50 Confidence Interval

Lower Upper

Egg 165 1.523 (4) 5.54 ± 0.38 4.27 a 4.09 4.45
First instar 43 0.565 (4) 7.67 ± 0.91 4.86 b 4.57 5.16

Second-third instar 63 2.406 (4) 5.16 ± 0.59 4.56 ab 4.23 4.88
Fourth instar/pupae 35 2.680 (4) 10.4 ± 1.29 5.89 c 5.59 6.20

†—Number of insect used for bioassay study; ‡—Degree of freedom. *—LT50 of one treatment is significantly different if the both lower
and upper fiducial limit does not include LT50 value of other treatments; the LT50 values are expressed as time taken in terms of days (d) to
kill 50% population. Different letters in the superscript denotes significant difference between treatments.

3.4. Field Virulence of Entomopathogenic Fungi

Fourteen days after the spray of S. lanosoniveum, the mortality of eggs and nymphal
stages of RSW was calculated. As shown in Figure 5, the population of eggs (t = 4.56;
p < 0.01) and nymphs (t = 8.19; p < 0.01) of A. rugioperculatus were reduced by 57.8% and
56.3%, respectively at 14 DAT. Thus, the native fungi isolated and reported herein showed
positive virulence by infecting RSW stages under open field conditions (Figure 5).
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Figure 5. Field evaluation of S. lanosoniveum on the egg and nymphal population of RSW at 14 days after treatment
(DAT). The different letters in Afterspray-E and Afterspray-N indicate differences between treatments. E—egg populations;
N—nymphal populations.

4. Discussion

The first incidence of the RSW was identified in India during the year 2016 following
which it has spread widely and caused serious damages in larger areas of crop cultiva-
tion, particularly in coconut [6–8]. The adoption of management strategies using chemical
pesticides is uneconomical and it also causes severe adverse effects on naturally existing bio-
control agents including Encarsia guadeloupae Viggiani (Hymenoptera: Aphelinidae) [7,8].
The conservation of natural enemy complexes and avoidance of insecticide spray are the
major pest management strategies provided to the farmer’s against this invasive pest to
avoid the ill effects of pesticide usage. In this context, utilization of entomopathogenic
fungi as a means for biological control of RSW infestations is of significant importance [3–6].



J. Fungi 2021, 7, 964 9 of 13

However, exploration and identification of novel and virulent EPF strains adapted to par-
ticular localities is necessary for the development of effective mycoinsecticides. Efficacy
of entomopathogenic fungi for managing the sucking insect pest population in the field
conditions is well recognized [25] owing to their unique mode of action of penetrating
the insect cuticle [26,27]. Among the EPFs, Akanthomyces species are widely utilized as
commercial biological pesticides against whiteflies, thrips and aphids [28]. Fungicolous
and entomopathogenic species of Akanthomyces were later placed in the genera Simplicillium
and Lecanicillium based on systematic studies [16]. Although species of Simplicillium occurs
in a broad range of ecological niches [16,29–32] but only few studies have reported the
pathogenicity of Simplicillium sp. against insects [33–40]. In the present study, we report
the identification of a novel isolate of entomopathogenic fungus, S. lanosoniveum isolated
from RSW in the invaded region. Bioassay studies have revealed the potency of the isolate
S. lanosoniveum, as it was found to be virulent against all the developmental stages of
RSW. The ecological and economical value of Simplicillium sp. for its biocontrol and bioac-
tive features were highlighted by many researchers [41–43]. S. lanosoniveum is a known
phytopathogen, causing brown spots and lesions on flowers [44] or as a mycoparasite on
soybean rust [45,46]. This species is also reported as a pathogen of aphids [33] and as
an anti-Trichomonas vaginalis agent [47]. Other species of Simplicillium such as S. chinense
acts as a biological control agent against plant parasitic nematodes [39,48]. S. lamellicola is
known to suppress plant bacterial diseases and grey mould of tomato and ginseng [31,49].
Bioactive compounds with anti-fungal and anti-bacterial profiles and pharmaceutical ex-
opolysaccharides were isolated from S. lanosoniveum [50–53]. Linear and cyclic peptides
with anti-fungal, anti-bacterial and anti-viral properties were also discovered from the
secondary metabolites of S. lamellicola and S. obclavatum [31,54]. The entomopathogenity of
S. lanosoniveum was demonstrated against silkworms, and it was evident that virulence of
the isolate was strong as that of B. bassiana [38]. The present study strain, S. longisoniveum,
exhibited >70–80% mortality rates against RSW nymphs and pupae, while >90% mortality
recorded for egg stage at 1 × 107 and 1 × 108 conidia/mL under laboratory bioassays on
seven DAT. It was noticed that early instars are highly susceptible to this fungal strain than
the late instars. Present study results are corroborating the earlier report of Nagasi et al. [55],
where, B. bassiana was found most virulent against the first instar of silver leaf whitefly,
Bemisia argentifolii (Bellows & Perring). Entomopathogenic fungi used as an effective biolog-
ical control against in other whitefly species like, B. argentifolii and Trialeurodes vaporariorum
(Westwood) [55–57]. Eyal et al. [58] reported that B. bassiana caused 52–98% mortality in
Bemisia tabaci (Gennadius) at concentrations of 1–4 × 106 conidia/mL. The present study
observed increased mortality of different developmental stages of RSW with an increase in
the conidial concentration and time of exposure. Likewise, Boopathi et al. [59] also observed
that the application of I. fumosorosea was highly pathogenic to A. dispersus on cassava and
exhibited differences in efficacy between 3 and 15 days after treatment. In the present study,
the LC50 values and LT50 values of S. lanosoniveum against eggs, first instar, second to third
instar, and pupae of RSW were 4.72 × 104, 4.94 × 104, 5.11 × 105, 5.92 × 105 conidia/mL
and 4.27, 4.86, 4.56, 5.89 days, respectively. Similarly to present results, the LC50 values
of I. fumosorosea for eggs, first—second, third and fourth instar nymphs of RSW were esti-
mated to be 2.6 ×104, 2.3 × 104, 3.5 × 105 and 9.5 × 105 spores /mL respectively and the
LT50 values were4.19, 3.44, 5.62 and 5.69, respectively for corresponding life stages for the
concentration of 1 × 108 conidia/mL tested [60]. Therefore, in terms of the pathogenicity
bioassays, the LC50 and LT50 values of S. lanosoniveum exhibited significant biocontrol poten-
tial in the management of RSW under laboratory conditions. The results are comparable to
the effects produced by the widely studied entomopathogenic fungi like I. fumosorosea [60].
However, S. longisoniveum at 1 × 108 conidia/mL tested under field conditions caused
57.8% and 56.3% mortality in the egg and nymphal population of RSW on 14 DAT, which
was less than that of laboratory efficacy. The reason for this reduction in efficacy in the
field condition might be due to the involvement of abiotic factors, as field conditions are
heterogenetic in nature compared to the homogenic environment of the laboratory. Earlier
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reports also suggested that environmental factors not only affect survival and virulence
of entomopathogenic fungi, but also influence their host–pathogen interaction [61]. Tem-
perature and relative humidity are the two most important environmental factors which
greatly influence the fungal germination, infection, sporulation, survival and virulence of
the entomopathogenic fungi [62–64]. In addition, the process of fungal infection is also
governed by the microclimate of the insect cuticle [65]. However, the sensitivity of the
isolate or specific strain varies with environmental factors [62] and the success of any
entomopathogenic fungi is determined by its adaptability to the local or prevailing envi-
ronmental conditions [66]. Therefore, it is imperative to ascertain the effect of temperature
and RH on any new isolate before considering it for biocontrol of insect pests. The fungal
isolate reported herein performed fairly well in reducing the whitefly population in the
open field conditions where the prevailing temperature and relative humidity conditions
could have played a crucial role in affecting its efficacy. To conclude, this is the first report
of natural occurrence of S. lanosoniveum on RSW. This study identified a highly pathogenic
fungal isolate, S. lanosoniveum, based on its morphology, molecular and phylogeny and
demonstrated its pathogenicity against RSW under in vitro and field conditions. Hence,
this study forms a foundation for the large scale development of a biocontrol agent to
suppress the spread of RSW. However, further studies on its compatibility with natural ene-
mies for field applications are required. Efforts are also in progress to develop formulations
with high virulent stability to sustain its field efficacy.
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